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Guidelines for Determining Design Basis
Ground Motions
Volume 4: Appendices for Laboratory Investigations

Procedures currently used to assess the nature of earthquake ground
motion in Eastern North America intraduce considerable uncertainty to
the design parameters of nuclear power plants and other critical
facilities. This report examines that issue in-depth and provides an
engineering model and guideline for selecting a site and assessing its
seismic suitability.

BACKGROUND Eastern North America has sparse earthquake activity with rare
occurrences of large earthquakes; thus, little data exists to empirically quantify the
characteristics of ground motions. Procedures currently used to estimate ground
motion effects in this region introduce considerable uncertainty into the process of
developing seismic designs, either due to the procedure’s subjectivity or the lack of
physical calibration.

OBJECTIVES To develop generic relations for estimating ground motion appropriate
for site screening; to develop a guideline for conducting a thorough site investigation
needed to define the seismic design basis.

APPROACH The project team specifically considered ground motions resulting
from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and
frequencies from 1 to 35 Hz. To develop generic ground motion relations for Eastern
North America, they used theoretical models calibrated against data from earth-
quakes throughout North America and the worid. In these models, the contributions
to ground motion, including its variability, were evaluated using physical representa-
tions of earthquake processes. Earthquake processes involve the initial generation of
seismic energy or waves at the earthquake fault (“source effects”), followed by the
propagation of seismic waves through the earth’s crust (“path effects”), and finally the
modification of seismic waves as they travel through soils near the earth’s surface
(“site effects”). The team also collected and analyzed extensive geotechnical data at
three reference sites. This information provided the basis for developing a guideline
to help assess site suitability.

RESULTS This project resulted in an engineering model for estimating earthquake
ground motions in Eastern North America. The model considers a wide range of earth-
quake sizes and site conditions and may be used directly for site screening purposes.

The work also resulted in a guideline for conducting geotechnical and seismic
engineering investigations needed to determine the design basis for a site. This
guideline is appropriate for investigating a wide range of site conditions and soil
depths within and outside Eastern North America.

EPRI PERSPECTIVE Cost-effective seismic regulation of nuclear power plants
requires site-specific definition of seismic ground motions. The development of engi-
neering procedures for estimating earthquake ground motion can thus benefit both
operating and future plants. For licensing application, these procedures are needed
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operating and future plants. For licensing application, these procedures are
needed to define the safe shutdown earthquake (SSE). The regulatory
guidance found in Section 2.5 of the Standard Review Plan (NUREG 0800)
is quite limited in scope and does not reflect the current state of knowledge
on earthquake phenomena. With no accepted generic pragedures in place,
utilities constantly face uncertainty associated with site-specific develop-
ments and applications. These factors result in seismic design bases that
are excessively conservative and/or contribute to licensing delays, regula-
tory instability, and high utility costs in the licensing process.

In 1988, EPRI completed a seismic hazard model for the central and
eastern United States (NP-4726), including a ground motion model (NP-
6074). The present work directly complements NP-4726, while replacing
and going significantly beyond the results of NP-6074. The engineering
ground-motion model can be used for screening potential sites before
conducting extensive site investigations. The guideline provides needed
background information to conduct an appropriate geotechnical and seismic
engineering investigation of a site for licensing purposes. Additional EPRI
reports that provide a basis for the current report include: NP-5577, NP-
5875, NP-6304, TR-100409, TR-100410, TR-102261, and TR-102262.

This report is presented in five volumes. Essential background, approach and
results are given mainly in Volume 1. Volumes 2, 3, and 4 are appendices
containing detailed analyses. Volume 5 (licensed material) contains Quantification
of Seismic Source Effects, which is summarized in Volume 1, Section 4.
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ABSTRACT

This report develops and applies a method for estimating strong earthquake ground motion. The emphasis of this
study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular em-
phasis on the Eastern United States and southeastern Canada. Specifically considered are ground motions resulting
from earthquakes with magnitudes from 5 to 8, fault distances from 0 to 500 km, and frequencies from 1 to 35 Hz.
The two main objectives were: (1) to develop generic relations for estimating ground motion appropriate for site
screening; and (2) to develop a guideline for conducting a thorough site investigation needed to define the seismic
design basis. For the first objective, an engineering model was developed to predict the expected ground motion on
rock sites, with an additional set of amplification factors to account for the response of the soil column over rock at
soil sites. The results incorporate best estimates of ground motion as well as the randomness and uncertainty asso-
ciated with those estimates. For the second objective, guidelines were developed for gathering geotechnical infor-
mation at a site and using this information in calculating site response. As a part of this development, an extensive
set of geotechnical and seismic investigations was conducted at three reference sites. Together, the engineering model
and guidelines provide the means to select and assess the seismic suitability of a site.

ix
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EXECUTIVE SUMMARY

Introduction

This report develops and applies a method for estimating strong earthquake ground motion. The motivation for this
development was the need for a systematic, physically based, empirically calibrated method that can be used to es-
timate ground motions for input to the design of nuclear power plants and other critical facilities. These ground mo-
tions are a function of the earthquake’s magnitude and the physical properties of the earth through which the
seismic waves travel from the earthquake fault to the site of interest. Procedures currently used to account for these
effects introduce considerable uncertainty into the ground motion determination, either due to subjectivity of the
procedure or the lack of physical calibration.

The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains),
with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable
continental region, having sparse earthquake activity with rare occurrences of large earthquakes. In the absence of
large earthquakes within the region of interest, little data exist to empirically quantify the characteristics of ground
motions associated with these events. While methods developed in more seismically active areas such as Western
North America can be applied to Eastern North America, fundamental differences in the regional geology can lead
to variations in ground motion characteristics. Therefore, empirically based approaches that are applicable for other
regions, such as Western North America, do not appear to be appropriate for Eastern North America.

Recent advances in science and technology have now made it possible to combine theoretical and empirical meth-
ods to develop new procedures and models for estimating ground motion within Eastern North America. Specifi-
cally considered are ground motions resulting from earthquakes with magnitudes from 5 to 8, fault distances from
0 to 500 km, and frequencies from 1 to 35 Hz. The results of this report can be used to determine seismic hazards,
provided the magnitudes and distances of potential earthquakes are predetermined. In particular, this report is in-
tended for use in site screening as well as detailed characterization of ground motion at a site, such as may be re-
quired for structural design.

This study was conducted by a team of experts in seismology, geotechnical engineering, and seismic engineering.
The investigations were carried out over a period of approximately 18 months from September 1991 to March 1993.
Work included a series of focused workshops with project participants to help achieve consensus recommendations.
The project was sponsored by the U. S. Department of Energy (DOE), Sandia National Laboratories, Southern Elec-
tric International, Commonwealth Research Corporation, Public Service Company of New Jersey, and the Electric
Power Research Institute as part of the DOE’s Early Site Permit Demonstration Program. The project was managed
by the Electric Power Research Institute.
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Objectives

There were two central objectives of the project: (1) to develop generic relations for estimating ground motion ap-
propriate for site screening; and (2) to develop a guideline for conducting a thorough site investigation needed to de-
fine the seismic design basis. For the first objective, a set of relations was needed that could be used to predict the
expected ground motion on rock or on soil for a future earthquake. The approach was to develop an engineering mod-
el consisting of relations appropriate for rock sites and an additional set of amplification factors to account for the re-
sponse of the soil column over rock at soil sites. For the second objective, a guideline was developed for gathering
geotechnical information at a site and using this information in calculating site response. Together, the engineering
model and guideline provide the means to select and assess the seismic suitability of a site.

Approach

The method that was used to develop generic ground motion relations in this effort is markedly different from the
approach of previous studies. In this study, theoretical models, which have been calibrated against data from earth-
quakes throughout North America and the world, are used to characterize earthquake ground motion in Eastern
North America. In these models, the contributions to ground motion, including its variability, are evaluated using
physical representations of earthquake processes. These processes involve the initial generation of seismic energy
or waves at the earthquake fault (“source effects”), followed by the propagation of seismic waves through the
earth’s crust (“path effects”), and finally the modification of seismic waves as they travel through soils near the
earth’s surface (“site effects”). For a given earthquake magnitude and distance, the source, path, and site each con-
tribute to the observed ground motion, as follows:

e The source controls both the seismic energy generated by rupture of an earthquake fault as well as the accom-
panying dynamic characteristics.

e The seismic path contributes to ground motion through reflection, refraction, and damping of seismic waves
within the earth’s crust in response to the various physical properties along the wave path.

e The site contributes to the evolution of seismic waves in much the same way as the path, though on a smaller
scale. Site effects are a function primarily of soil depth and type.

The characteristics of the seismic source, path, and site effects form the basis for the parameters in the theoretical
models.

The ground motion relations for rock sites were developed using a physically based, empirically calibrated ground
motion model. In the model, a wide range of values was assigned to the ground motion parameters. Using the com-
bination of all model parameters and their ranges of values, computer simulations produced hundreds of records
of earthquake ground motion for each magnitude and distance considered. While each earthquake simulation rep-
resents a possible future earthquake, each earthquake is not equally likely to occur. Therefore, based upon extensive
analyses of past earthquakes and comparisons to model predictions, distributions were assigned to the values for
all model parameters. The parameter value distributions were based on partitioning their variability into two types:
uncertainty, which is due to the lack of knowledge of earthquake characteristics; and randomness, which is due to
the inherent variability of those characteristics. Finally, individual parameter weights were combined for each earth-
quake simulation to produce the appropriate “distribution” of earthquake ground motion for every magnitude, dis-
tance, and frequency considered. Together, these distributions constitute a family of functional relations that define
the final engineering ground motion model for rock sites. In turn, the engineering model defines ground motion for
median levels and associated variability.

To accommodate sites with soil overlying rock (referred to as local site effects), site amplification factors were de-

veloped for a range of soil types and depths representative of soil conditions in Eastern North America. The factors
were derived by first accumulating data that describe the behavior of various soils during seismic loading. These
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data were then used to assess the variability in seismic properties, especially the wave velocity as it changes with
depth. In addition, seismic velocity and material damping data were gathered from three reference sites using a va-
riety of field and laboratory techniques. The reference site data were used (1) to improve physical understanding of
the dynamic processes of soil response and (2) to assess procedures for measuring the physical properties needed
to estimate site effects. The estimation problem is particularly difficult because the seismic properties of soils change
depending upon the level of shaking. The resulting “nonlinear” effects generally cause the ratio of soil-to-rock mo-
tions (i.e., soil amplification) to decrease as the corresponding rock motion increases. The quantification of these ef-
fects through theoretical modeling and comparisons to empirical data resulted in factors that describe the
amplification of soils relative to rock for several soil categories. The amplification factors were developed for a wide
range of rock motions and are given as median values with variability.

Finally, based upon extensive geotechnical data that were collected at the three reference sites and analyzed as part
of this program, a guideline was developed for assessing soil characteristics and site response. This guideline ap-
plies to planning and conducting a systematic and thorough geotechnical investigation of soil properties at a poten-
tial site. Guidance is also provided for performing dynamic analyses required to determine the response of the soil
column to earthquake shaking at (and beyond) the levels of motion of interest to the seismic design.

Conclusions

The engineering ground motion model developed in this study can be used for screening potential sites in Eastern
North America before conducting extensive site investigations. However, the application of these procedures to site
screening requires information regarding earthquake magnitudes and distances as well as certain site properties
such as soil depth and site geology. Magnitudes and distances of potential earthquakes may be derived either prob-
abilistically or deterministically.

The guideline—together with the results of investigations of the three reference sites—provides the means to conduct
an appropriate geotechnical and seismic engineering site investigation. In all, this guideline is appropriate for use giv-
en a wide range of site conditions and soil depths. While there are certain soil types (e.g., those with liquefaction po-
tential) for which this guideline may not be directly applicable, it may be used widely both within and outside Eastern

North America.

