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Abstract The stochastic finite-fault ground-motion modeling technique is modi-
fied to simulate the effects of a variable-stress parameter on the fault. The radiated
source spectrum of each subsource that comprises the fault plane is multiplied by a
correction spectrum that leaves the low-frequency portion of the spectrum intact and
multiplies the high-frequency end of the spectrum by a constant proportional to the
stress parameter of each subfault raised to the power of 2=3; this scaling behavior
follows from the Brune source model. The modification causes the response spectra
and time series of simulated traces to be sensitive to the stress parameter distribution
on the fault surface.

The approach is implemented using an inversion tool that effectively inverts ob-
served response spectral data to derive the stress parameter distribution on the fault
surface. It applies the Levenberg–Marquardt nonlinear inversion method to minimize
differences of average (log) response spectra ordinates at high frequencies between
observations and simulations at all stations.

We perform a number of experiments to study the effects of fault-dip angle, itera-
tions per station, initial guess of the stress distribution, and station distribution on the
capabilities of the inversion tool. We also evaluate the ability of the inversion tool to
resolve the relative stress parameters of multiple asperities.

Application of the inversion tool to the data of theM 6 2004 Parkfield earthquake
indicates that an asperity with a high stress parameter is located in the southeast end of
the fault, at a depth greater than 4 km; another asperity is located in the center of the
fault, but with a lower stress parameter. This distribution is in agreement with results
by other researchers.

Introduction

Finite-fault modeling is an important tool for the predic-
tion of ground motion near large earthquakes (Hartzell,
1978; Irikura, 1983; Heaton and Hartzell, 1986; Joyner
and Boore, 1986; Somerville et al., 1991; Tumarkin and
Archuleta, 1994; Zeng et al., 1994; Beresnev and Atkinson,
1998). The typical approach is to simulate the ground motion
for a large earthquake by simulating the rupture of several
small earthquakes as subevents that comprise a large fault-
rupture event (introduced by Hartzell [1978] and tested
by Kanamori [1979]; Irikura [1983]; Heaton and Hartzell
[1989]). In the stochastic finite-fault method, the subsources
are modeled as stochastic point sources (Boore, 1983, 2003);
the method multiplies a theoretical and/or empirical spec-
trum of source, path, and site effects with the spectrum of
band limited windowed Gaussian noise. Transformation to
the time domain produces an earthquake time series (accel-
erogram). By summing properly scaled point source simula-
tions in the time domain, an extended fault-plane source can
be modeled. Silva et al. (1990) combined an ω2 point source
with an empirical attenuation and duration model to con-

struct a finite-fault radiation model. In similar studies, Chin
and Aki (1991) and Schneider et al. (1993) followed Silva
et al. in their choice of source and path models. Beresnev and
Atkinson (1999, 2002) also used a similar source and path
model but explored the implications of subsource size on the
radiated spectrum. Zeng et al., (1994) and Yu et al. (1995)
used an ω2 point source with synthetic path effects for mod-
eling finite-fault radiation. Motazedian and Atkinson (2005)
introduced a new variation based on a “dynamic corner fre-
quency.” In this implementation, the corner frequency is a
function of time, and the rupture history controls the fre-
quency content of the simulated time series of each subfault.
The rupture begins with a high corner frequency and pro-
gresses to lower corner frequencies as the ruptured area
grows. Limiting the number of active subfaults (the percen-
tage of pulsing area, which is the maximum possible area of
the fault radiating seismic waves divided by the total area of
the fault) in the calculation of the dynamic corner frequency
influences the spectral shape at intermediate frequencies. The
dynamic corner frequency concept allows the simulations to
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be independent of subfault size and provides for conserva-
tion of seismic moment. Motazedian and Atkinson (2005)
developed a FORTRAN code for this approach based on
the earlier program FINSIM by Beresnev and Atkinson
(1998); the new program is called EXSIM. Like most other
stochastic finite-fault approaches, EXSIM does not assign a
directivity effect to individual subfaults, but the effects of
rupture propagation along the fault (from subfault to sub-
fault) are assumed to mimic the overall directivity effect.

The Motazedian and Atkinson (2005) stochastic finite-
fault method uses the Brune (1970, 1971) source model as
the theoretical form of the subsource spectrum. This intro-
duces the effect of the stress parameter of the subsource
on the high-frequency level of the source spectrum, because
the high-frequency spectral level scales asM1=3

0 Δσ2=3, where
M0 is the seismic moment and Δσ is the stress parameter
(Boore, 1983, 2003). The Motazedian and Atkinson model
assigns a uniform stress parameter to all subsources; thus it
does not consider the effects of patches of high stress, or as-
perities (Aki, 1984). We modified the existing version of the
stochastic finite-fault modeling code EXSIM so that it can
consider the effect of a variable-stress parameter on the fault
surface. To our knowledge, this is the first application of vari-
able-stress modeling with the stochastic finite-fault modeling
technique. We also considered modeling the effects of vari-
able rupture velocity and/or variable slip within the code.
Forward modeling test results showed that variable rupture
velocity has only a slight effect on the predicted response
spectra at some stations and negligible effect at others. Thus,
we ignore variable rupture velocity. Variable slip acts in a
similar way to variable stress in that it enhances predicted
ground-motion amplitudes in regions near high-slip patches;
in the context of the simple stochastic model, variable slip
and variable stress are essentially interchangeable. We chose
to parameterize the effect through variable stress rather than
slip, due to the direct relationship between stress and high-
frequency ground-motion scaling, which is a fundamental
feature of the stochastic approach. This is a simplification;
it is acknowledged that multiple effects, including slip dis-
tribution, may be folded into the inferred stress distribution.

The underpinning of the modification to the stochastic
finite-fault method is the development of an analytical form
that multiplies the spectrum of subsources in such a way as to
leave the low-frequency level of the spectra intact (as the
low-frequency level of the spectrum depends on the seismic
moment of the subsource and is independent of the stress
parameter); the high-frequency level is amplified such that
it is proportional to the subfault stress parameter raised to
the power of 2=3 (as per the Brune model). The sensitivity
of the response spectra of simulated signals to stress distri-
bution allows development of an inversion tool to derive
the stress distribution on the fault surface, based on the
response spectra of available records. The inversion problem
is a multiparameter nonlinear one, where the stress para-
meters of subsources are the parameters; it is solved itera-
tively by the least-squares estimation method of Levenberg–

Marquardt (Marquardt, 1963; Lee and Stewart, 1981; Draper
and Smith, 1998). The measure of error in the inversion pro-
cess is the difference between the observed and the simulated
logarithm of response spectra, averaged over the high fre-
quency part of the spectrum.

