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Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency

by Dariush Motazedian and Gail M. Atkinson

Abstract In finite-fault modeling of earthquake ground motions, a large fault is
divided into N subfaults, where each subfault is considered as a small point source.
The ground motions contributed by each subfault can be calculated by the stochastic
point-source method and then summed at the observation point, with a proper time
delay, to obtain the ground motion from the entire fault. A new variation of this
approach is introduced based on a “dynamic corner frequency.” In this model, the
corner frequency is a function of time, and the rupture history controls the frequency
content of the simulated time series of each subfault. The rupture begins with a high
corner frequency and progresses to lower corner frequencies as the ruptured area
grows. Limiting the number of active subfaults in the calculation of dynamic corner
frequency can control the amplitude of lower frequencies.

Our dynamic corner frequency approach has several advantages over previous
formulations of the stochastic finite-fault method, including conservation of radiated
energy at high frequencies regardless of subfault size, application to a broader mag-
nitude range, and control of the relative amplitude of higher versus lower frequencies.
The model parameters of the new approach are calibrated by finding the best overall
fit to a ground-motion database from 27 well-recorded earthquakes in California. The
lowest average residuals are obtained for a dynamic corner frequency model with a
stress drop of 60 bars and with 25% of the fault actively slipping at any time in the
rupture.

As an additional tool to allow the stochastic modeling to generate the impulsive
long-period velocity pulses that can be caused by forward directivity of the source,
the analytical approach proposed by Mavroeidis and Papageorgiou (2003) has been
included in our program. This novel mathematical model of near-fault ground mo-
tions is based on a few additional input parameters that have an unambiguous physi-
cal meaning; the method has been shown by Mavroeidis and Papageorgiou to sim-
ulate the entire set of available near-fault displacement and velocity records, as well
as the corresponding deformation, velocity, and acceleration response spectra. The
inclusion of this analytical model of long-period pulses substantially increases the
power of the stochastic finite-fault simulation method to model broadband time his-
tories over a wide range of distances, magnitudes, and frequencies.

Introduction

The effects of a large earthquake source, including fault
geometry, heterogeneity of slip on the fault plane, and di-
rectivity, can profoundly influence the amplitudes, fre-
quency content, and duration of ground motion. Finite-fault
modeling has therefore been an important tool for the pre-
diction of ground motion near the epicenters of large earth-
quakes (Hartzell, 1978; Irikura, 1983; Joyner and Boore,
1986; Heaton and Hartzell, 1986; Somerville et al., 1991;
Tumarkin and Archuleta, 1994; Zeng et al., 1994; Beresnev
and Atkinson, 1998a). One of the most useful methods to
simulate ground motion for a large earthquake is based on
the simulation of several small earthquakes as subevents that
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comprise a large fault-rupture event. A large fault is divided
into N subfaults and each subfault is considered as a small
point source (introduced by Hartzell, 1978). The rupture
spreads radially from the hypocenter. In our implementation,
the ground motions of subfaults, each of which is calculated
by the stochastic point-source method, are summed with a
proper time delay in the time domain to obtain the ground-
motion acceleration, a(t), from the entire fault,
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where nl and nw are the number of subfaults along the length
and width of main fault, respectively (n/ X nw = N), and
At;; is the relative delay time for the radiated wave from the
ijth subfault to reach the observation point. The a; () are
each calculated by the stochastic point-source method as de-
scribed by Boore (1983) and summarized below.

The acceleration spectrum for a subfault at a distance
R;; maybe modeled as a point source with an w* shape (AKki,
1967; Brune, 1970; Boore 1983). The acceleration spectrum
of shear wave of the ijth subfault, A s is described by

Ay(f) = {CMy;2 =f1[1
+ (fop*1} {exp(—nfic) exp(—nfR,;/OBVR;},  (2)

where My, fo;» and R;; are the ijth subfault seismic moment,
corner frequency, and distance from the observation point,
respectively. The constant C = R "FV/(4npf?), where R
is radiation pattern (average value of 0.55 for shear waves),
F is free surface amplification (2.0), V is partition onto two
horizontal components (0.71), p is density, and f§ is shear-
wave velocity. Corner frequency, fy;;, is given by fo,; = 4.9E
+ 6 f(Aa/M,;)'", where A is stress drop in bars, M, is in
dyne cm and f is in kilometers per second (Boore, 1983).
The term exp(—mfic) is a high-cut filter to model near-
surface “kappa” effects: this is the commonly observed rapid
spectral decay at high frequencies (Anderson and Hough,
1984). The quality factor, Q(f), is inversely related to an-
elastic attenuation. The implied 1/R geometric attenuation
term is applicable for body-wave spreading in a whole space.

The approach of the stochastic point-source model is to
generate a transient time series that has a stochastic char-
acter, and whose spectrum matches a specified desired am-
plitude spectrum such as that given by equation (2) (Boore,
1983). First, a window is applied to a time series of Gaussian
noise with zero mean and unit variance. The windowed time
series is transformed to the frequency domain and the am-
plitude spectrum of the random time series is multiplied by
the desired spectrum as given by equation (2). Transforma-
tion back to the time domain results in a stochastic time
series whose amplitude spectrum is the same as the desired
spectrum on average. In extending this method to finite
faults, we use equation (2) to describe the point-source Fou-
rier spectrum of ground motion for each of the subfaults that
make up the fault-rupture plane. The subfault spectra are
Fourier transformed to the time domain, then summed at the
observation point with the proper time delay (equation 1).

The moment of each subfault is controlled by the ratio
of its area to the area of the main fault (M,; = M,/N, where
M, is the seismic moment of the entire fault). If the subfaults
are not identical we can express the seismic moment of each
subfault as follows:
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where S;; is the relative slip weight of the ijth subfault.

Studies have shown that in such kinematic models the
obtained ground motion, a(f), for a large fault depends on
the subfault size or the number of subfaults, N (Joyner and
Boore, 1986; Beresnev and Atkinson 1998b). In other words,
to correctly reproduce observed ground motions for a large
fault, there are some constraints on the subfault size or the
number of subfaults. This constraint on subfault size in cur-
rent stochastic finite-fault simulation methods is a concep-
tual drawback, because, intuitively, the simulated ground
motions should be independent of the fault-discretization
scheme. There are other significant drawbacks to current sto-
chastic simulation schemes. They do not attempt to model
the phasing of various arrivals in the signal at large dis-
tances, such as early body-wave arrivals followed by later
surface-wave arrivals. At near-fault distances, stochastic
methods have not adequately described the coherent long-
period pulses that may control the period, duration, and am-
plitude of near-fault ground motions at periods longer than
about 1 sec.