The information compiled in this report represents a comprehensive assessment of the nature of earthquake ground
motion in Eastern North America. The results incorporate best estimates of ground motion as well as the random-
ness and uncertainty associated with those estimates for a wide range of earthquake magnitudes, distances, and fre-
quencies. Overall, the results of this study will be useful in performing seismic hazard evaluations and establishing
seismic design standards for many years to come.

Organization

The results of this study are presented in five volumes. Volume I: Methodology and Guidelines for Estimating Earthquake
Ground Motion in Eastern North America, representing the main body of the report, presents the model development
and summarizes the key results and conclusions of the study. Volume II: Appendices for Ground Motion Estimation, pre-
sents the appendices to Sections 2 to 7 of Volume I, and consists primarily of data and details of analyses used to de-
velop the engineering ground motion model and geotechnical guidelines. Volume III: Appendices for Field Investigations,
and Volume IV: Appendices for Laboratory Investigations, present the details of field and laboratory investigations of ref-
erence sites; Section 8 of Volume 1 constitutes a summary of these appendices. Volume V: Seismic Source Effects, presents
separately (as a licensed report) the analyses of the seismic source performed for input to the engineering ground mo-
tion model; a summary of this volume is given as Section 4 of Volume 1.
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APPENDIX 8.B.1
DYNAMIC PROPERTIES OF UNDISTURBED SOIL
SAMPLES FROM TREASURE ISLAND, CALIFORNIA

8.B.1.1 Introduction

An investigation of the dynamic properties in shear of undistributed soil samples from Treasure Island,
California was conducted. This work was part of an Earthquake Ground Motion Project sponsored by
the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE). The dynamic
laboratory study was also initiated as part of an earlier EPRI study, No. 3014-4. The soil samples were
obtained in November, 1990. The samples were sealed in steel Shelby tubes and transported by
automobile to the University of Texas at Austin in January, 1991. Dynamic laboratory testing of the
undisturbed samples occurred between February, 1991 and April, 1992.

A total of eight samples was tested. The samples were obtained from depths ranging from 17.5 ft (5.7 m)
to 232 ft (70.7 m). Initial properties of the samples are listed in Table 8.B.1-1. The samples range from a
silty sand (SM) to a fat clay (CH). Grain size distribution curves for three of the nonplastic samples are
given in Figure 8.B.1-1.

To minimize disturbance effects, each sample was extruded from the 3-in. (7.6 cm) diameter sampling
tube and hand trimmed to the final specimen dimensions. The dimensions were nominally either 2 in.
(5.1 cm) in diameter and 4 in. (10.2 cm) in height or 1.5 in. (3.8 cm) in diameter and 3 in. (7.6 cm) in height.
The smaller of the two specimen sizes was used to obtain the larger dynamic strains in testing.

No significant problems were encountered in preparation and testing of the undisturbed clay specimens.
However, for the sand specimens, serious problems were encountered during extrusion of the sample
due to friction between the soil and inner wall of the Shelby tube. To overcome this problem, both end
caps were removed and the sample was allowed free drainage for one day. A four-wheel pipe cutter was
then used to cut the Shelby tube into approximately 6 in. segments. These segments were wrapped and
placed in a freezer for about one day. No significant expansion of the sample was observed due to
freezing. Extrusion and trimmings of the frozen sample was carried out before the sample started to
melt. The sample extruded very nicely in the semi-frozen state.

8.B.1.2 Dynamic Laboratory Tests

Resonant column and torsional shear (RCTS) equipment was used to investigate the dynamic
characteristics of the intact Treasure Island samples. This equipment is described in detail in
Appendix 8.B.1.A. The dynamic characteristics of concern are the shear modulus, G, and the material
damping ratio in shear, 8.B.1.D. These parameters were evaluated to determine the influence on them
of the following variables:

1. magnitude of isotropic state of stress. Four to seven isotropic pressures were used which ranged
from below to above the estimated in situ mean effective stress.

2. time of confinement at each isotropic state of stress. Confinement times at each pressure ranged
from 1 to about 3 days.

3. shearing strain amplitude. Strains ranged from the small-strain range, less than 0.001%, to rather

- large strain amplitudes, strains slightly above 0.2%.

4. numbers of cycles of loading. One to ten cycles of loading were used in the torsional shear test
followed by 500 to 1000 cycles in the resonant column test.

5. excitation frequency. Frequencies ranging from 0.1 Hz to about 10 Hz were used in the torsional

shear test while the frequency associated with resonance in the resonant column test varied with
soil stiffness and ranged from between 20 Hz to about 130 Hz.
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8.B.1.2.1 Testing Program

Before dynamic testing was started, the in situ mean effective stress, on,, had to be estimated. This was
done at the Treasure Island site by assuming the water table is at a depth of 4 ft (1.2 m), the total unit
weight of the soil averages 120 pcf (18.8 kN/ m3), the soil is saturated throughout the profile, and the
effective coefficient of earth pressure at rest, K', is 0.5. The resulting values of o' for each sample are
given in Table 8.B.1-2.

Once o, was estimated, the range in confining pressures over which G and D would be evaluated was
determined. Typically, isotropic confining pressures on the order of 0.256m',0.56m', Om’, 20m' and 40’
were selected. Low-amplitude resonant column testing was performed at each confining pressure to
determine the influence of time and confining pressure on the small-strain shear modulus, Gmax, and
small-strain material damping ratio, Dpin. Low-amplitude dynamic tests are defined as those tests in
which the resonant amplitude did not exceed 0.001% and typically was considerably below that level.

A summary of all confining pressures at which low-amplitude resonant column tests were performed is
given in Table 8.B.1-2. At the estimated in situ mean effective stress, high-amplitude dynamic and cyclic
testing was also conducted. This testing is defined as any tests in which the peak shearing strain exceeds
0.001%. This testing was composed of two series of tests. The first involved cyclic torsional (TS) shear
testing as illustrated in Figure 8.B.1-2. A complete set of torsional shear tests took about three hours to
perform, was performed under drained conditions although no drainage was observed, and involved
shearing strains, v, from less than 0.001% to above 0.05%, depending on the soil stiffness. The majority of
the measurements were performed at 0.5 Hz and are labeled as TS1 in Figure 8.B.1-2. However, two sets
of TS tests, one at Y= 0.001% and one at y = 0.01%, were conducted to evaluate the effect of excitation
frequency on G and D at those strain amplitudes. In these tests, (denoted as TS2 in Figure 8.B.1-2) one to
four cycles of loading was applied at about five different frequencies ranging from 0.1 Hz to about 10 Hz.

After the TS tests were completed, confinement of the sample was continued at 6y, and a series of high-
amplitude resonant column (RC) tests was performed the next day. However, before high-amplitude RC
testing commenced, small-strain RC tests were performed to determine if any changes in the soil skeleton
had occurred from the TS tests. In essentially all cases, no changes in Gmax Or Dmin from the TS tests
were measured.

Once the small-strain datum was re-established after the TS tests, high-amplitude resonant column
testing was conducted to evaluate the influence of strain amplitude on G and D. This series of tests is
illustrated in Figure 8.B.1-3. A complete set of resonant column tests took about one hour to perform, was
performed under drained conditions just as in the depending on the soil stiffness. In these tests, 500 to
1000 cycles of loading is required at case of the TS tests, and involved shearing strains from less than
0.001% to above 0.1%, each strain measurement.

Upon completion of the high-amplitude RC tests, low-amplitude RC tests were performed to determine

if any changes in the soil skeleton had occurred from the high-amplitude tests. In some cases, changes
occurred. At that point, confinement of the sample at 6y, was continued until Gmax and Dmjn returned to
the values before the high-amplitude tests or the change in values was noted before going to the next
stage of testing.

The confining pressure was then increased to about 26y, and low-amplitude resonant column testing
was performed for one to several days. For six of the samples, high-amplitude resonant column tests were
again performed. Table 8.B.1-2 gives a summary of these tests. In most cases, the pressure was again
doubled, and low-amplitude RC testing was repeated.

It should be noted that, in six cases (samples T2, T3, T4, T6, T7 and T8), high-amplitude RC tests were also
performed at one or more confining pressures below Gp,'. This was carefully done with only intermediate
strain levels generated so as not to disturb the sample before testing at o,
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¥¢ = elastic threshold strain; below ¥;, G is constant and equal to G,
RC (LA) = resonant column test at low-amplitudes (strains < 0.001%)
TS1 = torsional shear test in which 1 to 10 cycles are applied at 0.5 Hz

TS2 = torsional shear test in which 4 cycles are applied at each of
approximately 5 frequencies between 0.1 to 10 Hz

Figure 8.B.1-2
Testing procedure used in the torsional shear test to investigate the effects of strain amplitude, number of

loading cycles, and excitation frequency of undisturbed Treasure Island samples.
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Y,e = elastic threshold strain; below ’y,‘ , G is constant and equal to Gmax

RC (LA) = resonant column test at low-amplitudes (strains < 0.001%)

RC = resonant column test in which 500 to 1000 cycles of loading is applied
during each measurement

Figure 8.B.1-3
Testing procedure used in the resonant column test to investigate the effect of strain amplitude on G and

D of the undisturbed Treasure Island samples.

8.B.1-8



8.B.1.2.2 Test Results

The results of the RC and TS tests are shown in Appendices 8.B.1.B through 8.B.1.I for the eight Treasure
Island samples. Each appendix presents the results for one sample in the following general order (using
Appendix 8.B.1.B as the example).

1. Figure 8.B.1.B-1 shows the influence of magnitude and duration of isotropic confining pressure on
Gmax as determined by RC tests.

2. Figure 8.B.1.B-2 shows the influence of magnitude and duration of isotropic confining pressure on
Dmmin as determined by RC tests.

3. Figure 8.B.1.B-3 shows the change in void ratio of the sample with magnitude and duration of
isotropic confining pressure.

4, Figure 8.B.1.B-4 shows the variation in G3x at a confinement time of 1000 minute with effective
confining pressure from the RC tests.

5. Figure 8.B.1.B-5 shows the variation in Dpjn at a confinement time of 1000 minutes with effective
confining pressure from the RC tests.

6. Figure 8.B.1.B-6 shows the variation in void ratio of the sample at a confinement time of 1000

minutes with effective confinement pressure.

7. Figure 8.B.1.B-7 shows the variation in G with yat 6’ from the high-amplitude RC and TS tests.

8. Figure 8.B.1.B-8 shows the variation in G/Gmax will log yat oy from the high-amplitude RC and
TS tests.

9. Figure 8.B.1.B-9 shows the variation in G with log y at all tests pressures where high-amplitude RC
tests were performed.

10.  Figure 8.B.1.B-10 is the normalized (G/Gmay ) version of Figure 8.B.1.B-9.

11.  Figures 8.B.1.B-11 through 8.B.1.B-14 are the damping ratio curves which are the companions to the
modulus curves given in Figures 8.B.1.B-7 through 8.B.1.B-10.

12. Figure 8.B.1.B-15 shows the effect of excitation frequency on G at y ~ 0.001% and y ~ 0.01%.

13.  Figure 8.B.1.B-16 shows the effect of excitation frequency on D at y ~ 0.001% and y ~ 0.01%.

8.B.1.3 Discussion of Results

The variation in Gmax with 0¢' for the eight undisturbed samples tested in this study at the estimated oy’
and above is shown in Figure 8.B.1-4. The samples should be normally consolidated samples in the
pressure range shown if K,' is reasonably close to 0.5. In fact, results from six of the eight samples show
the proper trend. Samples T7 and T8 exhibit the behavior of soils which are still overconsolidated at part
or all of the pressures shown. These trends are more easily seen by separating the results into sandy
samples and fine-grain samples as shown in Figures 8.B.1-5 and 8.B.1-6, respectively. The trends are
further improved by accounting for void ratio variations as shown in Figures 8.B.1-7 and 8.B.1-8. The
results from the three sandy samples can be fit with the Hardin (1978) equation as shown in Figure 8.B.1-7
while the Hardin equation also fits the clayey samples as shown in Figure 8.B.1-8. In Figure 8.B.1-8, the
moduli for samples T7 and T8 were deleted because they appeared to be overconsolidated at most of the
test pressures.