Our approach is to first assign uniform slip and stress
parameters to the fault, using the Motazedian and Atkinson
(2005) simulation method (EXSIM), and find their optimum
average values for a specific event (based on modeling of the
recorded ground motions). Then, by keeping the slip uni-
formly distributed, we allow the inversion program to search
for the stress distribution that provides the best possible
match of the response spectra of simulations to the response
spectra of observations, at high frequencies. The outcome of
this approach might be leakage of some slip (moment) effect
into stress space, because there is no exact boundary between
the low- and high-frequency spectral ranges. Because the
high-frequency spectral level is mainly affected by the stress
parameter, we consider the slip (or moment) leakage issue to
be unimportant.

Variable-Stress Parameter in Stochastic
Finite-Fault Modeling

Our modeling approach follows the stochastic finite-
fault method of Motazedian and Atkinson (2005), except that
we assign weights to subfaults such that the stress parameter
on each subfault is the product of the weight and the average
stress parameter of the fault. We assume that the following
conditions should be satisfied: (1) the low-frequency portion
of the spectrum should be independent of stress, because the
moment determines the zero-frequency level of the spectrum;
(2) as per the Brune source model, the high-frequency am-
plitude level should be proportional to the subevent stress
parameter raised to the power of 2=3 (Brune, 1970; Boore,
1983, 2003); (3) if the stress parameter of a subfault
approaches zero, the contribution of that subfault to the
time history should approach zero (Δσij → 0 ⇒ wij →
0 ⇒ Wij → 0 ⇒ Xij�f� → 0); and (4) if the stress para-
meter of a subfault equals the average value for the fault,
the subfault stress correction factor (Xij) should be unity.

A functional form that multiplies the spectral compo-
nents of the ijth subfault, that satisfies the preceding condi-
tions, is

Xij�f� �
1� f2=f2Cij

1� f2=�Wij × f2Cij
� ; (1)

where Xij�f� is the multiplicative subfault stress correction
factor for a subfault in the ith column and jth row, f is the
frequency, fCij is the corner frequency of the subfault as de-
rived per Motazedian and Atkinson (2005). In equation (1),
Wij is the weighting factor:

Wij �
Nw2=3

ijP
i

P
j
w2=3
ij

; (2)
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whereN is the total number of subfaults and wij is the ratio of
a subfault’s stress parameter to the average stress parameter
of the fault (i and j are the indexes of the column and row of
the subfault, respectively):

wij �
Δσij

Δσ
: (3)

Here Δσij is the stress parameter of a subfault and Δσ is the
average stress parameter of the fault. Based on the preceding
correction factors, the time history of the simulated trace will
be in the following form:

a�t� �
X
i;j

F�1�Xij�f� × Aij�f��; (4)

where a�t� is the accelerogram of the entire fault, Xij�f� is
the spectrum stress correction factor calculated in equa-
tion (1), Aij�f� is the subfault spectrum, and F�1 denotes
the inverse Fourier transform.

To demonstrate the performance of this spectral modi-
fication to the stochastic finite-fault method, the peak ground
accelerations (PGAs) for a grid of points around a hypothe-
tical fault (selected to have the Parkfield fault geometry, for
reasons that will become apparent later in the article when
we study this event) are simulated, as shown in Figure 1.
The stress parameter distribution is assigned to be uniform
except for a subfault at the southeast tip of the fault (mid-
depth) that is assigned a stress parameter five times larger
than the specified average of 50 bars. A uniform soil type
with average VS30 � 620 m=sec (a generic California rock
site, Boore and Joyner [1997]) is considered for all sites
on the grid. The moment magnitude of the event is assigned
as M 6.0. The high PGAs are concentrated around the high-
stress-parameter end of the fault, as expected.

Because the high-frequency components of the acceler-
ograms recorded close to high-stress-parameter subfaults are
amplified, it should be possible to use records of nearby sta-
tions to infer the stress parameter distribution on the fault
surface during an earthquake based on this model.

Development of an Inversion Tool for
Stress Distribution

This section describes the inversion tool used to find
the best stress distribution on the fault. First, we introduce
the error measures used in the formulation of the inversion
process. Then we describe the approach to inverting average
log pseudospectral acceleration (PSA) residuals (observed
log PSA minus simulated log PSA) to obtain the stress para-
meter distribution on the fault surface. We demonstrate an
inversion shortcut that is based on assuming a functional
form for the objective function to be minimized and find-
ing its coefficients empirically. The rationale for the short-
cut is to reduce the number of EXSIM simulations (and
the processing time) necessary for the construction of the
Jacobian matrix (Lee and Stewart, 1981) in each iteration
of the inversion.

Error Measurements to Evaluate Model Performance

The inversion process used in this study finds an opti-
mum stress distribution on the fault surface that minimizes
the difference between response spectra (PSAs) of observed
and simulated accelerograms. These differences are defined
by error equations. Two types of error measures are used,
both of which utilize the logarithm of PSA ordinates to avoid
potential biases arising from pronounced local effects that
may occur at some stations. The first measure, Ξ, is the aver-
age value of Ξj over all stations, where Ξj is the average
absolute error of the log PSA ordinates of the simulation,
with respect to the observation at station j:

Ξj �
1

N

XN
i�1

j log PSA�Oij� � log PSA�Sij�j; (5)

where PSA�Sij� is the 5%-damped pseudoacceleration ordi-
nate of a simulated signal at the ith frequency for the jth
station, PSA�Oij� is the corresponding PSA ordinate of the
observed signal, and N is the total number of frequencies.
Averaging over K stations results in

Ξ � 1

K

XK
j�1

Ξj: (6)

The reason for separating the Ξ calculation into two equa-
tions is that the number of spectral frequencies (N) is not
equal for all stations. This measure is used in the beginning
of any inversion iteration to find the appropriate average
stress parameter value.

An alternative definition of average error is Ξi, where
instead of summing the error over frequencies as in equa-

Figure 1. PGA around a fault with the Parkfield fault geometry
andMw 6:0. The stress distribution is assumed to be uniform except
for a high-stress subfault at mid row in the southeast tip of the fault.
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tion (5), it is done over stations. The result is an average error
spectrum:

Ξi �
1

K

XK
j�1

jlog PSA�Oij� � log PSA�Sij�j: (7)

This measure is used to demonstrate how the error evolves as
a function of frequency during the inversion (e.g., Fig. 14).