Use of Stochastic versus Deterministic
Simulation Methods

Given the acknowledged limitations of stochastic meth-
ods at lower frequencies, a valid question may be: why use
stochastic methods at all? Perhaps such methods should be
abandoned in favor of deterministic methods or hybrid meth-
ods that use the stochastic approach only at high frequencies.
This question warrants careful examination. It is widely rec-
ognized that near-fault ground motions may be strongly in-
fluenced by long-period pulses caused by forward rupture
directivity of the source and that the resulting ground mo-
tions at long periods are well matched by deterministic simu-
lation methods based on kinematic slip models (Pitarka et
al., 2000, 2002). On the other hand, deterministic methods
produce synthetics that do not have the complexity at high
frequencies that is present in the real Earth. Stochastic sim-
ulations are widely held to be the most successful at pre-
dicting ground motion at frequencies above 1 Hz, probably
because of the importance of scattering effects at high fre-
quencies (Hartzell ef al., 1999). It is natural, then, that hybrid
methods have developed that combine the low-frequency ad-
vantages of deterministic methods with the high-frequency
advantages of stochastic methods, thereby allowing broad-
band simulation of time histories (Hartzell et al., 1999, Pi-
tarka et al., 2000, 2002). What all the simulation methods
(deterministic, stochastic, and hybrid) have in common is
that they rely on the summation of subevents or Green’s
functions, but they differ in the summation approaches and
rules. There are also many possible variations on the sub-
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event records to be used in the summation. They may be
empirical Green’s functions from small earthquakes, sto-
chastic synthetics, or synthetics based on elastic wave prop-
agation (see Hartzell ez al. [1999] for a review of the possible
combinations). Hybrid approaches are often cited as being
the most versatile (Hartzell et al., 1999; Pitarka et al., 2000,
2002). The ground displacement at an observation point can
be determined based on the slip distribution on the fault and
the impulse response of the medium (Green’s function), ac-
cording to the discretized representation theorem (Aki and
Richards, 1980). In hybrid methods, the low-frequency part
of the Green’s function is deterministic, based on elastic
wave-propagation methods, whereas the high-frequency part
is based on a stochastic Brune model (Hartzell et al., 1999).
Thus, the hybrid models cover a broad frequency range,
from about 0.1 to 20 Hz. However, hybrid methods may not
necessarily provide Green’s functions that satisfy both the
amplitude and phase information in the important interme-
diate frequency range from 0.5 to 2 Hz; the source processes
generating the 0.5- to 2-Hz motions are not adequately re-
solved by either low- or high-frequency models (Miyake et
al., 2003).

In theory, hybrid methods should perform better than
purely stochastic methods in predicting ground motions
from earthquakes across a broad-frequency range. In prac-
tice, the situation appears less than clear-cut, partly because
numerous modifications have been made to stochastic meth-
ods that allow them to mimic the salient features of earth-
quakes at longer periods. A comprehensive study of various
simulation methods, and their ability to fit the near-fault mo-
tions of the 1994 Northridge, California, earthquake, was
performed by Hartzell et al. (1999). They examined 13 com-
binations of simulation models from the purely stochastic to
the purely deterministic, including two hybrid approaches.
From the point of view of this study, the most relevant cases
considered were the stochastic finite-fault simulations using
the method of Beresnev and Atkinson (1998b), and the two
hybrid approaches. The hybrid approaches make use of the
actual slip distribution on the fault as determined by the
ground-motion data. The stochastic simulations considered
the cases of uniform or random slip distribution, with the
random slip distribution being the most relevant case, in
terms of ground-motion prediction. The first hybrid model
used the laterally homogeneous, kinematic slip results at low
frequencies, combined with stochastic results at high fre-
quencies. The second hybrid approach combined the 3D
finite-difference, kinematic results for the Northridge inver-
sion slip distribution at low frequencies with the same high-
frequency synthetics as the first hybrid model. Thus, both
hybrid methods used considerable additional information
over that used by the stochastic method and should have
outperformed the stochastic method of Beresnev and Atkin-
son (1998b) for this hindcast exercise. Surprisingly, this was
not the case. Plots of response spectra showed that both the
finite-fault stochastic and hybrid methods performed equally
well across a broad range of frequencies, from 0.1 to 20 Hz

(Hartzell et al., 1999). Looking at a table of time-domain
comparisons of model bias, Hartzell et al. (1999) concluded
that the hybrid methods were preferable overall. However,
the statistics presented by Hartzell et al. (1999) could just
as easily be interpreted to reach the opposite conclusion. In
Table 1, we reproduce their comparison of model bias (de-
fined as the ratio of the observed parameter to the simulated
parameter, taken over all observations) for the Beresnev and
Atkinson (1998b) stochastic finite-fault model (FINSIM), in
comparison with the two hybrid models. The table shows
the model bias for the peak velocity, peak acceleration, ve-
locity duration, and acceleration duration (as measured from
the time-domain traces for both the observed and simulated
records). Based on their comparison, Hartzell et al. con-
cluded that hybrid models match the time-domain charac-
teristics of the ground motions better than the stochastic
finite-fault model does. Referring to Table 1, the hybrid 2
method performs the best in matching durations. However,
the hybrid 2 model underpredicts peak amplitudes. The sto-
chastic model does the best job of predicting both peak ac-
celeration and velocity, despite use of a random slip distri-
bution, and does just as well as the hybrid 1 model in
predicting the durations. Thus, it could be concluded from
the information presented by Hartzell ef al. that the stochas-
tic model performs better than the hybrid model, with the
possible exception of cases in which the 3D velocity struc-
ture is needed to more accurately model ground-motion
characteristics in the time domain.

The stochastic method has a long history of performing
better than it should in terms of matching observed ground-
motion characteristics. It is a simple tool that combines a
good deal of empiricism with a little seismology and yet has
been as successful as more sophisticated methods in pre-
dicting ground-motion amplitudes over a broad range of
magnitudes, distances, frequencies, and tectonic environ-
ments. It has the considerable advantage of being simple and
versatile and requiring little advance information on the slip
distribution or details of the Earth structure. For this reason,
it is not only a good modeling tool for past earthquakes, but
a valuable tool for predicting ground motion for future
events with unknown slip distributions. It has been used in

Table 1

Model Bias for the Northridge Earthquake Based on Time-
Domain Measures

Method Vinax Anax Ty N

FINSIM 1.007 1.006 1.985 1.398
Hybrid 1 1.021 1.131 1.829 1.448
Hybrid 2 1.263 1.181 0.841 1.124

Results are given for (1) finite-fault stochastic simulations made with
FINSIM (random slip distribution) and for (2) hybrid 1 method and (3)
hybrid 2 method with 3D velocity model of the region, in addition to the
Northridge slip distribution. Extracted from table 7 in Hartzell et al. (1999).
Bias is given as a factor, for maximum velocity and acceleration, and du-
ration of velocity and acceleration. All methods reproduce response spectra
in the range from 0.1 to 20 Hz.