The same set of comparisons for the variation in small-strain material damping ratio, Dpin, with o' is
presented in Figures 8.B.1-9, -10 and -11. In this case, the results fall in a rather narrow range. But Dpjn
exhibits more scatter than in the case with Gmay. The values of Dpjp, are also quite low, all less than 2%

(or Q > 25).

The variation in normalized modulus, G/Gmay, with log v for all samples tested in this study at

the estimated in situ mean effective stress, 61y, is presented in Figure 8.B.1-12 for the RC tests, in

Figure 8.B.1-13 for the first cycle in the TS test, and in Figure 8.B.1-14 for the combined results. In each
case, the results for all samples form a wide band which can be further divided by solid types as follows.
The results for the sandy samples are shown in Figures 8.B.1-15 through 8.B.1-17 and for the fine-grained
samples in Figures 8.B.1-18 through 8.B.1-20. The sandy soils form a band close to the upper range
proposed by Seed and Idriss (1970) for sands. The fine-grained soils form a band considerably above the
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upper bound proposed by Seed and Idriss. The results from both the RC and TS tests are compared in
Figures 8.B.1-17 and 8.B.1-20 for each soil type. Both types of tests give essentially the same results. It
should be noted at this point that all samples are unsaturated and hence any development in pore water
pressure due to cyclic loading is significantly inhibited. Therefore, values of G determined at strains
above amplitudes on the order of 0.05% do not reflect any reduction which would occur if pore pressures
were generated.

Similar results for the variation in material damping ratio with strain amplitude are shown in the
remaining figures. Figure 8.B.1-27 shows the variation in D with log y as determined by RC tests of the
sandy soils. The results fall in a rather narrow band which is closest to the lower bound proposed by Seed
and Idriss (1970) for sands. Figure 8.B.1-28 shows the same results determined in the first cycle in the TS
test. In this case, material damping values are slightly higher in the TS tests than those determined in the
RC test at all strains above about 0.003%. This behavior is typical of sandy material with few fines (Kim,
1991). Both results are compared in Figure 8.B.1-29 and expanded versions of the comparisons are
presented in Figures 8.B.1-30 through 8.B.1-32.
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Figure 8.B.1-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
at 65’ = o' of undisturbed samples from Treasure Island.
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Figure 8.B.1-5
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

at 6’ = 6’ of undisturbed samples from Treasure Island.
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Figure 8.B.1-6
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
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8.B.1-13



Effective Confining Pressure, 6,, KPa

10 100 1000
2 3 456

b
o
4

4

J
4o
4w
4

T 7

TYI T

W Ao~

1000 =

N

BN
(=]
Y

100

N W & o~
v

Low-Amplitude Shear Modulus, G, x F(e), ksf
ediN ‘(9)4 x **“n ‘sninpopy Jeays apnydwy-moT

-y
o
[

10° 10° 10 10°
Effective Confining Pressure, o, psf

Notes:
1. Gmax measured at t = 1000 min. at each G,
2. Best-Fit Curve:
(1- "(m
GmaxxF(e)=AxPa x oo

F(e) =03 +07xe, Pa=2117 pst
n=0549, A =473

n)

Figure 8.B.1-7
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Figure 8.B.1-9
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests at G’ = O’ of undisturbed samples from Treasure Island.
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Figure 8.B.1-10
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
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Variation in normalized shear modulus with shearing strain from resonant column tests of undisturbed

samples from Treasure Island.
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Figure 8.B.1-13
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed

samples from Treasure Island.
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Figure 8.B.1-14
Variation in normalized shear modulus with shearing strain from resonant column and torsional shear
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Figure 8.B.1-15
Variation in normalized shear modulus with shearing strain from resonant column tests of undisturbed
sandy samples from Treasure Island.
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Figure 8.B.1-16
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed
sandy samples from Treasure Island.
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Figure 8.B.1-17
Variation in normalized shear modulus with shearing strain from resonant column and torsional shear

tests of undisturbed sandy samples from Treasure Island.
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Figure 8.B.1-18
Variation in normalized shear modulus with shearing strain from resonant column tests of undisturbed
fine-grained samples from Treasure Island.
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Figure 8.B.1-19
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed

fine-grained samples from Treasure Island.

8.B.1-26



1'2 WA | 1 lllllll""l 1 llIlll""'l 1 lllllll""l rmri1irres
C Idriss('70)] ]
g i (For Sands) B
......... Range
o 10 2 SR N, o Ny -
(\D R — ~ m-“& * x B ;. — Mean "
g“ i o, -.--- .
T

g - -
, " | “(RC Tests) ]
= 0.6 | x'13.CH,18.3m .
o ~| % T4,CL,27.4m N
N = ~| o T6,CL,39.6m B
7] -1 o T7,CL,51.8m -
g 0.4 1| = T8,CL,70.7m —
N [ |(TS Tests 1st Cycle) ]

© x T3,CH,18.3m
£ ~| @ T4,CL,27.4m 7
= 0.2 ¢ T6.CL:39.6m x
o -| o T7,CL,51.8m —,
< -{ + 8CL7OOO [ X ]
o.o —....l 1 Jllllll....l L1 llllll....l | | llllll....l 1 llll“;L

10" 10° 102 10 10°
Shearing Strain, v, %
Note:

1. Only results at an estimated in situ mean effective stress are plotted.

Figure 8.B.1-20
Variation in normalized shear modulus with shearing strain from resonant column and torsional shear

tests of undisturbed fine-grained samples from Treasure Island.
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Figure 8.B.1-21
Variation in material damping ratio with shearing strain from resonant column tests of undisturbed

samples from Treasure Island.
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Variation in material damping ratio with shearing strain from torsional shear tests of undisturbed

samples from Treasure Island.
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Variation in material damping ratio with shearing strain from resonant column and torsional shear tests
of undisturbed samples from Treasure Island.

8.B.1-30



10

ase®
ol
--------
......
cecanvreess™”’
..........
...............

pet
......
o
ase®’

I 1 LB LR L T I F¥rrrii | LRI T
- | /"‘ K E
(For Sands) / y =
.......... Range O , -
X 3 — Mean /9
Q x."' ]
S L :
© 0 T2.SP-SM,9.1m X o [/ =
@C 6} | x T3CH,183m . S 3
o » T4,CL,27.4m .
'E A T5,SP'SM,335m ’:" ",.-' b4 I
o o T6,CL,39.6m I 0O & 3
£ # T8,CL,70.7m X -
x © ]
8 4 A X =
Q O e 3
«© - 3
= oy ® =
g o E
(1] —

Shearing Strain, v, %

Note:

3 free-vibration cycles.

1. Only results at an estimated in situ mean effective stress are plotted.
2. Shearing strains in RC test were corrected to the average of the first

Figure 8.B.1-24

-
= %
[~

Variation in material damping ratio with shearing strain for Y < 0.1% from resonant column tests of

undisturbed samples from Treasure Island.
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Figure 8.B.1-26
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Variation in material damping ratio with shearing strain from resonant column tests of undisturbed
sandy samples from Treasure Island.
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Figure 8.B.1-28
Variation in material damping ratio with shearing strain from torsional shear tests of undisturbed sandy
samples from Treasure Island.
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Figure 8.B.1-29
Variation in material damping ratio with shearing strain from resonant column and torsional shear tests
of undisturbed sandy samples from Treasure Island.
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Figure 8.B.1-32
Variation in material damping ratio with shearing strain for y< 0.1% from resonant column and torsional

shear tests of undisturbed sandy samples from Treasure Island.
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APPENDIX 8.B.1.A
TEST EQUIPMENT AND MEASUREMENT TECHNIQUES

8.B.1.A.1 Introduction

Resonant column and torsional shear (RCTS) equipment has been employed in this investigation for
measurement of the deformational characteristics (shear modulus and material damping) of intact soil
specimens. This equipment has been developed at The University of Texas at Austin over the past two
decades (Isenhower, 1979; Lodde, 1982; Ni, 1987; and Kim, 1991). The equipment is of the fixed-free type,
with the bottom of the specimen fixed and torsional excitation applied to the top. Both resonant column
(RC) and torsional shear (TS) tests can be performed in a sequential series on the same specimen over a
shearing strain range from about 10-4% to slightly more than 10-1%. The primary difference between the
two types of tests is the excitation frequency. In the RC test, frequencies above 20 Hz are required and
inertia of the specimen and drive system are needed to analyze the measurements. On the other hand,
slow cyclic loading involving frequencies generally below 5 Hz is performed in the TS test and inertia
does not enter data analysis.

8.B.1.A.2 Resonant Column and Torsional Shear Equipment
8.B.1.A.2.1 Overview of RCTS Equipment

The RCTS apparatus can be idealized as a fixed-free system as shown in Fig. 8.B.1.A-1. The bottom end of
the specimen is fixed against rotation at the base pedestal, and top end of the specimen is connected to the
driving system. The driving system, which consists of a top cap and drive plate, can rotate freely to excite

the specimen in cyclic torsion.
<|> Cyclic or Resonant

| Torsional Excitation

Rigid End Mass with
K/ Mass Polar Moment of

T \.—/ Inertia, IO

Length, Soil Specimen,

14 I

Fixed at Bottom

Y ¥
NN
Fig. 8.B.1.A-1

Idealized fixed-free RCTS equipment.
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A simplified diagram of a fixed-free resonant column (RC) test is shown in Fig. 8.B.1.A-2. The basic
operational principle is to vibrate the cylindrical specimen in first-mode torsional motion. Harmonic
torsional excitation is applied to the top of the specimen over a range in frequencies, and the variation of
the acceleration amplitude of the specimen with frequency is obtained. Once first-mode resonance is
established, measurements of the resonant frequency and amplitude of vibration are made. These
measurements are then combined with equipment characteristics and specimen size to calculate shear
wave velocity and shear modulus based on elastic wave propagation. Material damping is determined
either from the width of the frequency response curve or from the free-vibration decay curve.

The torsional shear (TS) test is another method of determining shear modulus and material damping
using the same RCTS equipment but operating it in a different manner. The simplified configuration
of the torsional shear test is shown in Fig. 8.B.1.A-3. A cyclic torsional force with a given frequency,
generally below 10 Hz, is applied at the top of the specimen. Instead of determining the resonant
frequency, the stress-strain hysteresis loop is determined from measuring the torque-twist response of
the specimen. Proximitors are used to measure the angle of twist while the voltage applied to the coil is
calibrated to yield torque. Shear modulus is calculated from the slope of a line through the end points
of the hysteresis loop, and material damping is obtained from the area of the hysteresis loop as shown
in Fig. 8.B.1.A-3.

The RCTS apparatus used in this study has three advantages. First, both resonant column and torsional
shear tests can be performed with the same set-up simply by changing (outside the apparatus) the
frequency of the forcing function. Variability due to preparing “identical” samples is eliminated so that
both test results can be compared effectively. Second, the torsional shear test can be performed over a
shearing strain range between 10-4% and about 10-1%. Common types of torsional shear tests, which
generate torque by a mechanical motor outside of the confining chamber, are usually performed at strains
above 0.01% because of system compliance. However, the RCTS apparatus used in this study generates
torque with an electrical coil-magnet system inside the confining chamber, thus eliminating the problem
with an external motor. The torsional shear test can be performed at the same low-strain amplitudes as
the resonant column test, and results between torsional shear and resonant column testing can be easily
compared over a wide range of strains. Third, the loading frequency in the torsional shear test can be
changed easily from 0.01 Hz to 10 Hz. Therefore, the effect of frequency on deformational characteristics
can be conveniently investigated using this apparatus.