The second error measure, Θ, is an average of square
values of εj over all stations, where εj is the average error
of log PSA ordinates of the simulation compared to the ob-
servation over a specified frequency range at station j. Cal-
culation of εj is performed for frequencies higher than
double the earthquake corner frequency, between frequency
numbers N1 to N2, as

εj �
�1

�N2 � N1 � 1�
XN2

i�N1

�log PSA�Oij� � log PSA�Sij��;

(8)

where N1 and N2 are the lower and upper ordinate number of
the considered frequency range, respectively. The lower fre-
quency (N1) is assumed to be about twice the value of the
fault’s corner frequency, while the upper frequency (N2) is
the maximum frequency available in the simulations and re-
cords. Our approach for the selection ofN2 was to choose the
smallest of the maximum available frequencies among all
records, which makes the programming easier. Our forward
modeling experiments show that the average log PSAs ob-
tained are not sensitive to the choice of frequency range;
for example, if we restrict consideration to just very high
frequencies (say, four times the corner frequency instead
of two), we obtain very similar results. The negative sign
in equation (8) is for consistency with forthcoming equa-
tions. Then,

Θ � 1

K

XK
j�1

ε2j : (9)

The need for defining two sets of error measures arises
due to different optimization approaches for the determina-
tion of the average stress parameter on the fault and the stress
parameter distribution of subfaults. The determination of the
average stress parameter follows an enumerative optimiza-
tion method. In this method, combinations of possible para-
meters are searched over a grid of parameter values so as to
result in a minimum objective function value. Ξ is a good
candidate for the objective function; parameter values pro-
viding the minimum Ξ value are the best choice for all sta-
tions and all frequencies. The stress parameter distribution
determination follows a calculus-based optimization method
(Goldberg, 1988). In this method, we need the error at each
station as well as its sign. The measure εj is a good candidate
for this purpose and meets these conditions. As shown in the

next section, the inversion tool formulation is based on the
minimization of Θ.

Formulation of the Inversion Tool

The formulation of multivariable nonlinear inversion in
seismology is a classic in the literature (Lee and Stewart,
1981; Menke, 1989; Tarantola, 1987; Parker, 1994; Taran-
tola, 2005). We follow the Lee and Stewart (1981) formula-
tion, using the Levenberg–Marquardt inversion algorithm
(Marquardt, 1963). This method is selected because it com-
bines beneficial aspects of Gauss–Newton and gradient
methods, while avoiding some of their weaknesses. The ad-
vantages of the selected approach are as follows: (1) the
solution converges quickly, so we will be able to avoid many
additional EXSIM simulations; and (2) in many cases an
uninformed standard guess works well, so there is a
high chance of a converging solution being found for an
initial guess based on a uniform-stress distribution. This
property of the Levenberg–Marquardt algorithm makes in-
clusion of additional information for an appropriate initial
guess unnecessary.

The iterative optimization equation is

δ�Δσ� � ��ATA� λI��1ATε; (10)

where δ�Δσ� is the stress parameter adjustment vector and ε
is the residual vector obtained over a range of frequencies for
the recording stations; its elements are calculated using equa-
tion (8). A is the Jacobian matrix, λ is Levenberg–Marquardt
adjustable parameter, and I is the identity matrix. All ele-
ments refer to the current iteration. The Jacobian matrix is
calculated using the following equation:

A �

∂ε1∂�Δσ�1
∂ε1∂�Δσ�2 � � � ∂ε1∂�Δσ�m∂ε2∂�Δσ�1
∂ε2∂�Δσ�2 � � � ∂ε2∂�Δσ�m

..

. ..
. . .

. ..
.

∂εn∂�Δσ�1
∂εn∂�Δσ�2 � � � ∂εn∂�Δσ�m

2
66664

3
77775: (11)

Each element of the Jacobian matrix gives the variation of
the residual at a station, per unit variation of one subfault’s
stress parameter.

Initially, a guessed value of the stress parameter distri-
bution is assumed; the uniform-stress distribution with the
best average value for the fault is a good choice. Then the
values of the Jacobian matrix elements, the errors at each
station, and the overall error based on equation (9) are cal-
culated. Also an initial value is assigned to λ, say 0.001. By
substituting these values in equation (10), the correction
stress parameter vector, δ�Δσ�, is derived. By applying
the stress correction to the initial guess, a new stress para-
meter distribution is derived and processed the same way.
The procedure repeats until the stress distribution has con-
verged to the best value. If the overall error in a given step
Θ reduces, then the value of λwill be multiplied by a number
less than unity, to provide for a larger weight of the Gauss–
Newton method compared to the gradient method. Conver-
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sely, ifΘ increases in a step, then λ is multiplied by a number
greater than unity, to provide larger weight to the gradient
method compared to the Gauss–Newton method. We fol-
lowed Press et al., (1992) and used 10 and 1=10 for the multi-
pliers of λ, for more than unity and for less than unity,
respectively. The iterations repeat for some predefined num-
ber of times, or as long as the error reduction is significant.
The calculation of the inverse matrix of equation (10) is per-
formed using Gauss–Jordan elimination, and a subroutine by
Press et al. (1992) is used for this purpose. The results are not
sensitive to the selected method for this calculation.

Functional Form of the Objective Function and
Jacobian Matrix Elements

The inversion process includes the calculation of ele-
ments of the Jacobian matrix, which is the derivative of
the error at a site relative to the stress parameter of each in-
dividual subfault. Calculation of the matrix elements would
require that the number of EXSIM runs be at least two times
the number of subfaults, times the number of stations, for
each iteration. This is a large number of EXSIM runs, which
would make application of this approach time-consuming on
a PC. We solve this problem as follows.

Each component of the Jacobian matrix is the derivative
of a summation from equation (8) for a station with respect to
the stress parameter; that is, Ajk � ∂εj=∂�Δσ�k, where εj is
the value in equation (8) and �Δσ�k is the stress parameter in
the kth subfault. Because the recorded trace’s response spec-
trum is not changing, then

Ajk �
∂εj

∂�Δσ�k

� ∂
∂�Δσ�k

�
1

�N2 � N1 � 1�
XN2

i�N1

�log10 PSA�Sij��
�

or Ajk �
∂

∂�Δσ�k
log10�PSA�Sj��jf2f1 : (12)

Equation (12) shows that element Ajk of the Jacobian matrix
is equal to the derivative with respect to the stress parameter
of the average simulated log PSA at station j. We exploit this
observation to develop the following inversion shortcut.