998

a wide variety of studies and tectonic environments, includ-
ing California (Hanks and McGuire, 1981; Boore, 1983;
Joyner, 1984; Joyner and Boore, 1988; Schneider et al.,
1993; Atkinson and Silva, 1997, 2000), eastern North Amer-
ica (Atkinson, 1984; Boore and Atkinson, 1987; Toro and
McGuire, 1987; Ou and Herrmann, 1990; Atkinson and
Boore, 1995; Toro et al., 1997), Mexico (Beresnev and At-
kinson, 1998a; Singh et al., 1989), the Cascadia region
(Silva et al., 1991; Atkinson and Boore, 1997), Greece (Mar-
garis and Boore, 1998), Russia (Sokolov, 1997), and Italy
(Rovelli et al., 1991, 1994; Berardi et al., 1999). In our view,
the history of success of the stochastic model is a good rea-
son to continue to work on its development, improve its
shortcomings, and broaden its utility. The stochastic method
may also provide an additional avenue to explore the ques-
tion of whether areas of concentrated slip, as resolved by
deterministic methods, are directly related to the areas on the
fault that generate strong ground motion, as proposed by
Miyake et al. (2003). Users of ground-motion simulation
methodologies should consider the potential advantages of
a variety of methods and reach their own conclusions. In this
article, we focus on further development of stochastic finite-
fault methods and continue to explore the fertile territory
that lies between purely stochastic and purely deterministic
treatments of ground-motion generation. In particular, we
address some conceptual disadvantages of current stochastic
finite-fault approaches and introduce improvements to the
treatment of low-frequency ground motions to allow better
modeling of long-period velocity pulses.

The Dependence of Radiated Energy
on Subfault Size

Subfault size dependence in stochastic finite-fault mod-
eling, as demonstrated by Joyner and Boore (1986) and Be-
resnev and Atkinson (1998b), raises a question. Is the total
radiated energy from the fault conserved when we change
the subfault size or the number of subfaults? Let us free the
simulations from the constraint of specified subfault size and
study its consequences. The square of the Fourier spectrum
is proportional to the received energy from each subfault.
Let us consider a vertical fault with length of 40 km and
width of 20 km. The approximate moment magnitude for
such a fault, based on Wells and Coppersmith (1994), is M
7.0. Table 2 lists all the assumed input parameters that we
use to model ground motions from such a fault (see Beresnev
and Atkinson [2002] for details). We use the stochastic
finite-fault simulation algorithm FINSIM (Beresnev and At-
kinson, 1998a). We vary the number of subfaults into which
the fault is divided and calculate the total received energy
from the fault at the observation point. All the other param-
eters have been kept the same in all simulations. In this step
all the subfaults are square and identical in slip behavior and
corner frequency. The observation point is far from the fault
surface (more than 300 km) so that the attenuation effect
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will be almost the same for all the subfaults. Simulations are
performed for different subfault lengths, including 1, 2, 5,
and 10 km. The number of subfaults is 800, 200, 32, and &,
respectively, covering a wide range of subfault sizes. The
size of the main fault is the same for all cases.

Figure 1 shows the total received energy at the obser-
vation point for different subfault lengths. It shows that, as
we increase the number of subfaults, the energy at low fre-
quencies is decreased and the energy at high frequencies is
increased. If the entire fault is considered as 800 subfaults
with the size of 1 km by 1 km, the total received energy at

Table 2

Assumed Model Parameters for Simulation Exercises
with FINSIM

o 33307
Distance-dependent duration Ty + 0.1R
Kappa 0.03
Crustal shear-wave velocity (km/sec) 3.7
Crustal density (g/cm?) 2.8

1/R (R = 70 km)

1/R® (70 km < R < 130 km)
1/R% (R = 130 km)

Stress drop (bars) 50

Strength factor 1.6

Geometric spreading

These parameters are typical for finite-fault simulations (Beresnev and
Atkinson, 2002).
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Figure 1.  Far-field received energy of a fault with
different subfault lengths by using the static corner
frequency approach, for an event of M 7 at 333 km.
If the entire fault is considered as 800 subfaults with
the size of 1 km by 1 km, the total received energy at
the observation point is much larger than the total
received energy when the entire fault is considered as
eight subfaults with the size of 10 km by 10 km.
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the observation point is much larger than the total received
energy is when the entire fault is considered as eight sub-
faults, each with the size of 10 km by 10 km. Because the
attenuation effects are almost the same for all the subfaults
in the far field, it follows that the total radiated energy from
the entire fault is not conserved. This is a conceptual dis-
advantage that applies to the current popular stochastic
finite-fault formulations.

Dynamic Corner Frequency

Different definitions are possible for the corner fre-
quency of an earthquake spectrum. In the stochastic point-
source approach the original definition of corner frequency
was given by f, = 4.9E + 6B(Aa/M,)'"", where Ac is the
stress drop in bars, M,, is the seismic moment in dyne cm,
and f is the shear-wave velocity in kilometers per second
(Boore, 1983). This expression follows from the Brune
(1970, 1971) point-source model. Other expressions that
have been proposed, involving rupture duration 7, are f;; =
1/T (based on equation 6 in Boore [1983]), where T is rup-
ture duration; fo; = 0.5/T (based on Boatwright and Choy
[1992]), where T is rupture duration; and f,; = 0.37/T
(Hough and Dreger, 1995, p. 1582), where T = L/(2yf), in
which L is the fault dimension and y is the ratio of rupture
velocity to shear-wave velocity. Another definition suggests
that corner frequency depends on the azimuth of rupture-
propagation direction, f,; = 1/T(1 —y cos ), where 0 is
the rupture-propagation direction (Hirasawa and Stauder,
1965). In all these definitions, corner frequency is inversely
proportional to the ruptured area or duration either explicitly
or implicitly.

In finite-fault modeling, we deal with a ruptured area,
a(f), which is time dependent; it is initially zero and is finally
equal to the entire fault area. If the rupture stops at the end
of the first subfault, the corner frequency is inversely pro-
portional to the area of the first subfault. If the rupture stops
at the end of the ninth subfault, the corner frequency is in-
versely proportional to the ruptured area, which is the area
of the nine subfaults. Eventually, when the rupture stops at
the end of the Nth subfault, the corner frequency is inversely
proportional to the entire ruptured area. Thus, if corner fre-
quency is inversely proportional to the ruptured area, it fol-
lows that the corner frequency in finite-fault modeling can
be considered as a function of time. Similarly, it also follows
that corner frequency should be decreasing as the signal du-
ration builds. Thus, at each moment of time the corner fre-
quency depends on the cumulative ruptured area. The rup-
ture begins with high corner frequencies and progresses to
lower corner frequencies. Let us consider a dynamic defi-
nition of corner frequency and assess its consequences.