The RCTS apparatus consists of four basic subsystems which are: (1) a confinement system, (2) a drive
system, (3) a height-change measurement system, and (4) a motion monitoring system. The general
configuration of the RCTS apparatus (without the confinement system) is shown in Fig. 8.B.1.A-4. The
RCTS apparatus was automated by Ni (1987) so that a microcomputer controls the test, collects the data,
and reduces results. Computer-aided subsystems are discussed briefly in the following sections.
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Figure 8.B.1.A-2
Simplified diagram of a fixed-free resonant column test and an associated frequency response curve.
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8.B.1.A.2.2 RCTS Confinement System

The confining chamber is made of stainless steel. A thin-walled (0.6 cm in thickness) hollow cylinder fits
into circular grooves machined in 2.5 cm thick base and top plates. Four stainless steel connecting rods
(1.28 cm in diameter) are used to secure the base and top plates to the hollow cylinder, and O-rings in the
circular grooves are used to seal the chamber. In this configuration, the chamber has been designed to
withstand a maximum air pressure of about 200 psi (1379 kPa). To safely test samples at higher confining
pressures (pressures on the order of 600 psi (4137 kPa)), the confinement system was modified by adding
additional stainless steel rods to secure the cylinder to the top and base plates and reinforcement to the
top and base plates.

Compressed air is used to confine isotropically the specimen in the RCTS device. The air pressure to the
chamber generally is regulated by a Fairchild M 30 regulator and air supplied to the regulator is filtered.
At high confining pressures, additional regulators are used. The soil specimen is sealed in a membrane
and pore pressure in the specimen is normally vented to atmospheric pressure.

Inside the confining chamber, the air pressure acts upon a silicon fluid bath which surrounds the sides of
the soil specimen. The purpose of the silicon fluid bath is to retard air migration through the membrane
and into the specimen to prevent drying of the specimen. Figure 8.B.1.A-5 shows the simplified
configuration of the confinement system.

—
H Top Plate =
_ Hollow
: Cylinder
g o
; Connecting
o ¢ Rod
Silicon : 4
Fluid Bath || E
> o
; Soil <
_ Membrane
O-Ring >{ i p
[ 8 " Base Plate ||
\ o
Vent Compressed Air

Fig. 8.B.1.A-5
Simplified configuration of confinement system.

8.B.1-46



8.B.1.A.2.3 Drive System

The drive system consists of a four-armed drive plate, four magnets, eight drive coils, a power amplifier,
and a function generator. Each magnet is rigidly attached to the end of one arm of the drive plate as
shown in Fig. 8.B.1.A-4. Eight drive coils encircle the ends of the four magnets so that the drive plate
excites the soil specimen in torsional motion when a current is passed through the coils. The maximum
torque that the drive system can develop depends on the strength of the magnets, size of the drive coils,
resistance of the drive coils, size of the space between the magnets and drive coils, length of the arms of
the drive plate, and the electrical characteristics of the function generator and power amplifier. For the
three drive systems used in this work, the maximum torque was about 0.60 Ib-ft (82 N-cm).

A schematic diagram of the drive system is shown in Fig. 8.B.1.A-6. The micro-computer activates a
function generator (HP 3314A) to input sinusoidal voltage to the drive coils. In the resonant column (RC)
test, the function generator performs frequency sweeps with a constant amplitude while in the torsional
shear test, a fixed-frequency N-cycle mode is used. For high-amplitude resonant column and torsional
shear (TS) tests, the sinusoidal input current is amplified by a power amplifier (HP 6824A) before going to
the drive coils.

A .

>

o B eo Low-Amplitude RC Test
o

oo o 3
oo oo Drive Coils

Function Generator

High-Amplitude RC Test
and TS Test
- 0
> o P 6
(o] 0 (o]
g Power Amplifier
Computer
Fig. 8.B.1.A-6

Schematic diagram of the drive system.

8.B.1.A.2.4 Height-Change Measurement System

The height change of the soil specimen is measured to account for the changes in the length and mass of
the specimen during consolidation or swell. This measurement is also used to calculate change in the
mass moment of inertia, mass density, and void ratio during testing (by assuming isotropic strain under
isotropic confinement and constant degree of saturation). The height change is measured by a linear
variable differential transformer (LVDT). The height change measurement system consists of an LVDT
(CRL Model SH-200-53R), a function generator (HP 3314A), and a digital voltmeter (HP 3456A). The
LVDT core is not in contact with the LVDT coil housing so that no friction occurs during RCTS testing.

The output and calibration factor of an LVDT depend on both the frequency and magnitude of the
excitation voltage. In this test the computer activates the function generator to generate the input signal
in the LVDT coil at a frequency of 500 Hz and a voltage level of 4.77 RMS volts. The output from the
LVDT is read with a digital voltmeter. The height change is calculated from the output voltage combined
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with the calibration factor. The schematic diagram of the height change measuring system is shown in
Fig. 8.B.1.A-7.

o B == Input

oo oo > LVDT
oo %9 477 RMS volts
Function Generator 500 Hz
I Output
< L2271 pooo
oQooo
== Voltmeter
Computer

Fig. 8.B.1.A-7
Schematic diagram of the height-change measuring system.

8.B.1.A.2.5 Motion Monitoring System

Dynamic soil properties are obtained in the RC test at the resonant frequency which is usually above

20 Hz while torsional shear testing is used to measure the low-frequency (below 10 Hz) cyclic stress-strain
relationship of soil. Because of the different frequencies applied in the resonant column and torsional
shear tests, different motion monitoring systems are used.

Resonant Column (RC) Test. The motion monitoring system in the RC test is designed to measure the
resonant frequency, shearing strain, and free-vibration decay curve. This system consists of an
accelerometer (Columbia Research Laboratory Model 3021), a charge amplifier (Columbia Research
Laboratory Model 4102M), a frequency counter (HP 5334A), a digital voltmeter (HP 3456A), and a digital
oscilloscope (Nicolet 20929-01). The schematic diagram of the motion monitoring system is shown in

Fig. 8.B.1.A-8.

The accelerometer is oriented to be sensitive to torsional vibrations of the drive plate. The charge
amplifier conditions the accelerometer output to be linear for all levels of acceleration in the test. The
digital voltmeter reads the output voltage from the accelerometer at each frequency which is measured
by the frequency counter. The resonant frequency is obtained from the frequency response curve. Once
the resonant frequency is obtained, the computer activates the function generator to excite the specimen
at the resonant frequency and then suddenly stops the current so that the free-vibration decay curve is
recorded by the digital oscilloscope.
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Fig. 8.B.1.A-8
Schematic diagram of the motion monitoring system in the resonant column test.

The resonant frequency of soils are typically in the range of 20 Hz to 300 Hz with this equipment. To test
soils effectively over a wide range of stiffnesses, the search for the resonant frequency is performed in
two stages, a rough sweep and a fine sweep. During the rough sweep, a fast logarithmic-linear frequency
sweep (16 seconds to sweep from 1 to 170 Hz) is used. The fine sweep is then performed to determine an
accurate resonant frequency in the neighborhood where the resonant frequency was found in the rough
sweep.

Torsional Shear (TS) Test. The motion monitoring system in the TS test (3000 Proximitor System) is
used to monitor torque-twist hysteresis loops of the specimen. This system consists of two proximitors
(Bentry Nevada M 20929-01), two proximitor probes (Bentry Nevada M 300-00), an operational amplifier
(Tektronix TM 504 with AMS501), a DC power supply (Lambda M-11-902), a U-shaped target and a digital
oscilloscope (Nicolet 20929-01). The U-shaped target is secured to the top of the drive plate, and the two
proximitor probes are rigidly attached to the support stand. A schematic diagram of the motion
monitoring system in the torsional shear test is shown in Fig. 8.B.1.A-9.

The function of the proximitor probes is to measure the width of the air gap between the target and

the probe tip. Because the proximitor probes do not touch the drive plate, no compliance problems are
introduced into the measurement. Two probes are used and the operational amplifier subtracts the signal
from one probe from the other so that the effect of bending in the specimen toward the probes can be
eliminated. The proximitor system is a very effective low-frequency motion monitoring system which
does not introduce any compliance problems into the measurement. With the simultaneous measurement
of torque, load-displacement hysteresis loops can be determined.
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Schematic diagram of the motion monitoring system in the torsional shear test (3000 Proximitor System).

8.B.1.A.3 Method of Analysis in the Resonant Column Test

The resonant column test is based on the one-dimensional wave equation derived from the theory of
elasticity. The shear modulus is obtained by measuring the first-mode resonant frequency while material
damping is evaluated from either the free-vibration decay curve or from the width of the frequency
response curve assuming viscous damping.

8.B.1.A.3.1 Shear Modulus

The governing equation of motion for the fixed-free torsional resonant column test is:

I onel wn el
-i-; = Ve o tan ( Vs ) (8.B.1.A-1)
Where,
I =Ilg+Im+--
Is = mass moment of inertia of soil,
Im = mass moment of inertia of membrane,
Io  =mass moment of inertia of rigid end mass at the top of the specimen,
1 = length of the specimen,
Vs  =shear wave velocity of the specimen, and
on  =undamped natural circular frequency of the system.

The value of I, is known from the calibration of the drive plate. The values of I and 1 are easily
determined from the specimen size and weight. Once the first-mode resonant frequency is determined,
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the shear wave velocity can be calculated from Eq. 8.B.1.A-1 by assuming that the resonant circular
frequency and o, are equal.

As noted above and shown in Fig. 8.B.1.A-2 the resonant circular frequency, ®;, is measured instead of
undamped natural frequency, ®n, and ® is used to calculate shear wave velocity. If the damping in the
system is zero, 0y and wy, are equal. The relationship between ®; and p, is:

o = ®p V 1-2D2 (8.B.1.A-2)

A typical damping ratio encountered in the resonant column test is less than 20 percent, which
corresponds to a difference of less than 5 percent between w; and wp, In this study, the damping
measured in the resonant column test was usually less than 10 percent, and ®, can be used instead of
on with less than a two percent error.

Once the shear wave velocity is determined, shear modulus is calculated from the relationship:
G=peVg2 (8.B.1.A-3)

where p is the total mass density of the soil (total unit weight divided by gravity).

8.B.1.A.3.2 Shearing Strain

The shearing strain varies radially within the specimen and may be expressed as a function of the
distance from the longitudinal axis as illustrated in Fig. 8.B.1.A-10. The equivalent shearing strain, Yeq OF
Y, is represented by:

Y=req *Omax /1 (8.B.1.A4)
Where,
req = equivalent radius,
Omax = angle of twist at the top of the specimen, and
1 = length of the specimen.

Chen and Stokoe (1979) studied the radial distribution in shearing strain to find a value of Ieq for the
specimen tested in the RCTS equipment to evaluate an effective strain. They found that the value of Teq
varied from 0.82*rq for a peak shearing strain amplitude below 0.001% to 0.79*rq for a peak shearing
strain of 0.1% for a solid specimen. These values of req have been adopted in this study.

In the resonant column test, the resonant period (T}, seconds), and output voltage of accelerometer

(Ac, volts (RMS)) at resonance are measured. Accelerometer output is changed to the displacement by
using the accelerometer calibration factor (CF, volts (RMS)/in./sec2) assuming harmonic motion. The
accelerometer displacement is divided by the distance (D,, inches) between the location of accelerometer
and the axis of the specimen to calculate the angle of twist at the top of the specimen (8max). The shearing
strain is then calculated by:

ACOTr2 1

1
Y= req m . Dac ] 1 (8.B.1.A-5)
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Figure 8.B.1.A-10
Shearing strain in soil column.
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8.B.1.A.3.3 Material Damping

In the resonant column test, material damping ratio can be evaluated from either the free-vibration

decay method or from the half-power bandwidth method. Each of these methods is discussed below.