Simulations are performed for an earthquake at a range
of distances and for varying values of the uniform-stress
parameter. The simulation parameters are the same as those
used for the entire fault simulation, except that the fault
is defined to be the size of a subsource and is assigned a
correspondingly small magnitude (based on subsource
size). Because these simulations are performed for a sub-
source, their results are equivalent to point source simu-
lations such as those derived by Boore (2000). The cal-
culated log10�PSA�S��jf2f1 results using the values of Table 1
(except for fault size and magnitude as noted in the preced-
ing discussion) are shown in Figures 2 and 3. Figures 2
and 3 show that there is a linear relationship between
log10�PSA�S��jf2f1 and log10�Δσ� of a subfault, and between

log10�PSA�S��jf2f1 and log distance . The linear relationship

between log10�PSA�S��jf2f1 , log10�Δσ�, and log10 distance is
expressed as

log10�PSA�S��jf2f1 � a log10 R� b log10 Δσ� c; (13)

where R is the distance from the center of the subfault and a,
b, and c are constants that are determined from linear multi-
ple regression. The derivative of equation (13) with respect to
the stress parameter will be proportional to Ajk, where the
proportionality constant is assumed to be a function of dis-
tance. The reason for such a proportionality is that the
log10�PSA�S��jf2f1 at a station from a fault is not equal to
the algebraic sum of log10�PSA�S��jf2f1 of subfaults, in which
case Ajk would not be a function of distance, Rjk. Based on
this reasoning the elements of the Jacobian matrix are

Ajk �
b × Rα

jk

�Δσ�k × ln 10
; (14)

Table 1
Parkfield Earthquake Simulation Parameters

Parameter Parameter Value

Fault orientation Strike 137°, dip 83°
Depth of top 0 km
Fault dimensions Length 40 km, width 13 km
Number of subfaults Along length 10, along width 3
Fast Fourier transform points, sample interval 8192, 0.02 sec
Shear wave velocity, density 3:5 km=sec, 2:8 g=cm3

Rupture velocity 0:8× shear wave velocity
Q�f� 180f0:45

Moment magnitude 6.0
Kappa 0.035
Geometrical attenuation If R < 40, R�1; else R�0:5

Subfault duration ∝ 0:05 × distance (sec.)
Windowing function Saragoni–Hart
Amplification function Boore and Joyner (1997) for VS30 � 620 m=sec
Damping 5% of critical damping
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where b is the coefficient from equation (13), Rjk is the ratio
of the distance between station j and subfault k divided by
unit distance, ln is a logarithm in natural base, �Δσ�k is the
stress parameter of the kth subfault, and α has the value of
a=2 (equation 13). The value of α was determined empiri-
cally by checking various values in the range of a, in order to
reproduce the Jacobian matrix values of equation (12).

Inversion Procedure

The program for inversion starts by assuming a uniform-
stress distribution, and then performs a grid search to find the
optimum average stress parameter that minimizes Ξ, based
on recorded horizontal-component PSA values. Then it uses
εj of the stations (equation 8) to construct the Jacobian and
data matrices of the inverse problem. It also calculates the Θ
error for the current stress parameter distribution. After sol-
ving the inverse matrix, the stress parameter correction vec-

tor, δ�Δσ�, is derived and applied to the stress parameter
distribution. At this time the first iteration is complete.

In the beginning of the second iteration, the new stress
parameter distribution is treated as weights, normalized by
the average stress. Then the program does a grid search
for the optimum average stress parameter for this distribu-
tion. The new optimum average stress parameter is then mul-
tiplied by the normalized weights, providing a revised initial
guess of the stress distribution, which is used for derivation
of the stress parameter correction vector. The error Θ is then
calculated again. If the value of Θ is lower than it was in the
previous step, then the λ value in equation (10) is multiplied
by a number smaller than unity (we used 0.1) for the next
step, and the new solution is accepted as a successful itera-
tion. If the value of Θ is higher than it was in the previous
stage, then the λ value in equation (10) is multiplied by a
number larger than unity (we used 10) for the repeating step;
in this case the new solution is not accepted as a successful
iteration and is discarded. The same iteration is repeated
from the stress parameter distribution of the previous step,
but with the new larger λ value. This procedure is repeated
for at least 10 iterations, or the number of times that the pro-
gram can run successfully, whichever is smaller.

Model Performance Studies

It is useful to evaluate the performance of the inversion
program under ideal conditions in order to draw conclusions
about its applicability and self-consistency. The cases stu-
died here consider the Parkfield fault dimensions, strike,
and depth but evaluate the effect of different dip angles
and station geometries. The parameters in Table 1 are used
for forward modeling. For a given stress distribution and
station distribution, we use forward modeling to generate
a synthetic PSA dataset, which is then input as data to the
inversion routine. The output of the inversion routine is then
compared to the initial assigned stress distribution. The
similarity of the input and output stress distributions is a
measure of the program’s performance under the given con-
ditions. The effects of the number of stations, the number of
EXSIM iterations per station (to smooth the predicted PSA),
the fault dip angle, the station distribution relative to asperity
location, and the initial guess in the inversion input are stu-
died. The way that the program identifies multiple asperities
with different sizes is also considered.

Forward modeling is performed for a grid of symmetri-
cally distributed stations around the fault as shown in Fig-
ure 4. We chose a dense array of 328 stations, to allow
the inversion program to have sufficient independent equa-
tions to resolve the parameters (the stress parameter of the
subfaults).

Forward simulations are performed for the preceding
station distribution using EXSIM, given the parameters of
Table 1, with an assumed stress parameter distribution
and fault dip angle. The correlation coefficient is considered
as a measure of similarity between the inversion outputs and

Figure 2. log10�PSA�S��jf2�10 Hz
f1�0:45 Hz of simulations at constant

distances from a subfault for varying stress parameters.

Figure 3. log10�PSA�S��jf2�10 Hz
f1�0:45 Hz of simulations for constant

stress parameters at varying distances from a subfault.
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target stress distribution (input distribution). A reduction in
the value of the error measure Ξ is considered to indicate
improvement of the solution with additional iterations.

Effect of EXSIM Iterations and Fault Dip Angle

“EXSIM iterations” is the number of EXSIM simulation
trials used for obtaining an average PSA at each site under the
considered scenario. In the first experiment, the assumed
stress parameter is uniform on the fault except for one sub-
fault, which has a stress parameter five times larger than that
of the other subfaults. We consider fault dip angles of 5°, 25°,
45°, and 83° (the actual dip angle of the Parkfield fault).

Figure 5 shows the example performance for a fault with
25°-dip angle, using 10 EXSIM simulation trials to generate
smooth PSAs and 10 inversion iterations to find the solution.
The inversion process started from a uniform-stress para-
meter guess. Figure 5a shows the target stress distribution
on the fault surface and Figure 5b is the result of inversion
after 10 iterations. Error Ξ values for 25° and 83° fault dip
angles are plotted in Figure 6. This graph compares the ap-
plication of 10 or 30 EXSIM simulations per station on the
error Ξ in different iterations. Thirty EXSIM iterations can
result in a slightly lower error Ξ for steep fault dip angles (in
this case 83°), but in general 10 EXSIM trials are sufficient to
establish stable average expected values of PSA against
which real or simulated data can be compared.