In our dynamic approach, the corner frequency of the
first subfault (near the beginning of rupture) is f;;; = 4.9E
+ 6B(Aa/M,y; )", where My, is the seismic moment of the
first subfault. The dynamic corner frequency of the ijth sub-

fault, f;(2), can be defined as a function of Ng(), the cu-
mulative number of ruptured subfaults at time #:

foy(® = Ne(®)~'"P 49E + 6B(AciMy,0' 3, (5)

where M,,,. = M,/N is the average seismic moment of sub-
faults. For t = f.,4, the number of ruptured subfaults,
Ni(H)~'® = N~ Thus, the corner frequency at the end of
rupture is fo(fena) = N~ 4.9E + 68(Aa/M,y/N)"?, which
leads us to fo;/(fena) = fo, Which is the corner frequency of
the entire fault. Thus, the lower limit of the dynamic corner
frequency is the corner frequency of the entire fault.

As the rupture propagates toward the end of the fault,
the number of ruptured subfaults increases; hence, the corner
frequency of the subfaults and of the radiated spectrum de-
creases. The dynamic corner frequency concept will tend to
decrease the level of the spectrum of the subfaults and hence
their radiated energy at high frequencies as the corner fre-
quency decreases (A;(f)rs roi; & fo,»jz). We therefore introduce
a scaling factor to balance this tendency and conserve the
total radiated energy of subfaults at high frequencies. The
high-frequency spectral level from each subfault should be
the same if all subfaults are identical. Thus, we express the
acceleration spectrum of the ijth subfault, A;(f), as follows:

Ay(f) = C MyH;2afI[1 + (flfo)’], (6)

where Hj; is a scaling factor that we will apply to conserve
the high-frequency spectral level of subfaults. Note that this
will result in an overall conservation of energy, because most
of the energy in the spectrum comes from the area above the
corner frequency. The total radiated energy at high frequen-
cies from the entire fault (E) should be N times greater than
the radiated energy at high frequencies from the ijth subfault
(E;). Therefore,

E. = EIN, (7)

y

E; = (UN[{CMyQrf 11 + (fif)?1}df.

On the other hand, based on equation (6), the radiated
energy at high frequencies from the ijth subfault should be

E; = [{CMy;H;QrH)1 + (fif)X1}df.  (8)

Considering My; = M,/N, we can find H,

;» the scaling factor,
by equating equations (7) and (8):

H; = (N[{f2n +if)1)df
[ + i dn)™. )

Because we deal with discrete data in the frequency domain,
equation (9) can be rewritten as follows:
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Hy = (NS{F11 + (fif1)/
S+ (i) o)

Equation (10) can be calculated numerically in the fre-
quency domain to obtain H;; for each subfault. The total
radiated energy from the ijth subfault is then equal to the
total radiated energy from the first subfault, but the calcu-
lation of corner frequency, which controls the shape of the
spectrum, comes from the total ruptured area. Thus, the total
radiated energy of subfaults does not change as the rupture
propagates, but the distribution of energy tends to shift to-
ward lower frequencies.

The dynamic corner frequency was applied to the simu-
lation cases discussed previously (Fig. 1). The simulations
were performed by modifying the FINSIM code of Beresnev
and Atkinson (1998a) to implement the dynamic corner fre-
quency definition as given in equation (5), with the subfault
acceleration spectrum as given by equation (6). The modi-
fied code has been named EXSIM to avoid confusion. Table
3 shows the input parameters to EXSIM. Figure 2 shows the
impact of the new formulation in terms of energy. Compar-
ison of Figure 2 with Figure 1 shows an important advantage
of the dynamic corner frequency approach. In Figure 2, we
see that the total radiated energy from the fault is almost
identical for all cases, whereas in the “static corner fre-
quency” approach (Fig. 1) the radiated energy depends on
subfault size. Because the total radiated energy is the same
over a wide range of subfault sizes, we can now apply an
arbitrary constant subfault size, say 1 km by 1 km, for sim-
ulations using the dynamic corner frequency approach. The
ability to free the simulation from constraints on subfault
size allows a wider magnitude range of application, as we
will show later.

Because the factor H,; scales the spectrum at all fre-
quencies, the spectrum of the simulated time series at low
frequencies may not converge exactly to the level that is
representative of the seismic moment. Figure 3 illustrates
the behavior of the displacement spectra of the simulated
time series at low frequencies, comparing the spectra for
various subfault sizes with those predicted by a Brune point-
source model for the given moment and distance. Figure 3
shows that the influence of the scaling factor on the displace-
ment spectra at low frequencies is typically small, repre-
senting less than 0.1 magnitude units. Furthermore, the en-
ergy associated with lower frequencies is very low compared
with the amount of energy associated with higher frequen-
cies.

To scale the amplitude of lower frequencies to the level
that is representative of the seismic moment of each subfault,
we may taper the value of H;; such that it gradually ap-
proaches unity at low frequencies (below the corner fre-
quency of the main fault). The practical effect of this taper
function on the time series and response spectra in the fre-
quency range of engineering interest is negligible. Thus, the
seismic moment is conserved overall through the assignment
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Table 3
Modeling Parameters for Simulation Exercises with EXSIM
Q (f') 333f0.74
Distance-dependent duration Ty + 0.1R
Kappa 0.03
Crustal shear-wave velocity (km/sec) 3.7
Crustal density (g/cm?) 2.8

Geometric spreading 1/R (R = 70 km)
1/R° (70 km < R < 130 km)

1/R®S (R = 130 km)

Stress drop (bars) 50
Pulsing area percentage 50%
M7 at 333 km
10—
[ Subfault Size
1 km
m—==- 2km
----- 6 km
1 —— 10km |
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N2
S
>
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Figure 2.  Far-field received energy of a fault with
different subfault lengths by using the dynamic corner
frequency approach, for an event of M 7 at 333 km.
Total radiated energy from the fault is almost identical
for all cases. (Note, the paths from the subfaults to
the observation point are not exactly the same, and
therefore the attenuation effects are not identical for
all the subfaults. This explains the small differences
between total received energy observed for different
subfault-size cases.)

of moment to each subfault (equation 4), whereas the di-
minishing effect of dynamic corner frequency on high-
frequency spectral amplitude is compensated for by the scal-
ing factor, H, such that the total area under the spectrum is
conserved.