It is important to note that, in these measurements, the damping measurement includes material damping
in the soil plus any damping in the equipment. Calibration of equipment damping is discussed in Section
8.B.1.A5.

Free-Vibration Decay Method. Material damping in soils can be quite complex to define. However, the
theory for a single-degree-of-freedom system with viscous damping is a useful framework for describing
the effect of damping which occurs in soil (Richart et al., 1970). The decay of free vibrations of a single-
degree-of-freedom system with viscous damping is described by the logarithmic decrement, 6, which is
the ratio of the natural logarithm of two successive amplitudes of motion as:

Z 2nD
d=1In (?12 . (8.B.1.A-6)

1-D2

Where,

Z1and Zp = two successive strain amplitudes of motion, and
D = material damping ratio.

The free-vibration decay curve is recorded using an oscilloscope by shutting off the driving force while
the specimen is vibrating at the resonant frequency. The amplitude of each cycle is measured from the
decay curve, and the logarithmic decrement is then calculated using Eq. 8.B.1.A-6. Material damping ratio
is calculated from logarithmic decrement according to:

52
D= m (8.B.1.A-7)

A typical damping measurement from a free-vibration decay curve (from a metal calibration specimen) is
shown in Fig. 8.B.1.A-11.

In this method, it is not certain which strain amplitude is a representative strain for damping ratio
calculated by Eq. 8.B.1.A-7 because strain amplitude decreases during free-vibration decay. In this study,
a representative strain amplitude was used as the peak strain amplitude during steady-state vibration for
shearing strains below 0.001%. However, at larger strains, the representative strain is smaller than the
peak strain, and the average strain determined for the first three cycles of free vibration was used.
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Figure 8.B.1.A-11
Determination of material damping ratio from the free-vibration decay curve using a metal specimen.
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Half-Power Bandwidth Method. Another method of measuring damping in the resonant column test is
the half-power bandwidth method, which is based on measurement of the width of the frequency
response curve near resonance. From the frequency response curve, the logarithmic decrement can be
calculated from:

fr2—£12 \/ A2 12D2

n
80=" © (8B.1L.A8
Where,
f1 = frequency below the resonance where the strain amplitude is A,
fp = frequency above the resonance where the strain amplitude is A,
fr  =resonant frequency, and
D  =material damping ratio.
If the damping ratio is small and A is chosen as 0.707 Apax, which is called the half-power point,
Eq. 8.B.1.A-8 can be simplified as:
fof1
d=me—— (8.B.1.A-9)
fr
Therefore, the damping ratio can be expressed as:
fof1
D= T (8.B.1.A-10)

A typical damping measurement by the half-power bandwidth method (for a metal calibration specimen)
is shown in Fig. 8.B.1.A-12.

Background noise can be a problem in measuring material damping using the free-vibration decay
method at strains less than about 0.001%. On the other hand, background noise generally has a smaller
effect on the frequency response curve at strains below 0.001%. Therefore, the half-power bandwidth
method is preferred to the free-vibration decay method for making small-strain damping measurements.
However, at large strains, symmetry in the frequency response curve is no longer maintained, and a
serious error can be introduced in the half-power bandwidth method (Ni, 1987). In this study, both types
of damping measurements were made at small-strains in an attempt to obtain good data sets while only
the free-vibration decay method was used at larger strains (above 0.001%).
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Figure 8.B.1.A-12
Determination of material damping from the half-power bandwidth method using a metal specimen.

8.B.1.A.4 Method of Analysis in the Torsional Shear Test

The torsional shear test is another method of determining the deformational characteristics (modulus

and damping) of soil using the same RCTS device. Rather than measuring the dynamic response of the
specimen, the actual stress-strain hysteresis loop is determined by means of measuring the torque-twist
curve. Shear modulus is calculated from the slope of the hysteresis loop, and the hysteric damping ratio is

calculated using the area of the hysteresis loop.

8.B.1-56



8.B.1.A.4.1 Shear Modulus

Because shear modulus is calculated from the stress-strain hysteresis loop, shearing stress and shearing
strain in the torsional shear test need to be defined.

Shearing Stress. Determination of shearing stress in the torsional shear test is based on the theory of
elasticity for circular or tubular rods in pure torsion. Assume that pure torque, T, is applied to the top of
the specimen. The torque can be calculated from:

r

[o]
T=f Tr(27r) rdr
i (8.B.LA-11)

where 1T; is the shearing stress at a distance r from the axis of specimen and, r,, and r; are outside and
inside radii, respectively. If the shearing stress is assumed to vary linearly across the radius:

Tr=Tm*(r/ ro) (8.B.1.A-12)
where Ty, is the maximum shearing stress at r = ro. Eq. 8.B.1.A-12 can be rewritten as:

_tm 1 4__4,_tm
T= " 5 ® (ro*-rj*) = ro.]p (8.B.1.A-13)

where Jp, is the area polar moment of inertia. From Eq. 8.B.1.A-13, one can write:

T

Tm=Ip® ]_ (8.B.1.A-14)
P

Because shearing stress is assumed to vary linearly across the radius, the average torsional shearing stress

is defined as:

T

‘Cavg = req L4 ]._p (8.B.1.A-15)

The value of req is the same value as used in the resonant column analysis for calculation of shearing
strain (Section 8.B.1.A.3.2).

The value of applied torque, T, is calculated from the input voltage applied to the drive system, V
(Volts), and the torque calibration factor, Kt ( torque / Volts ). Thus, average shearing stress becomes:

Tavg =Teq ®* KT e VT / Ip (8.B.1.A-16)

Shearing Strain. Calculation of shearing strain in the torsional shear test follows the same procedure
used in the resonant column test. The proximitor system directly measures the displacement (instead of
acceleration measured in the resonant test). Hence, the angle of twist () is calculated from the proximitor
output voltage, Vp (volts), and the proximitor calibration factor, Kp (rad / volt). Shearing strain, ¥, is then
calculated from: .

Y=Teq 2 KpeVp /Il (8.B.1.A-17)
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Shear Modulus. Once the stress-strain hysteresis loop is measured, the shear modulus, G, is calculated
from the slope of a line through the end points of the hysteresis loop as shown in Fig. 8.B.1.A-13. Thus,
the shear modulus is calculated from:

G=1/% (8.B.1.A-18)

where 1 is peak shearing stress and 7y is peak shearing strain.

T

Shearing Stress,

A

Shearing Strain, i

G=717 /Y

D =Wd/(475W5)

Figure 8.B.1.A-13
Determination of shear modulus and damping ratio in the torsional shear test.

8.B.1.A.4.2 Hysteretic Damping Ratio

Hysteretic damping ratio in the torsional shear test is measured using the amount of energy dissipated in
one complete cycle of loading and the peak strain energy stored in the specimen during the cycle.

In the torsional shear test, the dissipated energy is measured from the area of the stress-strain hysteresis
loop. The energy per cycle, Wy, due to a viscous damping force, Fg, is:

T L]
Wq = f FyeXdt
0 (8.B.1.A-19)

where X is a velocity and T is a period. For simple harmonic motion with frequency of w,
ie. x = A Cos (0t—¢), Wq become:

Wq=ncoA2 (8.B.1.A-20)

From the Eq. 8.B.1.A-20, the viscous damping coefficient can be expressed as:
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c=Wq/(nwA2) (8.B.L.A-21)

The peak strain energy, W, stored by the spring is equal to the area under the secant modulus line in
Fig. 8.B.1.A-13 and can be written as:

Ws=kA2/2 (8B.1.A22)
The critical damping coefficient, Cg, is

Cc=2e Vkm=2k/ ®n (8.B.1.A-23)

where k is an elastic spring constant, m is a mass, and @y, is a natural frequency of system. Using
Eq. 8.B.1.A-22, Eq. 8.B.1.A-23 can be rewritten as:

Ce=4Ws / (0 A2) (8.B.1.A-24)
Therefore, the damping ratio, D, can be expressed as:
D=C/Cc=Wq/(@nWg)*(on/ o) (8.B.1.A-25)

For soils, material damping is often assumed to be frequency independent. Therefore, o, / ® is ignored
and hysteretic damping is written as:

1. Wd

Tan W (8.B.1.A-26)

D

where Wy is the area of the hysteresis loop and Wy is the area of the triangle as shown in Fig. 8.B.1.A-13.

8.B.1.A.5 Evaluation of RCTS Equipment Compliance With Metal Specimens

To evaluate the RCTS equipment for system compliance, metal specimens were used. The metal
specimens were made of brass and aluminum tubes. Eighteen metal specimens of different sizes and
materials were used to obtain different resonant frequencies. Details of the metal specimens are presented
in Table 8.B.1.A-1. It was assumed that the metal specimens should have (essentially) zero damping and
that these specimens should exhibit no effect of frequency on stiffness or damping over the complete
range of frequencies used in these tests (from about 0.05 Hz to 400 Hz).
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Hysteresis loops with one metal specimen measured at a frequency of 0.5 Hz are shown in Fig. 8.B.1.A-14.
The stress-strain curve is linear, resulting in no damping as expected. On the other hand, Figs. 8.B.1.A-11
and 8.B.1.A-12 show the damping measurements with the same metal specimen in the resonant column
test predict an apparent damping of 0.4% from both the free-vibration decay and half-power bandwidth

methods.

317 T

Metal Specimen 1
f=05Hz
1.25 cycle

Shearing Stress, k Pa
=)

317 -
-4.31 0 4 431
Shearing Strain, % * 10°

Figure 8.B.1.A-14
Hysteresis loops of metal specimen determined by torsional shear testing at a frequency of 0.5 Hz.

The variations in shear modulus and damping ratio with loading frequency for four of the metal
specimens are plotted in Fig. 8.B.1.A-15. The shear modulus of each metal specimen determined from the
RCTS equipment is independent of loading frequency as expected. Therefore, shear modulus can be
measured properly with RCTS equipment over a wide frequency range without any compliance problem.

On the other hand, the damping ratio measured by the RCTS equipment is affected by the loading
frequency. For frequencies less than or equal to 0.5 Hz, damping ratio evaluated by the torsional shear
test is essentially zero as expected. In this frequency range, material damping can be evaluated without
any equipment correction. For higher frequencies, however, non-zero damping values are obtained with
all metal specimens in the torsional shear as shown in Figs. 8.B.1.A-15b and 8.B.1.A-16. In this case the
apparent material damping increases significantly as the excitation frequency increases from 1 to 10 Hz.
Strain amplitude has little effect on the damping values as shown in Fig. 8.B.1.A-16. These values of
apparent material damping are considered to be due to a compliance problem with the complete RCTS
system (back-EMF generated by the drive system) and are, therefore, subtracted from all damping
measurements in the torsional shear test at the same frequencies when soil specimens are tested.
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Measured damping ratio for metal specimen #2 in the torsional shear test.
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It should be noted that excitation frequencies in the torsional shear test never exceeded 0.1 times the
resonant frequency of the soil specimen. This approach was followed so that dynamic amplification did
not affect the TS measurements. Even in this case, however, corrections were made for minor dynamic
amplification which occurs near 0.1 times the resonant frequency.