Error Ξ of the inversion solution at each iteration is
shown for four fault dip angles, 5°, 25°, 45°, and 83°, in Fig-
ure 7. This graph shows that (1) in 10 inversion iterations the
error reduces considerably; (2) in the case of 83° and 45°
fault dip angles, the Ξ value approaches its asymptotic value

in 10 inversion iterations; (3) the larger the fault dip angle,
the poorer is the convergence of the solution and the more
ambiguous is the ultimate result; and (4) gentle fault dip
angles result in a solution that continues to improve with
further iterations.

The inversions of synthetic data with varying fault dip
angles show that loss of resolution in finding the high-stress-
parameter patches on the fault increases gradually with in-
creasing fault dip angle. This can be attributed to the range
of angles over which subfaults can be seen as a function of
dip angle. The higher the dip angle, the smaller is the angular
coverage of stations around subfaults, and the lower is the
likelihood of finding the effect of individual subfaults dis-
tinctively using the inversion method.

Figure 4. Distribution of hypothetical stations around the fault.
Simulation outputs for these stations are used as data for the inver-
sion program.

Figure 5. Stress parameter distribution on the fault surface with
25° fault dip angle: (a) target distribution and (b) inversion output
after 10 inversion iterations and 10 EXSIM iterations.

Figure 6. Evolution of error Ξ by inversion iteration for two
fault dip angles. 10 and 30 EXSIM iterations were applied to both
forward modeling and inversion procedures.
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Multiple Asperities

Because the PSA of a record at a site is not the algebraic
sum of the PSAs of individual subfaults, it is important to find
out if the presence of a high-stress-parameter asperity elim-
inates the effect of a neighboring low-stress-parameter asper-
ity and to what extent multiple asperities might be detected.
We tested the ability of the inversion program to distinguish
multiple asperities by considering a stress distribution with
three high-stress-parameter patches on a gently dipping fault
(Fig. 8a). Improvement of the solution after 2 and 15 inver-
sion iterations is shown in Figure 8b and c. The program suc-
cessfully found the location and magnitude of the high-
stress-parameter subfaults in the initial iterations after start-
ing from a uniform distribution (given a good coverage of
stations around the fault and a gentle dip angle). We con-
clude that the program solution is converging to the answer
quickly if the real distribution contains multiple stress para-
meter patches.

Effect of the Initial Guess

The studies implemented in the preceding discussion
consider a uniform-stress parameter distribution as the initial
guess for inversion. One of the reasons for choosing the
Levenberg–Marquardt inversion method was its good suc-
cess probability when starting from uniform values of para-
meters. However, the initial guess plays an important role in
nonlinear multiparameter estimation techniques. To check
how it impacts our approach, we also considered the effects
of three different cases for the initial guess: (1) a very accu-
rate initial guess, (2) a slightly inaccurate initial guess, and
(3) a completely wrong initial guess. The findings were
as follows.

(1) When the initial guess is accurate, the solution does
not change fundamentally from the initial guess, but it
reaches the target solution within the first few iterations.

The correlation coefficient, which is a measure of similarity
between solutions and the target distribution, shows that a
good initial guess can push the solution towards the target
answer very quickly, and such a guess is more effective than
assuming a uniform distribution.

(2) When the initial guess is inaccurate but carries some
important features of the target distribution, then the inver-
sion program improves the solution in every iteration, but
the inaccuracies of the initial guess are not recovered within
the first initial iterations. The correlation coefficient changes
in every step, suggesting that a uniform-stress distribution
is a better choice than an inaccurate distribution as an ini-
tial guess.

(3) The experiment for checking the response of the in-
version procedure to an entirely wrong initial guess is done
in two ways. We considered two wrong initial guesses: (a) a
very poor initial guess, where the guessed asperity is in the
wrong place and is as large in amplitude as the actual main
asperity, and (b) a poor initial guess, where the guessed as-
perity is in the wrong place but is much smaller than the ac-
tual asperity. The experiments show that, if the initial guess
is a very poor one, the inversion procedure may fail to

Figure 7. Evolution of error Ξ by inversion iteration number for
four fault dip angles. Ten EXSIM iterations were applied to both
forward modeling and inversion procedures.

Figure 8. Stress parameter distribution on the fault surface with
5° dip angle: (a) target stress, (b) result of inversion after two itera-
tions, and (c) result of inversion after 15 iterations. Thirty iterations
of EXSIM for both forward modeling and inversion were applied.
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continue iteratively toward the correct solution, but if the
initial guess is just poor, then the program can converge
toward the right distribution in the long run. Overall, we
conclude that the uniform distribution is probably the best
initial guess unless we have sufficient information from
the intensity distribution or time evolution of amplitudes
in records to make a perfect initial guess, which is seldom
the case in real applications.

Effect of Station Distribution and Asperity Location

Station distribution plays an important role in locating
asperities, because from equation (14) we know that ele-
ments of the Jacobian matrix are distance dependent (de-
pending on the distance from the center of the subfault to
the recording site). Furthermore, a sparse distribution of sta-
tions around a subfault makes the data insufficient for the
unique determination of the stress parameter on that subfault.
To study the effect of asymmetric station distribution around
the fault, we chose the actual station distribution around the
2004 Parkfield earthquake causative fault (Fig. 9). Fault dip
angle and EXSIM iteration number in both forward model-
ing and inversion are 83° and 10, respectively. The other
parameter settings of EXSIM are those in Table 1. Figure 9
shows that the station distribution around the southeast end
of the fault is much denser than in the northwest end. For-
ward modeling and inversions are performed for 10 different
scenarios, in which we assigned one high-stress-parameter
subfault (for each scenario) to lie in a location in the mid
row of the fault from northeast to southwest. In case 1
the high-stress subfault is at the northwest end of the fault,
and in successive cases the high-stress-parameter subfault
moves towards the southeast, in one subfault intervals.
The stress of the high-stress-parameter subfault is fixed at
five times the value of the other subfaults.

The solutions obtained after the third scenario (the third lo-
cation of a high-stress subfault) start to be meaningful. By
the tenth scenario (the high-stress subfault in the southwest),
the solution is excellent as measured by a high correlation
coefficient and has good Ξ reduction. Because the Parkfield
fault is almost vertical, the overall resolution ability of the
program is not high. The inversion program fails after the
first iteration in the first scenario (the high-stress subfault
in the northwest) because of a lack of sufficient number
of recording sites around that subfault (there is just one sta-
tion above the high-stress-parameter subfault and nothing
else for some distance). We allowed the inversion program
to run for up to 50 iterations for some cases, although the
solution improvement in all cases is very small after the tenth
iteration. As the asperity is moved towards the southeast,
where the station distribution is denser, the ability of the pro-
gram improves markedly, as shown in Figures 10 and 11. We
conclude that if the fault dip angle is steep, then the high-
stress-drop asperity may hide itself in an area of very low
station density. However, even if there are a few stations
around the asperity, the method can still find its most prob-
able location horizontally (but not vertically) for steeply dip-
ping faults.