Pulsing Subfaults

In actual earthquake ruptures, the slip may only be oc-
curring on part of the fault at any one time. Heaton (1990)
proposed the concept of a “self-healing” model, in which the
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duration of slip at any location on the fault is short. For
example, inversion of the Northridge earthquake data by
Wald et al. (1996) suggests that slip duration is less than
1.5 sec, whereas the rupture propagation duration was about
7 sec. In stochastic modeling, we can consider a form of this
behavior, in which only part of the fault is actively pulsing
at any time. In such a model, the areas that are actively
pulsing contribute to the ground-motion radiation, but the
other areas on the fault are passive. The passive cells will
have no effect on the dynamic corner frequency. The active
area will move along the fault as rupture progresses.

In our implementation of this concept in EXSIM, the
cumulative number of pulsing subfaults, as given by Ny in
equation (5), increases with time at the beginning of rupture
but becomes constant after a while, at some fixed percentage
of the total rupture area. Thus, the dynamic corner frequency
decreases with time near the beginning of the rupture and
then becomes constant. The behavior is controlled through
a parameter that gives the maximum active pulsing area. A
pulsing area of 50% means that during the rupture of a sub-
fault, at most, 50% of all the subfaults are active and thus
contributing to the dynamic corner frequency. The remain-
ing subfaults are passive.

Although this concept is inspired by the self-healing
model of Heaton (1990), we caution that it is significantly
different in some respects. In the self-healing model, the
pulse duration will not increase with time at the beginning
of the rupture, and it may be very short in relation to the
overall rupture duration. Thus, we do not attribute to our
concept of an active pulsing area any direct physical con-
nection with the self-healing slip pulse. Nevertheless, the
option to have only a part of the rupture actively participate
in the slip at any time does acknowledge the reality that slip
near the beginning of a large rupture may have stopped by
the time the rupture-propagation front finally reaches the end
of the fault. This may result in more realistic modeling of
ground-motion generation from a finite fault.

The total received energy will decrease as the percent-
age of pulsing area decreases, but the ground motions remain
independent of the size of the subfaults. Figure 4 shows the
effect of the percentage pulsing area on the response spectra
at 100 km for our example M 7 fault (all for the input pa-
rameters of Table 3). The response spectrum for a stochastic
point-source model is also shown, as calculated by using
Boore’s (1996) stochastic point-source algorithm SMSIM.
By decreasing the pulsing area, the amplitudes at low fre-
quencies decrease; thus, a narrow pulsing area on the fault
results in lower amplitudes at longer periods and lower en-
ergy radiation. Variation of this parameter can be used to
adjust the relative amplitudes of low-frequency motion in
finite-fault modeling. Note that the pulsing length cannot be
less than the length of one subfault.

High-frequency spectral amplitudes and high-frequency
energy content are controlled by the stress drop (equations
2 and 5). Figure 5 shows response spectra for our M 7 ex-
ample at 100 km for different stress drops. Thus, by varying

D(/) (cm-s)

Pseudo-acceleration Response Spectra (cm/s?)

20 T LA s ) T LA
10 km
- o Brune Point Source
| L il | " i L1
0'%).01 0.02 0.1 02
S (Hz)

Figure 3.  Fourier spectra of displacement, for an
event of M 7 at 333 km, for different subfault lengths.
The Brune point-source spectrum for this case is also
shown (circles).
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km for different pulsing area percentages by using the
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sumed stress drop = 100 bars.
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Figure 5. The 5% damped pseudoacceleration re-

sponse spectra for event of M 7 at R = 100 km (25%
pulsing area) for different stress parameters by using
dynamic corner frequency. Assumed pulsing percent-
age = 25%.

the percentage of pulsing area and stress drop, we can model
different relative strengths of low- and high-frequency am-
plitudes.

Figure 6a shows a typical simulated time series for the
Vasquez Rocks Park station, at a distance of 25 km from the
M 6.7, 1994 Northridge fault rupture. A 20 km by 25 km
fault plane with 122° E strike and 40° dip angle (toward the
southeast) with the Northridge hypocenter was assumed by
using the fault geometry of Wald et al. (1996). A satisfactory
acceleration time series is obtained with a stress drop ap-
proximately equal to 60 bars and 25% pulsing area. The
response spectra also match closely, as shown in Figure 6b.
In future studies, the capability of the new model to char-
acterize ground motions from specific events will be ex-
plored in more detail.

Preliminary Calibration of Model Parameters

There are two main “free” input parameters to our dy-
namic corner frequency finite-fault model: (1) stress drop
controls the level of spectra at high frequencies, and (2) puls-
ing area percentage controls the level of spectra at low fre-
quencies. To test our model and calibrate these model pa-
rameters for general applications, we used data from 27
moderate to large well-recorded earthquakes in California
recorded on rock or stiff-soil sites (NEHRP C site class), as
listed in Table 4. All observed data were obtained from the
response-spectra database compiled by Pacific Engineering
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Figure 6.  Simulated and observed horizontal com-

ponents for M 6.7, 1994 Northridge earthquake at
Vasquez Rocks Park station. (a) Time series; (b) 5%
damped pseudoacceleration (Acc.) response spectra.

and Analysis (courtesy of W. J. Silva) as described in At-
kinson and Silva (1997).