In the resonant column test, non-zero damping values were obtained at all resonant frequencies as seen in
Figs. 8.B.1.A-15b and 8.B.1.A-17. Equipment damping values ranged from about 3.5% at 20 Hz to about
0.4% at 200 Hz. These resonant frequencies are in the frequency range where all soil testing was
conducted. Just as in the TS test, the values of equipment damping measured with the metal specimens
were subtracted from the damping measurements in all RC tests with soil specimens at the same resonant
frequencies. Strain amplitude had a negligible effect on equipment damping as shown in Fig. 8.B.1.A-18.

Finally, to be sure that coil-magnet interaction was the cause of the equipment damping problem, free-
vibration tests were conducted with the RC equipment. In this case, however, all coils were removed
which required that the drive plate be excited by hand in free vibration. The resulting tests with drive
plate #4 are given in Fig. 8.B.1.A-19 by the solid square symbols. As seen, damping values less than 0.1%
were measured. These values are considered to equal zero in this work, indicating the coil-magnet
interaction is mainly the cause of the equipment damping.
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APPENDIX 8.B.1.B

DYNAMIC TESTS OF SAMPLE T1, DEPTH = 17.5 FT (5.3 M)
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Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T1.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample T1.
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Figure 8.B.1.B-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T1.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T1.
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Variation in void ratio with effective confining pressure from resonant column tests of sample T1.
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Figure 8.B.1.B-7
Variation in shear modulus with shearing strain at an effective confining pressure of 6 psi
(864 psf, 41 kPa) from RCTS tests of sample T1.
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Figure 8.B.1.B-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 6 psi
(864 psf, 41 kPa) from RCTS tests of sample T1.
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Figure 8.B.1.B-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample T1.
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining
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Figure 8.B.1.B-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 6 psi
(864 psf, 41 kPa) from RCTS tests of sample T1.
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Figure 8.B.1.B-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

6 psi (864 psf, 41 kPa) from RCTS tests of sample T1.
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Figure 8.B.1.B-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample T1.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
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Figure 8.B.1.B-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 6 psi (864 psf, 41 kPa) from RCTS tests of sample T1.
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Figure 8.B.1.B-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 6 psi (864 psf, 41 kPa) from RCTS tests of sample T1.
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APPENDIX 8.B.1.C
DYNAMIC TESTS OF SAMPLE T2, DEPTH =30 FT (9.1 M)

6000_ 1 1 T IIIII] T 1 rllllll ¥ ¥ I lllIl' ¥ T T 107077
C Treasure Island Jsg.mm_c_ommn.?__mﬁm_e ]
" Depth = 30 ft (9.1 m) O 2.5 psi(=360 psf=17 KPa)
- Sand with Silt(SP-SM) ®m 5 psi(=720 psf=34 KPa) 7
- Drive Plate #5 a 10 psi(=1440 psf=69 KPa) — 250
+ 5000 -y<0.001 % a 20 psi(=2.88 ksf=138 KPa) - Iy
x . o 40 psi(=5.76 ksf=276 KPa) - g
: - . 1
g o >
C n 3
0. C — 200 ©
@ 4000 [ . =
-— C c
3 - o O © & R i &
o - o o 00 wn
s : 1150 3
E - —
S 3000 - - S
< C 4 =
A o LA A a
° C A AAA A A A - €
2 o A 100 £
= 2000 7 w
3 - 1 o
< - - 8
g - A A ADAA A A A AN J =
- 1000 | 1% &
- . " N . | N N e
o O Ooog ogio o O m]is mu st :
: .
0- 1 1 1 lljlll 1 1 1 llllll 1 L1 llllll 1 L L.l 11ttt
1 10 100 1000 10000

Duration of Confinement, t, Minutes

Figure 8.B.1.C-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T2.
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Figure 8.B.1.C-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T2.
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T2.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant
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Variation in void ratio with effective confining pressure from resonant column tests of sample T2.
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Figure 8.B.1.C-7
Variation in shear modulus with shearing strain at an effective confining pressure of 10 psi
(1.44 ksf, 69 kPa) from RCTS tests of sample T2.
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Figure 8.B.1.C-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T2.
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining
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Figure 8.B.1.C-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 10 psi
(1.44 ksf, 69 kPa) from RCTS tests of sample T2.
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Figure 8.B.1.C-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T2.
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. Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T2.

8.B.1-97



14 L{ L{ LBRLNLERSRA] 1] L) 1 llIlll T T rmyuirnl 1 1) BB BLELRAS®
= Breaiure Islfand ropi nfinin ressure 3
 Depth =30 ft (9.1 m) o 5 psi(=720 psf=34 KPa 3
; $.?:g WI;hdSIIt(SP-SM) A 10 psi(=1440 psf=69 KF)’a) 3
ime = 1 day o 20 psi(=2.88 ksf=1 3
£ 12EDrive Plate #5 psi(=2.88 ksl=138 KPa)
Q E. Shearing strains in RC test were 3
o [ |corrected to the average of the 3
‘o' 10 C |first 3 free-vibration cycles. 3
s ]
o 3 .
o o B
k= - .
= z
a - o4 .
S : :
s °F L4 E
© C 3
= - A 3
3 f =
N 4 & 3
- o 3
£ £ NS 3
a C 3
Zz 2fF A8 3
F AS 3
o Q AQ A® 3
0: L 1 lllllll L 1 lllllll I 1 Jllllll 1 | llllll:I

10” 10° 102 10 10°

Shearing Strain, v, %

Figure 8.B.1.C-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective

confining pressure from resonant column tests of sample T2.
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Figure 8.B.1.C-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure

of 10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T2.
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Figure 8.B.1.C-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T2.
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APPENDIX 8.B.1.D
DYNAMIC TESTS OF SAMPLE T3, DEPTH = 60 FT (18.3 M)
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Figure 8.B.1.D-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T3.
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Figure 8.B.1.D-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample T3.
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Figure 8.B.1.D-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample T3.
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Figure 8.B.1.D-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T3.
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Figure 8.B.1.D-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T3.
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Figure 8.B.1.D-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T3.
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Figure 8.B.1.D-7
Variation in shear modulus with shearing strain at an effective confining pressure of 18 psi
(2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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Figure 8.B.1.D-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 18 psi
(2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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Figure 8.B.1.D-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample T3.
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining
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Figure 8.B.1.D-11

Variation in material damping ratio with shearing strain at an effective confining pressure of 18 psi

(2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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Figure 8.B.1.D-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

18 psi (2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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Figure 8.B.1.D-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample T3.
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Figure 8.B.1.D-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T3.
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Figure 8.B.1.D-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 18 psi (2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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Figure 8.B.1.D-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 181 psi (2.59 ksf, 124 kPa) from RCTS tests of sample T3.
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APPENDIX 8.B.1.E
DYNAMIC TESTS OF SAMPLE T4, DEPTH =90 FT (27.4 M)
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Figure 8.B.1.E-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T4.
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Figure 8.B.1.E-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample T4.
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
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Figure 8.B.1.E-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample T4.
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Figure 8.B.1.E-7
Variation in shear modulus with shearing strain at an effective confining pressure of 28 psi
(4.03 ksf, 193 kPa) from RCTS tests of sample T4.
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Figure 8.B.1.E-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 28 psi
(4.03 ksf, 193 kPa) from RCTS tests of sample T4.

8.B.1-124



6000 _""‘ LRI ARLEE BARALE T ¥ llllIl i | 1] L] l1"|’]""l 4 T 1T 1587011
- Treasure Island ' .
- Rth 90 ft (27.4 m) o 7 psi(=1.01 ksf=48 KPa) 7
- Clay(CH) ® 14 psi(=2.02 kst=97 KPa) 1
- T'r,ne =1 day o 28 psi(=4.03 kst=193 KPa) — 250
5000 [~ Orive Plate #4 ¢ 56 psi(=8.06 ksf=386 KPa) -
o a 112 psi(=16.13 kst=772 MPa) .
s — 200
G 4000 [ ] %
- E A A A A A @, - ®
(D.. E‘ A 9 g
g - A B (o]
= - - 150 &
3 3000 i c
3L 5 =
= ] ¢
& 2000 . - 100 3
C 'S -
. © 0 0 0 o & ]
C o ® -
1 [~ < - 50
000 : ® o 0 04 o 1
: O ©° ® o ° © ¢ i
E © oo o o) o -
- . o -
0-;‘;‘1 q{ lllLlllLllll 1 Lllllll....l ) lllllll.;‘.l t ¢t 1 41k 0
10" 10° 10 10 10°

Shearing Strain, v, %

Figure 8.B.1.E-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample T4.
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Figure 8.B.1.E-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample T4.
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Figure 8.B.1.E-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 28 psi
(4.03 ksf, 193 kPa) from RCTS tests of sample T4.
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Figure 8.B.1.E-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
28 psi (4.03 ksf, 193 kPa) from RCTS tests of sample T4.
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Figure 8.B.1.E-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T4.
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Figure 8.B.1.E-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T4.
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Figure 8.B.1.E-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 28 psi (4.03 ksf, 193 kPa) from RCTS tests of sample T4.
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Figure 8.B.1.E-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 28 psi (4.03 ksf, 193 kPa) from RCTS tests of sample T4.
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APPENDIX 8.B.1.F
DYNAMIC TESTS OF SAMPLE T5, DEPTH =110 FT (33.5 M)
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Figure 8.B.1.F-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column testing of sample T5.
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Figure 8.B.1.F-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column testing of sample T5.
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Figure 8.B.1.F-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column

testing of sample T5.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column testing of sample T5.
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Variation in void ratio with effective confining pressure from resonant column testing of sample T5.
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Variation in shear modulus with shearing strain at an effective confining pressure of 32 psi
(4.61 ksf, 221 kPa) from RCTS testing of sample T5.
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Figure 8.B.1.F-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 32 psi
(4.61 ksf, 221 kPa) from RCTS testing of sample T5.
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Figure 8.B.1.F-9
Variation in shear modulus with shearing strain at an effective confining pressure of 128 psi
(18.4 ksf, 883 kPa) from RCTS testing of sample T5.

8.B.1-141

edW ‘©‘sn|Npo leays



1.2

: M 1 i 7T IIIII LA | T T lITII]'r"I { LS Illll ML | | | T Illll_'
: ]
1.0 E— Enh B ] f a0 —:
x - 0 -
3 - m -
O " o s .
(&) C . .
([; 0.8 — —
= " .
=] L N
S C = 3
Q o .
= 0sF .
h 6 -
8 C | 3
£ C .
wn . i
o) C ]
Q - -
N 0.4 F Treasure Island -
«© ~ Depth = 110 ft (33.6m) ]
g - Sapd with Silt(SP-SM) N
(*] ~ Oo = 128 psi (=18.4 ksf = 883 KPa) 7
< - Time = 1 Day ]
0.2 :_ Drive Plate #9 ‘E
- m RC (55.5 - 74.0 Hz) 3
- A TS-1st (0.5 Hz) -
[ o TS-10th (05Hz) 4
00- | 1 1111111 aal 1 ||1|1|ll,“l 1 1|111||....| L 1 1114

10° 10° 102 10" 10°

Figure 8.B.1.F-10

Shearing Strain,y, %

Variation in normalized shear modulus with shearing strain at an effective confining pressure of 128 psi
(18.4 ksf, 883 kPa) from RCTS testing of sample T5.
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Variation in shear modulus with shearing strain and effective confining pressure from resonant column
testing of sample T5.
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Variation in material damping ratio with shearing strain at an effective confining pressure of 32 psi
(4.61 ksf, 221 kPa) from RCTS testing of sample T5.
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Figure 8.B.1.F-14
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
32 psi (4.61 ksf, 221 kPa) from RCTS testing of sample T5.
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Variation in material damping ratio with shearing strain at an effective confining pressure of 128 psi
(18.4 ksf, 883 kPa) from RCTS tests of sample T5.
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Figure 8.B.1.F-16
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
128 psi (18.4 ksf, 883 kPa) from RCTS testing of sample T5.
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Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column testing of sample T5.
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Figure 8.B.1.F-18
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure for resonant column testing of sample T5.
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Figure 8.B.1.F-19
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 32 psi (4.61 ksf, 221 kPa) from RCTS testing of sample T5.
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Figure 8.B.1.F-20
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 32 psi (4.61 ksf, 221 kPa) from RCTS testing of sample T5.