Example Application of the Method to the
Parkfield Earthquake

The M 6.0 2004 Parkfield earthquake provided strong-
motion data from more than 85 stations, mostly at very close
distances to the causative fault. Response spectra of horizon-
tal components from these data are compared with simula-
tions based on our modified version of stochastic finite-fault
modeling, for the same stations. A stress distribution on the

Figure 10. Case 4 stress distribution: (top) target distribution
and (bottom) inversion solution after 25 iterations.

Figure 9. Distribution of stations around the Parkfield fault
with known (NGA) and unknown (non-NGA) sites.
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fault surface is sought that minimizes the overall differences
between the high-frequency pseudoacceleration (PSA) ordi-
nates of the simulated records and observations. The seeking
process is performed by means of the Levenberg–Marquardt
inversion method (Marquardt, 1963; Lee and Stewart, 1981;
Draper and Smith, 1998) as described in the preceding dis-
cussion. The PSAs of recorded data are first corrected for site
response to the equivalent values for a uniform VS30 �
620 m=sec site type, before performing the inversion. The
procedure of site correction is explained next. (Note: an al-
ternative approach for site correction would be to modify the
synthetic records during EXSIM simulations for every site
and then compare site-specific simulated spectra with re-
corded ones in the inversion process; we opted to correct
spectra of the recorded signals to a common reference level
for programming reasons).

Data Used and Site Corrections:

The list of stations used in this study is given in Table 2;
the distribution of stations around the Parkfield fault is
shown in Figure 9. The list is extracted from the COSMOS
database (Archuleta et al., 2003; Squibb et al., 2004; Arch-
uleta et al., 2006). The total number of stations is 87, among
which 46 are listed in the NGA database (Pacific Earthquake
Engineering Research, New Generation Attenuation Rela-
tion Project 2005, http://peer.berkeley.edu/nga/index.html).
The stations in the NGA database contain VS30 (the average
shear wave velocity in the upper 30 m) and site type. The
VS30 values of Table 2 are extracted from the preferred
VS30 column of the NGA database, as based on the U.S. Geo-
logical Survey Northridge assignments (Borcherdt and

Fumal, 2002) and on the California Geological Survey as-
signments (Wills and Silva, 1998; Wills et al., 2000). Other
stations with unknown site type were assigned NEHRP class
D with the average VS30 � 255 m=sec; this value is a rea-
sonable average for soil sites in the area. In the error calcula-
tions and inversions the data from the non-NGA stations Hog
Canyon and Priest Valley were omitted because of poor
bandwidth.

The recorded signals’ response spectra are first corrected
for soil response to produce the corresponding spectra for
VS30 � 620 m=sec (generic rock, Boore and Joyner [1997])
site conditions. This is done in two steps. First, using equa-
tion 15 from Boore and Atkinson (2006) the peak horizontal
acceleration for VS30 � 620 m=sec (PHAr) that is expected
at each station for M 6 is calculated:

ln PHAr � FM�M� � FD�rjb;M�
� FS�VS30;M; rjb� � εσT; (15)

where FM�M� is a magnitude scaling term, FD�rjb� is a dis-
tance scaling term, and FS�VS30;M; rjb� is the site scaling
term. These three terms can be calculated based on values
of VS30, M, rjb (Joyner–Boore distance), and constants pre-
sented in Boore and Atkinson (2006). The constants are dif-
ferent for PHArs larger and smaller than 0.06g. Then the
PHAr values are used in equation 16 from Choi and Stewart
(2005) to find the nonlinear amplification factors of each site:

ln�Fij� � c × ln
�
VS30ij

Vref

�
� b × ln

�
PHArij

0:1

�
; (16)

where Fij is the amplification factor needed to multiply PHAr
to predict the peak horizontal acceleration (PHA) (or re-
sponse spectral ordinates) for a site with a given VS30. b,
c, and Vref are coefficients given in tables presented by Choi
and Stewart (2005). Note that Boore and Atkinson (2006)
adopted a slightly smoothed version of Choi and Stewart’s
result in their derivation of empirical ground-motion rela-
tions in the NGA project. By dividing the ordinates of the
acceleration response spectrum at each station by the corre-
sponding amplification factor, the site-corrected PSAs are
derived; these are the equivalent PSA values for a site with
VS30 � 620 m=sec.

Inversion of Recorded Parkfield Data

The first step in the modeling of stress distribution on
the Parkfield fault is to determine the best uniform-stress
model, using the response spectra of all horizontal compo-
nents (Table 2), site-corrected to VS30 � 620 m=sec. The ba-
sic parameters of the simulation are typical for California and
follow previous applications (Motazedian and Atkinson,
2005); they are given in Table 1. The parameters to be de-
termined are the stress parameter and the pulsing percent-
age. These are allowed to vary on a grid of parameters, with
stress from 10–100 bars and pulsing percentage from 10%–

Figure 11. Case 10 stress distribution: (top) target distribution
and (bottom) inversion solution after 20 iterations.
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Table 2
List of Stations Used in This Study