Our aim and scope in this exercise is to provide a gen-
eral calibration of the model parameters for future events of
unknown geometry, rather than to model individual events
in detail. Therefore, we do not attempt to model the specifics
of the rupture geometry and propagation for each of the
events (some of which have well-known geometry, whereas
others do not). Rather, for each event the fault size is as-
signed based on the empirical relationship between fault size
and moment magnitude developed by Wells and Copper-
smith (1994). Five random locations of the hypocenter on
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Table 4
Calibration Events That Have Records on NEHRP C Site Conditions
Date No. of
Moment records
yyyy mm dd Event Name Magnitude (C sites) Station Distances (km)
1935 10 31 Helena 6.2 2 8
1952 11 22 Southern California 6.0 2 71
1957 3 22 San Francisco 5.3 2 10
1966 6 28 Parkfield 6.1 8 9, 10, 15, 60
1968 4 9 Borrego Mountain 6.8 2 126
1970 9 12 Lytle Creek 54 14 16, 20, 22, 23, 33, 46, 107
1971 2 9 San Fernando 6.6 46 3, 19, 20, 23, 24, 25, 27, 28, 29, 39, 58, 60
65, 66, 68, 87, 112, 115, 123, 224
1974 11 28 Hollister 5.2 2 12
1975 6 7 Northern California 52 6 29, 59, 60
1975 8 1 Oroville 6.0 2 10
1975 8 2 Oroville 4.4 2 11
1975 8 8 Oroville aftershock 4.7 8 7,9, 11
1978 8 13 Santa Barbara 6.0 2 36
1979 8 6 Coyote Lake 5.7 6 3,9
1979 10 15 Imperial Valley 6.5 4 26
1980 1 24 Livermore 5.8 10 13, 18, 22, 30, 31
1980 1 27 Livermore 54 14 4,8, 13, 18, 22, 30, 31
1980 2 25 Anza 4.9 6 6, 13, 41
1980 5 25 Mammoth Lake 6.3 2 16
1980 5 25 Mammoth Lake 5.7 2 25
1980 5 25 Mammoth Lake 6.0 6 20
1980 5 25 Mammoth Lake 5.7 6 15
1980 5 26 Mammoth Lake 6.1 2 17
1980 5 27 Mammoth Lake 6.0 4 20, 44
1980 5 27 Mammoth Lake 49 2 9
1980 5 31 Mammoth Lake 4.9 6 7,9
1980 6 9 Victoria 6.1 2 35
1980 6 11 Mammoth Lakes 5.0 8 8,9, 11,12
aftershock
1981 4 26 West Morland 5.8 2 26
1983 5 2 Coalinga 6.4 38 25, 28, 30, 32, 33, 35, 36, 37, 38, 39, 41, 44
1983 5 9 Coalinga 5.0 24 12, 13, 14, 20
1983 6 11 Coalinga 5.3 2 10
1983 7 9 Coalinga 5.2 18 10, 11, 12, 13, 14, 17
1983 7 22 Coalinga 5.8 14 8,9,10, 11, 12
1983 7 22 Coalinga 4.9 2 14
1983 7 25 Coalinga 5.2 2 15
1983 9 9 Coalinga 5.3 2 18
1986 7 20 Chalfant Valley 5.9 4 18, 26
1986 7 21 Chalfant Valley 6.2 12 23, 33, 36, 41, 51
mainshock
1986 7 21 Chalfant Valley 5.6 2 14
1987 10 1 Whittier Narrows 6.0 52 11, 12, 21, 23, 25, 27, 29, 30, 33, 35, 38, 39
43, 46, 53, 56, 60, 65, 71, 78
1987 10 4 Whittier Narrows 5.3 4 20, 43
1992 4 25 Cape Mendocino 7.1 4 9,34
1992 6 28 Landers 7.3 28 1,43, 51, 69, 96, 126, 132, 151, 163, 174, 194
1994 1 17 Northridge 6.7 36 8, 17, 22, 24, 27, 32, 35, 36, 37, 44, 45, 47

71,79, 85

the fault plane are considered, with a subroutine to choose
a random i (between 1 and nl) and a random j (between 1
and nw) and then assigning the hypocenter to the ijth sub-
fault. A random slip distribution is assumed by using a ran-
dom number as the basis to assign a relative slip to each
subfault. For each earthquake record, the moment magnitude
and closest distance between the station and the fault are

known. For this magnitude and distance, we simulate records
for 15 values of azimuth from zero to 180 degrees, for each
of the five hypocenters (a total of 75 simulated records for
each recorded time series). We performed simulations for
the 540 horizontal-component records in the California data-
base that are classified as NEHRP C site class; these are soft-
rock sites for which site amplification effects are not large.
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(Note: the amplification for NEHRP C sites is assumed to be
as given in Boore and Joyner [1997].) Table 5 shows the
generic input parameters to EXSIM for all the simulations.
All model parameters, except for the calibration parameters
of stress drop and pulsing area, are as described by Beresnev
and Atkinson (2002).

To calibrate the model parameters, we performed the
simulations for a wide range of values of stress drop and
pulsing area percentage to allow a grid search of the model
error space (for more details see Motazedian [2004]). We
calculated residuals for each record at each frequency, where
the residual is defined as log(observed Pseudoacceleration
[PSA]) — log(predicted PSA), where PSA is the horizontal-
component of 5% damped pseudoacceleration. The lowest
residuals averaged over all events and all frequencies from
0.14 Hz to 13 Hz are obtained for a stress drop of 60 bars
with a 25% pulsing area. Figure 7 shows the average of the
residuals versus frequency for the case of 60 bars stress drop
and 25% pulsing area. The average residual is close to zero
at all frequencies with the standard deviation (representing
scatter of observations about the mean) ranging from 0.32
to 0.38 log units. Plots of the residuals versus magnitude and
distance (not shown) indicate no obvious distance-dependent
or magnitude-dependent trends in the obtained residuals.
The small positive residual at low frequencies may be at-
tributable to the contributions of long-period surface-wave
generation by conversion of body waves at the boundary of
deep sedimentary basins in California, which would influ-
ence some of the included records (Hanks, 1975; Lui and
Heaton, 1984; Vidale and Helmberger, 1988; Campbell,
1997; Joyner, 2000). The presence of long-period coherent
velocity pulses in some records, as discussed later, may also
be a factor in the average low-frequency residual. We con-
clude that the dynamic corner frequency model, with stress
drop of 60 bars and 25% pulsing area, reproduces average
ground motions from California events of M 5 to M 7, over
frequencies from 0.14 to 13 Hz. The relatively large standard
deviation of residuals could be reduced by more detailed
modeling of fault geometry and the characteristics of each
individual event. These event-specific simulations will be
the subject of future development. Our focus here has been
to introduce the new concept of dynamic corner frequency
and demonstrate its general applicability to simulation over
a wide range of magnitude and distance. In addition, EXSIM
has been successfully applied to simulate acceleration time
series for M 3.0 to M 8.0 earthquakes in the development
of ground-motion relations for Puerto Rico (D. Motazedian
and G. Atkinson, unpublished manuscript, 2005).

Comparison of Finite-Fault Simulations (EXSIM)
with Stochastic Point-source Simulations (SMSIM)
and Empirical Ground-Motion Relations

Let us compare the 5%-damped horizontal-component
PSA at a range of distances for magnitudes M 5.5 and M 7.5
as generated by the EXSIM finite-fault approach with those
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Table 5

EXSIM Modeling Parameters for the Calibration of EXSIM, for
California Earthquakes on NEHRP C Sites

oW 187£0-56
Distance-dependent duration 7, + 0.1R (km)
Kappa 0.03
Crustal shear-wave velocity 3.7

(km/sec)
Crustal density (g/cm?) 2.8

Crustal amplification model ~ Boore and Joyner, 1997 (for California
NEHRP C site conditions)
1/R (R = 40 km)

1/R%3 (R > 40 km)

Geometric spreading

Stress drop (bars) 60
Pulsing area percentage 25%

1l S
f_:\ I 4
IR S i i
'E L 4
W
3 L 4
:i:d 0 1; , . o . o . s
= | e & 7 e & T |
E ‘ l _
= L
E L 1 4
o -0.5 §
= i

-1 [ 1 P TR | 1 ST TP

0.2 1 2 10
J(Hz)
Figure 7.  Average of residuals over all simulated

California records (NEHRP C sites) versus frequency,
where residual = log(observed PSA) — log(predicted
PSA). Standard deviations of residuals are shown by
error bars.