8.B.1-152



6000 L} L lll'lll | | ¥ Tllllll ] ¥ Illllll L ¥ IIllll' 1 LR RRLRES
R Breaﬁure Islafnd ) ]
epth = 110 ft (33.6m .
- Sand with Silt(SP-SM) —]280
| Oo =128 psi (=18.4 ksf = 883 KPa) .
Time = 1 Day ’ 4
- Drive Plate #9 T
5500 — 3
® Y=0.001%(TS 1st) .
- A Y=0.01%(TS 1st) - 260
5 | 1 ¢
< RC ] o
S i ] =
S ] i §
S 5000 (- 1240 g
O h c
= i ) . »
b » . - Q
8 u 1 =
£ - | ]
) ] = ] g
i ] — 220
4500 |- A -
A A A A ]
L A 1
| A R .
i 200
400 1 Ll llllll 1 11 lllll' 1 L lllllll 1 1 lllllll 1 L. LJl1il1l
0.001 0.01 0.1 1 10 100

Loading Frequency,f, Hz

Figure 8.B.1.F-21
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 128 psi (18.4 ksf, 883 kPa) from RCTS testing of sample T5.
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Figure 8.B.1.F-22
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 128 psi (18.43 ksf, 883 kPa) from RCTS testing of sample T5.
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APPENDIX 8.B.1.G
DYNAMIC TESTS OF SAMPLE T6, DEPTH = 130 FT (39.6 M)
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Figure 8.B.1.G-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T6.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T6.
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Figure 8.B.1.G-3

Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample T6.
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Figure 8.B.1.G-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample Té.
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Figure 8.B.1.G-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample Té.
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Figure 8.B.1.G-6
Variation in void ratio with effective confining pressure from resonant column tests of sample Té.
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Figure 8.B.1.G-7
Variation in shear modulus with shearing strain at an effective confining pressure of 42 psi
(6.05 ksf, 290 kPa) from RCTS tests of sample T6.
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Figure 8.B.1.G-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 42 psi
(6.05 ksf, 290 kPa) from RCTS tests of sample Té6.
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Figure 8.B.1.G-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T6.
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Figure 8.B.1.G-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample T6.
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Figure 8.B.1.G-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 42 psi
(6.05 ksf, 290 kPa) from RCTS tests of sample Té.
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Figure 8.B.1.G-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
42 psi (6.05 ksf, 290 kPa) from RCTS tests of sample T6.
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Figure 8.B.1.G-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample T6.

8.B.1-167



Tre'asu'reils"érl.'ldll T T T1Illl| 1 l. L] IIYII." T T ITTIII-
X g.?tp"ér 130 t(39.6 m) J;D,m% psi’(=! A KPa) |
S T'l y -a1yd A 20 psi(=2.88 ksf=138 KPa) -
c N Dlrri?/‘; ?’Iateags O 42 psi(=6.05 ksf=290 KPa)
t | .
o - [Shearing strains in RC test were .
O [ |corrected to the average of the .
o  {first 3 free-vibration cycles. .
= | o -
] L 4
[« o N -
u - -
E o -
o - -
g F 0 1
o 4 A -
© L -
s - -
s [ © -
= - -
A

© - O -
N - o .
| 2r A .
E [ t )
5 C 5.0 AO -
< - -
- O A AB AT A .
o- I 1 Jlljlll 1 1 lllllll 1 1 Illllll 1 [l llllll-l

10 10° 10 10" 10°

Shearing Strain, v, %

Figure 8.B.1.G-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T6.
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Figure 8.B.1.G-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 42 psi (6.05 ksf, 290 kPa) from RCTS tests of sample T6.
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Figure 8.B.1.G-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 42 psi (6.05 ksf, 290 kPa) from RCTS tests of sample Té6.
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APPENDIX 8.B.1.H
DYNAMIC TESTS OF SAMPLE T7, DEPTH = 170 FT (51.8 M)
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Figure 8.B.1.H-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T7.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T7.
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Figure 8.B.1.H-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample T7.
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Figure 8.B.1.H-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T7.
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Figure 8.B.1.H-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample T7.
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Variation in void ratio with effective confining pressure from resonant column tests of sample T7.
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Figure 8.B.1.H-7
Variation in shear modulus with shearing strain at an effective confining pressure of 56 psi
(8.06 ksf, 386 kPa) from RCTS tests of sample T7.
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Figure 8.B.1.H-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 56 psi
(8.06 ksf, 386 kPa) from RCTS tests of sample T7.
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Figure 8.B.1.H-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

" tests of sample T7.
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Figure 8.B.1.H-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample T7.
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Figure 8.B.1.H-11

Variation in material damping ratio with shearing strain at an effective confining pressure of 56 psi

(8.06 ksf, 386 kPa) from RCTS tests of sample T7.

8.B.1-181



Tre'asi T llllI]’ Ll L TTIIIII L] LI IIIIII L ] T ITTT-
[ ure Island
[ Depth = 170 ft(51.8 m) i
- Stiff Clay -
c [ o =56 psi(= 8.06 ksf= 386 KPa) -
[ Time=1day ]
(=) L Drive Plate #5 -
(@] B ]
5 3[ ® RC(67-98 Hz) B
= [ & TS-1st(0.5 Hz) A ® ]
g - O TS-10th(0.5 Hz) _ o N
o | |Shearing strains in RC test were -
£ - |corrected to the average of the §
g. - (first 3 free-vibration cycles. ]
a8 2f n -
s | 4
5 [ o ]
= [ _ .
E L -
- & " :
N - m B e .
S - m Hgpp ;| -
E [ ]
|
o) - -
z e -y
0- i | 1 L llllll L 1 1 llllll I 1 I lllJll ] 1 1 lllll-
10 10° 102 10" 10°

Shearing Strain, v, %

Figure 8.B.1.H-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
56 psi (8.06 ksf, 386 kPa) from RCTS tests of sample T7.
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Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T7.
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Figure 8.B.1.H-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T7.
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Figure 8.B.1.H-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 56 psi (8.06 psf, 386 kPa) from RCTS tests of sample T7.
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Figure 8.B.1.H-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 56 psi (8.06 psf, 386 kPa) from RCTS tests of sample T7.
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APPENDIX 8.B.1.1
DYNAMIC TESTS OF SAMPLE T8, DEPTH = 232 FT (70.7 M)
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Figure 8.B.1.1-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T8.
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Variation in void ratio with effective confining pressure from resonant column tests of sample T8.
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Variation in shear modulus with shearing strain at an effective confining pressure of 75 psi
(10.8 ksf, 517 kPa) from RCTS tests of sample T8.
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Variation in normalized shear modulus with shearing strain at an effective confining pressure of 75 psi
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Variation in shear modulus with shearing strain and effective confining pressure from resonant column
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Figure 8.B.1.1-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
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Figure 8.B.1.1-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 75 psi
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Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
75 psi (10.8 ksf, 517 kPa) from RCTS tests of sample T8.

8.B.1-198



12- L} 1 l‘rlllll 1 § 1 LB IR LR | LS lllTl" L LB LA 4-2
s Treasure Island
1k #m 232 ft(70.7 m) o 19 psi(=2.74 ksf=131 KPa) | 45
- Stiff Clay(CH) ¢ 38 psi(=5.47 ksf=262 KPa) .
E Time = 1 day a 75 psi(=10.8 kst=517 KPa)
10 [ Drive Plate #4 m 150 psi(=21.6 ksf=1.04 KPa) _{ 59
Sheanng strains in RC test were
o 9 _ corrected to the average of the -15.6
) C|first 3 free-vibration cycles.
- : A
°°_ 8f 6.3
: N
: o
E f
o 5 ~ A —10.0
© C
R " o]
L - -
S 4 ] a 125
< :
3f ;A —16.7
2b S i
s LIV IV X I\ /N 25
1 —50
L
0_ L L lllllll [ L1 llllll H 1 llllll L 1 1. 1 48114
10 10° 102 10" 10°

Figure 8.B.1.1-13

Shearing Strain, v, %

O ‘1019e4 Aijenp

Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T8.

8.B.1-199



8 L LA LB EERI v ¥ L AR LB R L L | LB IR BRI L ] L § T PTryyY
i Treaﬁurezlée,lafr:d ' ]
t 2 ft(70.7 m) o 19 psi(=2.74 ksf=131 KPa)
L Stl# Clay(CH) o 38 psi(=5.47 ksf=262 KPa) -
. [ Time=1day a 75 psi(=10.8 ksf=517 KPa)
T - Drive Plate #4 ® 150 psi(=21.6 kst=1.04 KPa) ]
e hearing strains in RC test were ]
Q 6L corrected to the average of the -
2‘ L Hfirst 3 free-vibration cycles. .
© [ ]
[+ < L -
] - .
£ - A b
a - -
1 :
o 4 A —
s | -
- L ® -
@ [ 4
g - . -
z o A b
2 ]
N [ 4
T 2 g .
E X 26 ]
() - -
< i - &A )
- WAR A (@ A :
0- Il s lllllll I Nl lllllll 1 1 lllllll 1 [ lllll:

10" 10° 10?2 10" 10°

Shearing Strain, v, %

Figure 8.B.1.1-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
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Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
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Variation in material damping ratio with loading frequency and shearing strain at an effective confining
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APPENDIX 8.B.2
DYNAMIC PROPERTIES OF UNDISTURBED SOIL
SAMPLES FROM GILROY 2, CALIFORNIA

8.B.2.1 Introduction

An investigation of the dynamic properties in shear of undistributed soil samples from the Gilroy 2 Array
in California was conducted. This work was part of an Earthquake Ground Motion Project sponsored by
the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE). The dynamic
laboratory study was also initiated as part of an earlier EPRI study, No. 3014-14. The soil samples were
obtained in late, 1990. The samples were sealed in steel Shelby tubes and transported by automobile to the
University of Texas at Austin in December, 1990. Dynamic laboratory testing of the undisturbed samples
performed between January, 1991 and October, 1992.

A total of 12 samples was tested. The samples were obtained from depths ranging from 10 ft (3 m) to

420 ft (128 m). Initial properties of the samples are listed in Table 8.B.2-1. The samples range from a silty
sand with gravel (SM) to a lean clay (CL). Grain size distribution curves for four of the nonplastic samples
are given in Figure 8.B.2-1.

To minimize disturbance effects, eight samples were extruded from the 3-in. (7.6 cm) diameter sampling
tubes and hand trimmed to the final specimen dimensions. Three samples were tested “as extruded,”
without hand trimming due to difficulty in trimming. These three samples were very stiff, and
hydrostone was used to attach the samples to the end platens. One reconstituted sample was tested
because no intact sample could be extruded.

The dimensions of the hand-carved samples were nominally either 2 in. (5.1 cm) in diameter and 4 in.
(10.2 cm) in height or 1.5 in. (3.8 cm) in diameter and 3 in. (7.6 cm) in height. The smaller of the two
specimen sizes was used to obtain the larger dynamic strains in testing. With the exception of the three
stiff samples, no significant problems were encountered in preparation and testing of the hand-carved
specimens.

8.B.2.2 Dynamic Laboratory Tests

Resonant column and torsional shear (RCTS) equipment was used to investigate the dynamic
characteristics of the intact and a reconstituted Gilroy 2 samples. This equipment is described in detail
in Appendix 8.B.2.A. The dynamic characteristics of concern are the shear modulus, G, and the material
damping ratio in shear, D. These parameters were evaluated to determine the influence on them of the
following variables:

1. magnitude of isotropic state of stress. Four to six isotropic pressures were used which ranged from
below to above the estimated in situ mean effective stress.