Number Station Owner* In NGA list Site type VS30
† Latitude Longitude

1 Big Sur, CA—Pfeiffer State Park CSMIP No ? ? 36.252 �121:782
2 Buttonwillow, CA—Highway 58 and Wasco CSMIP No ? ? 35.403 �119:449
3 Cambria, CA—Highway 1, Caltrans Bridge grounds CSMIP No ? ? 35.593 �121:124
4 Capitola, Ca—fire station CSMIP Yes D 288 36.973 �121:953
5 Coalinga, CA—Slack Canyon; Hidden Valley Ranch CSMIP Yes C 684 36.034 �120:590
6 Coalinga, Ca—fire station USGS No ? ? 36.137 �120:363
7 Fresno, CA—NSMP Office USGS No ? ? 36.744 �119:728
8 Fresno, CA—VA Medical Center USGS No ? ? 36.773 �119:781
9 Greenfield, CA—police station CSMIP No ? ? 36.321 �121:243
10 Hog Canyon, CA NCSN No ? ? 35.867 �120:480
11 Hollister, CA—South St. and Pine Dr. CSMIP Yes C 370 36.848 �121:397
12 Hollister, Ca—airport building # 3 USGS Yes D 271 36.891 �121:404
13 Hollister, Ca—city hall annex USGS Yes D 274 36.851 �121:402
14 King City, CA—two-story hospital CSMIP No ? ? 36.206 �121:132
15 King City, CA—Canal and Reich CSMIP No ? ? 36.207 �121:131
16 Moss Landing, CA—Highway 1 and Dolan CSMIP No ? ? 36.807 �121:778
17 Cholame 1E CSMIP Yes D 338 35.743 �120:277
18 Cholame 2E CSMIP Yes C 376 35.751 �120:259
19 Cholame 2W CSMIP Yes D 184 35.733 �120:290
20 Cholame 3E CSMIP Yes C 376 35.770 �120:247
21 Cholame 3W CSMIP Yes D 338 35.724 �120:294
22 Cholame 4AW CSMIP Yes D 338 35.707 �120:316
23 Cholame 4W CSMIP Yes C 438 35.718 �120:304
24 Cholame 5SW CSMIP Yes D 289 35.697 �120:328
25 Cholame 6W CSMIP Yes D 338 35.684 �120:342
26 Cholame 12W CSMIP Yes C 408 35.639 �120:404
27 Fault zone 1 CSMIP Yes D 338 35.758 �120:307
28 Fault zone 3 CSMIP Yes C 370 35.803 �120:334
29 Fault zone 4 CSMIP Yes D 338 35.836 �120:395
30 Fault zone 6 CSMIP Yes C 438 35.859 �120:420
31 Fault zone 7 CSMIP Yes C 370 35.871 �120:404
32 Fault zone 8 CSMIP Yes C 376 35.878 �120:381
33 Fault zone 9 CSMIP Yes C 438 35.879 �120:445
34 Fault zone 11 CSMIP Yes C 376 35.896 �120:398
35 Fault zone 12 CSMIP Yes D 338 35.899 �120:433
36 Fault zone 14 CSMIP Yes D 338 35.908 �120:458
37 Fault zone 15 CSMIP Yes C 376 35.921 �120:481
38 Gold Hill USGS No ? ? 35.833 �120:346
39 Gold Hill 1W CSMIP Yes D 338 35.818 �120:378
40 Gold Hill 2E CSMIP Yes D 338 35.843 �120:348
41 Gold Hill 2W CSMIP Yes C 376 35.812 �120:391
42 Gold Hill 3E CSMIP Yes C 370 35.870 �120:334
43 Gold Hill 3W CSMIP Yes C 438 35.796 �120:411
44 Gold Hill 4W CSMIP Yes C 438 35.785 �120:444
45 Gold Hill 5W CSMIP Yes C 438 35.770 �120:477
46 Gold Hill 6W CSMIP Yes C 438 35.738 �120:507
47 Highway 46—Cholame Creek Bridge CSMIP No ? ? 35.733 �120:289
48 Stone Corral 1E CSMIP No ? ? 35.788 �120:294
49 Stone Corral 2E CSMIP Yes C 376 35.810 �120:282
50 Stone Corral 3E CSMIP Yes C 376 35.833 �120:270
51 Temblor CSMIP No ? ? 35.705 �120:169
52 Vineyard Canyon 1W CSMIP Yes C 376 35.934 �120:497
53 Vineyard Canyon 2E CSMIP Yes C 712 35.973 �120:467
54 Vineyard Canyon 2W CSMIP Yes D 338 35.927 �120:509
55 Vineyard Canyon 3W CSMIP Yes D 297 35.922 �120:534
56 Vineyard Canyon 4W CSMIP Yes C 376 35.905 �120:551
57 Vineyard Canyon 5W CSMIP Yes C 376 35.885 �120:565
58 Vineyard Canyon 6W CSMIP Yes C 438 35.861 �120:600
59 Donna Lee USGS No ? ? 35.939 �120:425
60 Eades USGS No ? ? 35.894 �120:421
61 Froelich USGS No ? ? 35.911 �120:486
62 Jack Canyon USGS No ? ? 35.713 �120:203
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100%. The calculated error measurement is Ξ (equation 6).
Figure 12 plots the model errors; the optimal values are stress
∼50 bars and pulsing percentage ∼20%. Plotting the errors
for each station at a specific frequency shows the level of
over/underestimation of the model at different stations

around the fault; this is εj in equation (8) for a given fre-
quency index (N1 � N2 � N). The geographical distribu-
tion of εj around the fault for 5 Hz is shown in Figure 13.
From Figure 13 we infer a high-stress patch near the south-
east end of the fault (causing the observed positive residuals).

We inverted the recorded data (85 stations corrected to
VS30 � 620 m=sec) to obtain the stress distribution of the
M 6 2004 Parkfield earthquake. The available response spec-
tra in the range of 0.45 to 10 Hz are used as input data to the
inversion procedure; this frequency range is considered to be
a reasonable choice for the high-frequency range for theM 6
Parkfield earthquake based on the overall fault corner
frequency.

The inversion program starts from a uniform-stress dis-
tribution and stops after just four successful iterations of the
inversion program to produce the derived distribution. The
error Ξ of the solution is 8.3% lower than that of the initial
guess. Average error spectra and the absolute errors at each
frequency averaged over all stations are shown in Figure 14.
Figure 15 shows the initial and derived stress distributions on
the fault.

As was shown in Figure 13, the uniform-stress
distribution caused large underestimation of the
log10�PSA�S��jf2�10 Hz

f1�0:45 Hz at the southeast end of the fault,
small underestimation at the middle and the northwest
end of the fault, and overestimation between these points.
Modification of the stress parameter distribution to that of
Figure 15b compensates these errors reasonably; this distri-

Figure 12. Error Ξ (in log10 units) for different values of the
pulsing area and the uniform-stress parameter. Best match with data
is for 50 bars, with 20% pulsing area.