generated by the stochastic point-source code SMSIM
(Boore, 1996), and with empirical ground-motion relations
for California. The input parameters describing the physical
properties of the medium and the geometric and anelastic
attenuation and duration are the same for both SMSIM and
EXSIM (Table 5); a constant stress drop of 60 bars is as-
sumed. In SMSIM, R is the distance of the observation point
from the point source. In EXSIM, R is the closest distance to
the fault plane. To cover a range of directivity effects in
EXSIM, we simulated acceleration time series for a profile
of stations distributed evenly around the fault plane at azi-
muths ranging from O to 360 degrees. For each magnitude,
we simulated several events with randomly located hypo-
centers and random slip distributions. Figure 8 plots the re-
sults from SMSIM and EXSIM and compares them with the
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predictions of empirical ground-motion relations for Cali-
fornia (Abrahamson and Silva, 1997). Our finite-fault simu-
lation results, using the calibrated stress drop of 60 bars and
25% pulsing area percentage, are consistent with the empir-
ical ground-motion relations of Abrahamson and Silva
(1997). The point-source model is consistent with the em-
pirical ground-motion relations at distances greater than 20
km, but for large events it will overestimate the ground mo-
tion as we get close to the fault. (Note, this trend in the point-
source model can be alleviated if a magnitude-dependent
term is used to modify the distance at which the point source
is located.) This distance trend is in agreement with the con-
clusions of Atkinson and Silva (1997, 2000). Furthermore,
Beresnev and Atkinson (2002) show that there is an apparent

decrease in the best-fit stress drop with increasing magnitude
in point-source model applications. By contrast, when our
finite-fault model is used, we match the empirical observa-
tions with a constant stress-drop model. Thus magnitude-
and distance-dependent trends in point-source modeling ap-
pear to be artifacts introduced by the inappropriate modeling
of an extended fault with a point source.

Mathematical Model of Near-fault Ground Motions
(Mavroeidis and Papageorgiou Approach)

During past earthquakes, it has been observed that some
near-fault stations have recorded velocity time series with a
strong impulsive behavior (i.e., 2003, Bam, Iran; 1992,
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Landers, California, station LUC; 1966 Parkfield, California,
station C02; 1971 San Fernando, California, PCD station;
1999 Chi-Chi, Taiwan, stations TCU068 and TCUO052). A
coherent long-period pulse is generated by forward directiv-
ity of the source and permanent translation effects (Mav-
roeidis and Papageorgiou, 2002). This long-period behavior
has important engineering implications for flexible struc-
tures. Several studies have aimed to characterize the phe-
nomenon (Campillo et al., 1989; Abrahamson and Somer-
ville, 1997; Somerville et al., 1997; Papageorgiou, 1998;
Somerville, 1998, 2000; Mavroeidis and Papageorgiou,
2002, 2003). Mavroeidis and Papageorgiou (2003) have in-
troduced a novel mathematical model that can be used to
include this impulsive behavior in stochastic and other mod-
eling techniques. Their approach is rooted in an empirical
description of the characteristics of near-fault strong ground
motions. Their database comprises 165 records from within
20 km of different fault types, with earthquake magnitudes
from 5.6 to 8.1, compiled from extensively studied events
from all over the world. Mavroeidis and Papageorgiou show
that the key parameters that define the waveform character-
istics of near-fault velocity pulses are the pulse duration (or
period), the pulse amplitude, and the number and phase of
half-cycles. They define an analytical model that describes
the near-fault velocity pulse in terms of these four parame-
ters, as determined from the empirical data.

The pulse duration is defined as the inverse of the pre-
vailing frequency of the signal: 7, = 1/f,. The analytical
expression for the ground-motion acceleration time histories,
a(t), is given by (Mavroedis and Papageorgiou, 2003):

A
ary = § — e y

7ol 4y sin[27f,(t —

0, otherwise,

where A, f,, v, 7, and #, describe the signal amplitude, pre-
vailing frequency, phase angle, oscillatory character, and
time shift to specify the epoch of the envelope’s peak, re-
spectively. The parameter A is determined such that the am-
plitude of the synthetic waveform and its spectral peak
agrees well with the corresponding quantities of the ob-
served time series. The parameter f,, = 1/T[,, where T, is
pulse duration (log 7, = —2.2 + 0.4 M). v and y are ad-
justed to optimize the fitting of the synthetic records (see
Mavroeidis and Papageorgious [2003] for more details). The
methodology to include the analytical model of equation
(11) in stochastic finite-fault modeling consists of many
steps (Mavroeidis and Papageorgiou, 2003):

1. Apply equation (11) to generate an acceleration time se-
ries for a specific moment magnitude, for selected values
of the model parameters.

sin(znfp t — to)) cos[taf (1 — 15) + V] y
) 1/ Ar
t)) + v][l + cos(zzfp (t — to))] t % Ay
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2. Apply stochastic finite-fault modeling to generate accel-
eration time series for the same moment magnitude (in
our case, the results of EXSIM).

3. Transfer both the analytical and stochastic acceleration
time series to the frequency domain.

4. Subtract the Fourier amplitude spectrum of the time series
generated in step 1 from the Fourier amplitude spectrum
generated in step 2.

5. Return to the time domain, using the spectral amplitude
from step 4 and the phase spectrum of the stochastic finite
fault modeling from step 2.

6. Superimpose the time series generated in step 1 and step
5. The near-source pulse is shifted in time such that the
peak of its envelope coincides with the time that the rup-
ture front passes in front of the observation point.

An important advantage of the Mavroeidis and Papa-
georgiou (2003) model is that it has a sound empirical basis
and has already been well calibrated in a generic sense for
many earthquakes that have shown an impulsive long-period
behavior. This behavior is not observed in all near-fault re-
cords, and thus the application of this model is not neces-
sarily indicated for all cases.

We have programmed Mavroeidis and Papageorgiou’s
near-fault analytical model as an option in EXSIM. Thus,
EXSIM can include stochastic and a combination of analyt-
ical and stochastic approaches in finite-fault modeling. Of
course, the use of the analytical near-fault model requires
the specification of additional parameters. In this article, we
are not providing any new calibration beyond that provided

—lstSthL with y > 1

Y

by Mavroeidis and Papageorgiou, although we intend to in-
vestigate application of this methodology in more detail in
future work. As an example, we have simulated the 1992
Landers earthquake at station LUC, based on the combined
stochastic and analytical approach. This is a good record
with which to illustrate the use of this model, because it
features a very distinct low-frequency pulse that is difficult
to model with traditional techniques. This can be seen clearly
in the frequency domain in Figure 9. The stochastic model
cannot reproduce this feature by using either a static (e.g.,
FINSIM) or dynamic corner frequency approach, but the
combination of the stochastic and the analytical near-fault
model reproduces the spectral content of the record well. In
the analytical approach, the input parameters v, y, and #, are
0.7, 50.0, and 4, respectively. 7, is pulse duration and is
calculated by log 7, = —2.2 + 0.4 M. The input param-
eters for the dynamic corner frequency approach are the ge-
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Figure 9.  The 5% damped pseudoacceleration for

M 7.2, 1992 Landers earthquake (station LUC), for
the recorded (stars) and simulated (lines) waveforms.
The combination of the analytical and stochastic ap-
proach best reproduces the large amplitudes observed
at low frequencies.

neric parameters for California (Table 4), but with a pulsing
area of 100% to maximize the spectral amplitudes at lower
frequencies. The parameters of the static corner frequency
approach have been adjusted to produce the same spectral
amplitude at high frequencies as the dynamic corner fre-
quency approach.

Figure 10 shows the recorded and simulated accelera-
tion time series at LUC for the Landers earthquake, whereas
Figure 11 shows the corresponding velocity traces. The gap
in the static corner frequency simulation near 16 sec is an
artifact caused by the fixed subfault size. This is improved
in the simulation using the dynamic corner frequency ap-
proach, because a smaller subfault size is chosen to eliminate
any such artifacts. However, neither the static nor dynamic
corner frequency models match the long-period pulse that is
apparent in both the acceleration and velocity traces. The
combination of the stochastic and analytical model matches
the characteristics of the LUC record well. We conclude that
inclusion of the analytical near-fault model of Mavroeidis
and Papageorgiou (2003) in EXSIM greatly enhances its abil-
ity to model impulsive near-fault ground motions that may
dominate the signal at long periods in some cases. In addi-
tion, this hybrid modeling has also successfully simulated
the observed impulsive behavior of the near-source records
of the M 6.5 Bam (Iran) earthquake of 26 December 2003
(D. Motazedian and A. A. Moinfar, unpublished manuscript,
2004).
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Figure 10. Recorded and simulated acceleration
time series for M 7.2, 1992 Landers earthquake (sta-
tion LUC). The simulated times series are based on
static and dynamic corner frequency approaches and
a combination of the analytical and stochastic ap-
proach.

Discussion and Conclusions

The modifications to the stochastic finite-fault method
proposed in this article include: (1) a new definition of corner
frequency as a dynamic parameter that changes the fre-
quency content of the ground motion as rupture progresses;
(2) ability to consider a percentage of the fault as actively
pulsing at any one time; (3) inclusion of the mathematical
model of near-fault ground motions by Mavroeidis and Pa-
pageorgiou (2003) to allow extension of the stochastic
method to modeling of impulsive long-period motions. We
have shown that the modified model, based on the dynamic
corner frequency, successfully reproduces the ground mo-
tions from a broad suite of earthquakes in California of M
5.0 to 7.3, using an assumed average stress drop of 60 bars
and 25% active pulsing area. For specific near-fault records,
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Figure 11. Recorded and simulated velocity time

series for M 7.2, 1992 Landers earthquake (station
LUC). The simulated times series are based on static
and dynamic corner frequency approaches and a com-
bination of the analytical and stochastic approach.

such as the LUC record from the Landers earthquake, the
combination of the analytical and stochastic approach works
well in producing realistic broadband time histories that
match both low- and high-frequency motions.

The modifications offer several significant advantages
over previous stochastic finite-fault models. First, there are
conceptual advantages in that the new model does not de-
pend on subfault size. The most frequent criticism of pre-
vious stochastic finite-fault models, including those by
Schneider et al. (1993), Silva and Darragh (1995), and Be-
resnev and Atkinson (1998a, 2002), has been that the results
depend on the selected subfault size. This constraint appears
physically unrealistic and places constraints on the subfault
sizes that may be used (e.g., the results will only match ob-
servations for a limited range of subfault size choices). We
have demonstrated that, with the new model implementa-
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tion, both the radiated energy and the ground motions are
the same regardless of selected subfault size. Another con-
ceptual advantage of our model is that it eliminates the need
in previous approaches (Schneider et al., 1993; Silva and
Darragh, 1995; Beresnev and Atkinson, 1998a) to trigger
each subfault several times to conserve seismic moment: our
approach conserves moment with a single triggering of each
subfault, which is more physically realistic.

Freed of the constraints on subfault size, our new ap-
proach is able to properly consider a wide range of magni-
tudes. In previous approaches, the minimum magnitude that
could be simulated as a finite fault was about M 5 (Beresnev
and Atkinson, 1999, 2002); the method broke down at
smaller magnitudes because the prescribed subfault size ap-
proached the fault size. We are able to consider much smaller
magnitudes. This has major advantages in applications in
some regions. For example, in regions with few strong
ground motion data, such as eastern North America, it is
common to develop ground-motion relations by using a sto-
chastic simulation model whose parameters are calibrated
with seismographic data from small to moderate events (At-
kinson and Boore, 1995; Toro et al., 1997). In the past these
simulations have been based on point-source models, which
may not be appropriate when extended to large magnitudes.
With the new approach introduced here, we can use a seam-
less finite-fault stochastic model to simulate ground motions
from the smallest to the largest events of interest, using the
small-event data to calibrate regional parameters such as at-
tenuation and stress drop. Thus, the new stochastic finite-
fault approach will aid in the development of ground-motion
relations in data-poor regions.

Simulations based on the new EXSIM approach produce
more realistic time series than those based on the previous
stochastic finite-fault models implemented in the FINSIM
model (Beresnev and Atkinson, 1998a). In FINSIM, the large
subfault size that is required to model very large earthquakes
(e.g., M 8) often produces artificial gaps in the simulated
acceleration time series. With EXSIM, a small subfault size
is chosen to eliminate any such artifacts in the time series.

The new model implements the concept of pulsing area
behavior in stochastic finite-fault modeling. It is now gen-
erally accepted that the rise time of subfaults is much smaller
than the duration of fault rupture (Heaton, 1990). Thus, a
realistic model of fault rupture should allow for this behav-
ior. Our initial model calibration for a suite of California
earthquakes of M 5.0 to 7.3, suggesting that on average a
maximum of 25% of the fault is slipping at any moment in
time, implies that the percentage of pulsing area exerts an
influence on ground-motion amplitudes in stochastic finite-
fault modeling. Further studies will explore this behavior in
more detail for specific earthquakes.

Finally, we have included the novel combination of an-
alytical and stochastic methods proposed by Mavroeidis and
Papageorgiou (2003) to provide a tool to describe the im-
pulsive behavior of near-fault velocity pulses and their in-
fluence on long-period ground motions, as observed in many
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earthquakes. Thus, we provide a range of tools that cover
the stochastic spectrum of finite-fault modeling and can be
used to investigate the parameters that influence the char-
acteristics of earthquake ground motion.
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