Table 2 (Continued)
Number Station Owner* In NGA list Site type VS30

† Latitude Longitude

63 Joaquin Canyon USGS No ? ? 35.940 �120:432
64 Middle Mountain USGS No ? ? 35.958 �120:496
65 Red Hills USGS No ? ? 35.624 �120:254
66 Stockdale Mountain USGS No ? ? 35.973 �120:579
67 Vineyard Canyon USGS No ? ? 35.923 �120:534
68 Work Ranch USGS No ? ? 35.814 �120:511
69 Point Buchon, CA—Los Osos CSMIP No ? ? 35.274 �120:885
70 Coalinga, CA—Priest Valley CSMIP No ? ? 36.191 -120:708
71 Salinas, CA—City Yard—John & Work CSMIP Yes D 271 36.671 �121:642
72 Salinas, Ca—county hospital grounds CSMIP Yes D 271 36.697 �121:634
73 San Luis Obispo, ca—city recreation building 864 USGS Yes C 712 35.285 �120:661
74 San Luis Obispo, CA—Lopez Lake Grounds CSMIP No ? ? 35.208 �120:457
75 Templeton, Ca—hospital grounds CSMIP No ? ? 35.556 �120:720
76 USGS Parkfield Dense Seismograph Array 01 USGS No ? ? 35.821 �120:507
77 USGS Parkfield Dense Seismograph Array 02 USGS No ? ? 35.822 �120:506
78 USGS Parkfield Dense Seismograph Array 03 USGS No ? ? 35.821 �120:505
79 USGS Parkfield Dense Seismograph Array 05 USGS No ? ? 35.824 �120:503
80 USGS Parkfield Dense Seismograph Array 06 USGS No ? ? 35.824 �120:503
81 USGS Parkfield Dense Seismograph Array 07 USGS No ? ? 35.824 �120:503
82 USGS Parkfield Dense Seismograph Array 08 USGS No ? ? 35.825 �120:501
83 USGS Parkfield Dense Seismograph Array 09 USGS No ? ? 35.826 �120:501
84 USGS Parkfield Dense Seismograph Array 10 USGS No ? ? 35.828 �120:500
85 USGS Parkfield Dense Seismograph Array 11 USGS No ? ? 35.826 �120:502
86 USGS Parkfield Dense Seismograph Array 12 USGS No ? ? 35.827 �120:504
87 USGS Parkfield Dense Seismograph Array 13 USGS No ? ? 35.827 �120:505

*Abbreviations used for the owner of the station are as follows: CSMIP—California Strong Motion Instrumentation Program;
NCSN—Northern California Seismic Network; and USGS—U.S. Geological Survey.

†Velocity in m=sec.
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bution is consistent with our visual judgment of errors in
Figure 13.

Overall, the inversion clearly indicates that a high-
stress-parameter patch is located in the southeast end of
the Parkfield fault, at depths greater than 4 km. The relative
locations of the hypocenter and the important asperity is in
good agreement with the observation by Mai et al. (2003,
2005), that the hypocenter is close to high-stress-parameter
centers but not in the center of them. Also, the stress para-
meter distribution of Figure 15, derived by our inversion
method, has many similarities to the slip distribution derived
by Langbein et al. (2005) and Liu et al. (2006). Langbein
et al. (2005) used both strong-motion and Global Positioning
System (GPS) data for their solution; Liu et al. (2006) in-
verted strong-motion seismograms to obtain a space–time

distribution model of coseismic slip on the fault. Their inver-
sion for the rupture model yielded nonunique solutions; they
presented a total of 10 possible solutions, along with an aver-
age solution. Figure 16 shows two representative solutions
and the average solution (it was redrawn using the informa-
tion provided in the Liu et al. electronic supplement). The
implicit assumption made in this comparison is that high-slip
areas correspond to high-stress-drop areas.

Discussion and Conclusions

We have modified the stochastic finite-fault model of
Motazedian and Atkinson (2005) to allow for variability
of the stress parameter across the fault plane. The modifica-
tion satisfies two conditions: (1) the low-frequency level of
the Fourier spectrum of subfaults should not be affected, and
(2) the high-frequency level of the spectrum of subfaults
should be proportional to the stress parameter raised to
the power of 2=3. This modification leads to enhanced
high-frequency motions near high-stress patches on the fault.
Distant sites are unaffected.

To make it possible to calculate the stress parameter
distribution on the fault surface from observed response
spectra of an earthquake, an inversion tool is developed
based on the Levenberg–Marquardt method. The inver-
sion generally converges quickly from an initial assumed
uniform-stress distribution.

The horizontal components of the M 6 2004 Parkfield
earthquake recorded at 85 locations are used in a test appli-
cation of the inversion method. First, the response spectra of
the records are corrected to equivalent values for a site con-
dition of VS30 � 620 m=sec. Then, the corrected PSAs are

Figure 15. Stress distribution of the observed Parkfield data:
(a) initial guess and (b) solution after four successful iterations.
The star is the location of the hypocenter.

Figure 14. Average error (Ξi) at all stations as a function of
frequency, for uniform-stress distribution (dashed line) and pre-
ferred stress distribution of Figure 15 (solid line).

Figure 13. Residuals of simulations at each station εj around
the fault, for PSA at 5 Hz (in log10 units).
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inverted for the stress parameter distribution on the fault sur-
face. The inversion of the Parkfield data clearly demonstrates
the presence of an asperity in the southeast end of the fault at
depths between 4 and 8 km. This is in agreement with the
conclusion of Mai et al. (2003, 2005) that the hypocen-
ter and the main asperity large slip area are very close to
each other.

We examined the ability of the inversion tool to recover
an input stress distribution under various conditions and con-
clude the following:

1. Gentle fault dip angles allow an accurate determination of
the stress distribution, while steep fault dip angles limit
its resolution. With gentle fault dip angles, the stations
see the subfaults across a fuller range of angles and dis-
tances, and this makes the equations for the inversion dis-
tinct. The method performs very well if the fault dip angle
is less than 45°, although it performs reasonably well with
dip angles more than 45°, at least in terms of locating the
horizontal position of asperities.

2. The method has the capability to resolve multiple aspe-
rities, with as little as one subfault distance between
them. It can also find the relative stress parameter levels
of the asperities. With multiple asperities the solution
converges faster than is the case for a single asperity.

3. If the initial guess of the stress distribution is an accurate
one, the solution will converge with few inversion itera-
tions. If an accurate initial guess is not obvious, then
the uniform distribution provides a reasonable initial
guess. If the initial guess is a strong asperity in the incor-
rect location, then the program may fail to converge;
otherwise, it will be able to push the answer toward
the real distribution eventually.

4. As is the case in other inversion techniques, a dense sta-
tion distribution around the fault will result in high accu-
racy and precision of the high-stress asperities. If the
station distribution is sparse, or there are no stations near
the asperity, then the program may fail to find an asperity
or provide it with low resolution.

The variable-stress version of stochastic finite-fault
modeling provides more modeling resolution than the pre-
vious stochastic approaches and has the ability to reduce
the error between simulated and recorded response spectra
by a significant amount. The sensitivity of the new model
to the variable-stress parameter on the fault surface allows
its application in an inversion tool. We may thus deduce
the stress parameter distribution on the fault surface based
on strong-motion observations from stations around the
fault. With a reasonable number and distribution of stations
around a fault, the method is able to find the asperities,
although a steep fault dip angle limits the resolution of
the depth of the asperities. The ability to interpret the
strong-motion observations in terms of source property
variability along the fault should lead to improved under-
standing of the driving mechanisms behind ground-motion
observations and their spatial variability. It does not lead
to improved predictive capabilities for future earthquakes
in the short term, but may in the long term as information
on stress distributions is compiled for a large number
of events.
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