2. time of confinement at each isotropic state of stress. Confinement times at each pressure ranged
from 1 to about 3 days.

3. shearing strain amplitude. Strains ranged from the small-strain range, less than 0.001%, to rather
large strain amplitudes, strains slightly above 0.2%.

4.  numbers of cycles of loading. One to ten cycles of loading were used in the torsional shear test
followed by 500 to 1000 cycles in the resonant column test.

5. excitation frequency. Frequencies ranging from 0.1 Hz to about 10 Hz were used in the torsional

shear test while the frequency associated with resonance in the resonant column test varied with
soil stiffness and ranged from between 20 Hz to about 370 Hz.

8.B.2-2
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8.B.2.2.1 Testing Program

Before dynamic testing was started, the in situ mean effective stress, o', had to be estimated. This was
done at the Gilroy 2 site by assuming the water table is at a depth of 60 ft (18.3 m), the total unit weight
of the soil averages 125 pcf (19.6 kN/ m3), the soil is saturated throughout the profile, and the effective
coefficient of earth pressure at rest, Kq', is 0.5. The resulting values of 6y’ for each sample are given in
Table 8.B.2-2.

Once oy, was estimated, the range in confining pressures over which G and D would be evaluated was
determined. Typically, isotropic confining pressures on the order of 0.256m,', 0.56m', 6m’, 20m’, and 40’
were selected. Low-amplitude resonant column testing was performed at each confining pressure to
determine the influence of time and confining pressure on the small-strain shear modulus, Gmax, and
small-strain material damping ratio, Dmin. Low-amplitude dynamic tests are defined as those tests in
which the resonant amplitude did not exceed 0.001% and typically was considerably below that level.

A summary of all confining pressures at which low-amplitude resonant column tests were performed is
given in Table 8.B.2-2. At the estimated in situ mean effective stress, high-amplitude dynamic and cyclic
testing was also conducted. This testing is defined as any tests in which the peak shearing strain exceeds
0.001%. This testing was composed of two series of tests. The first involved cyclic torsional (TS) shear
testing as illustrated in Figure 8.B.2-2. A complete set of torsional shear tests took about three hours to
perform, was performed under drained conditions (although no drainage was observed), and involved
shearing strains, v, from less than 0.001% to above 0.05%, depending on the soil stiffness. The majority of
the measurements was performed at 0.5 Hz. These measurements are labeled as TS1 in Figure 8.B.2-2.
However, two sets of TS tests, one at Y= 0.001% and one at y = 0.01%, were conducted to evaluate the
effect of excitation frequency on G and D at those strain amplitudes. In these tests (denoted as TS2 in
Figure 8.B.2-2), one to four cycles of loading was applied at about five different frequencies ranging from
0.1 Hz to about 10 Hz.

After the TS tests were completed, confinement of the sample was continued at 6, and a series of high-
amplitude resonant column (RC) tests was performed the next day. However, before high-amplitude RC
testing commenced, small-strain RC tests were performed to determine if any changes in the soil skeleton
had occurred from the TS tests. In essentially all cases, no changes in Gmax or Dppin from the TS tests
were measured.

Once the small-strain datum was re-established after the TS tests, high-amplitude resonant column
testing was conducted to evaluate the influence of strain amplitude on G and D. This series of tests is
illustrated in Figure 8.B.2-3. A complete set of resonant column tests took about one hour to perform, was
performed under drained conditions just as in the case of the TS tests, and involved shearing strains from
less than 0.001% to above 0.1%, depending on the soil stiffness. In these tests, 500 to 1000 cycles of loading
is required at each strain measurement.

Upon completion of the high-amplitude RC tests, low-amplitude RC tests were performed to determine
if any changes in the soil skeleton had occurred from the high-amplitude tests. In some cases, changes
occurred. At that point, confinement of the sample at o1,' was continued until Gypax and Dmin returned
to the values before the high-amplitude tests or the change in values was noted in the next stage of
testing.

The confining pressure was then increased to about 201y,, and low-amplitude resonant column testing
was performed for one to several days. For eight of the samples, high-amplitude resonant column tests
were again performed. Table 8.B.2-2 gives a summary of these tests. In most cases, the pressure was again
doubled, and low-amplitude RC testing was repeated.

It should be noted that, in ten cases, high-amplitude RC tests were also performed at confining pressures
below omy'. This was carefully done with only intermediate strain levels so as not to disturb the sample
before testing at om'.
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TS1 = torsional shear test in which 1 to 10 cycles are applied at 0.5 Hz

TS2 = torsional shear test in which 4 cycles are applied at each of
approximately 5 frequencies between 0.1 to 10 Hz

Figure 8.B.2-2
Testing procedure used in the torsional shear test to investigate the effects of strain amplitude, number of

loading cycles, and excitation frequency on G and D of Gilroy 2 samples.
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Figure 8.B.2-3
Testing procedure used in the resonant column test to investigate the effects of strain amplitude on G and

D of Gilroy 2 samples.
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8.B.2.2.2 Test Results

The results of the RC and TS tests are shown in Appendices 8.B.2.B through 8.B.2.M for the twelve
Gilroy 2 samples. Each appendix presents the results for one sample in the following general order (using
Appendix 8.B.2.B as the example).

1. Figure 8.B.2.B-1 shows the influence of magnitude and duration of isotropic confining pressure on
Gmax as determined by RC tests.
2. Figure 8.B.2.B-2 shows the influence of magnitude and duration of isotropic confining pressure on

Dmin as determined by RC tests.
3. Figure 8.B.2.B-3 shows the change in void ratio of the sample with magnitude and duration of
isotropic confining pressure.

4. Figure 8.B.2.B-4 shows the variation in Gpax at a confinement time of 1000 minute with effective
confining pressure from the RC tests.

5. Figure 8.B.2.B-5 shows the variation in Dpin, at a confinement time of 1000 minutes with effective
confining pressure from the RC tests.

6. Figure 8.B.2.B-6 shows the variation in void ratio of the sample at a confinement time of

1000 minutes with effective confining pressure.

7. Figure 8.B.2.B-7 shows the variation in G with log y at 6m' from the high-amplitude RC and TS
tests.

8. Figure 8.B.2.B-8 shows the variation in G/Gmpax with log ¥ at 6y’ from the high-amplitude RC and
TS tests.

9. Figure 8.B.2.B-9 shows the variation in G with log v at all tests pressures where high-amplitude RC
tests were performed.

10.  Figure 8.B.2.B-10 is the normalized (G/Gmax) version of Figure 8.B.2.B-9.

‘11.  Figures 8.B.2.B-11 through 8.B.2.B-14 are simply the damping ratio curves which are the
companions to the modulus curves given in Figures 8.B.2.B-7 through 8.B.2.B-10.

12.  Figure 8.B.2.B-15 shows the effect of excitation frequency on G at Y~ 0.001% and y = 0.01%.

13.  Figure 8.B.2.B-16 shows the effect of excitation frequency on D at Y= 0.001% and y = 0.01%.

8.B.2.3 Discussion of Results

The variation in Gmax with 6¢' for ten of the undisturbed samples tested in this study at the estimated
Om' and above is shown in Figure 8.B.2-4. (Sample G9 was only tested below 6’ due to leakage of the
membrane.) The samples should be normally consolidated samples in the pressure range shown if Kg' is
reasonably close to 0.5. In fact, the results from most of the samples show the proper trend of increasing
Gmax with increasing 6’ for normally consolidated material. These trends are more easily seen by
separating the results into sandy samples and fine-grained samples as shown in Figures 8.B.2-5 and
8.B.2-6, respectively. In an attempt to further improve the trends, void ratio variations were taken into
accounted using the Hardin (1978) equation as shown in Figures 8.B.2-7 and 8.B.2-8. However, little
improvement in the trends occurred by accounting for void ratio variations.

The same set of comparisons for the variation in small-strain material damping ratio, Dmin, with o' is
presented in Figures 8.B.2-9, -10 and -11. In this case, the results show a general decrease in Dpyijn with
an increase in 6. However, Diyin exhibits more scatter than in the case of Gpax. Also, in the case of
three samples (G6, G7 and G8), the values of Dy jp, are not as low as the other soils tested in this study
as well as the samples from Treasure Island and Lotung which all exhibited values of Dpjp, less than 4%
(or Q > 12.5).
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Figure 8.B.2-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
at 0p' 2 Oy’ of undisturbed samples from Gilroy 2
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Figure 8.B.2-5
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
at Gp' 2 Oy’ of undisturbed and reconstituted sandy samples from Gilroy 2.
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Figure 8.B.2-6
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
at Go' = 6’ of undisturbed fine-grained samples from Gilroy 2.
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Figure 8.B.2-7
Best-fit curve to log Gmax X F(e) - log 6’ relationship from resonant column tests at 6, > 6., of
undisturbed and reconstituted sandy samples from Gilroy 2.
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Figure 8.B.2-8
Best-fit curve to log Gmax X F(e) - log ;' relationship from resonant column tests at 6,' 2 Oy’ of

undisturbed fine-grained samples from Gilroy 2.
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Figure 8.B.2-11
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests at 6,' > Oy' of undisturbed fine-grained samples from Gilroy 2.
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The variation in normalized modulus, G/Gmax. with log v for all undisturbed samples tested at

the estimated in situ mean effective stress, 6y, is presented in Figure 8.B.2-12 for the RC tests, in

Figure 8.B.2-13 for the first cycle in the TS test, and in Figure 8.B.2-14 for the combined results. In each
case, the results for all samples form a wide band which is in the area of the upper range proposed by
Seed and Idriss (1970) for sands. It should be noted at this point that all samples are unsaturated and
hence any development in pore water pressure due to cyclic loading is significantly inhibited. Therefore,
values of G determined at strains above amplitudes on the order of 0.05% do not reflect any reduction
which would occur if pore pressures were generated.

The variation in normalized modulus, G/Gmax, with log vis divided into sandy samples and fine-
grained soils in Figures 8.B.2-15 through 8.B.2-17 and Figures 8.B.2-18 through 8.B.2-20, respectively. It
can be seen that the general trends are: (1) for the fine-grained soils to exhibit somewhat less degradation
with strain amplitude than the sandy soils and (2) for the torsional shear results to plot somewhat above
the resonant column results at larger strains.

Similar results for the variation in material damping ratio with strain amplitude are shown in the
remaining figures. Figure 8.B.2-21 shows the variation in D with log y as determined by RC tests for

all ten intact samples. The results fall in a rather wide band which ranges from well above the upper
range proposed by Seed and Idriss (1970) for sands at small strains to nearly at the lower range proposed
by Seed and Idriss at large strains. The effect of frequency seems to be quite important on some of the
samples as shown by comparing the RC results in Figure 8.B.2-21 with the results from TS tests in

Figure 8.B.2-22. This comparison of damping measurements is presented in Figure 8.B.2-23. In this case,
material damping values are slightly lower in the TS tests than those determined in the RC tests. These
results are shown in expanded form in Figures 8.B.2-24 through 8.B.2-26.
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Figure 8.B.2-12
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Figure 8.B.2-13
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed

samples from Gilroy 2.
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Figure 8.B.2-15
Variation in normalized shear modulus with shearing strain from resonant column tests of undisturbed

and reconstituted sandy samples from Gilroy 2.
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Figure 8.B.2-16
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed

sandy samples from Gilroy 2.
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Figure 8.B.2-17
Variation in normalized shear modulus with shearing strain from resonant column and torsional shear

tests of undisturbed and reconstituted sandy samples from Gilroy 2.
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Figure 8.B.2-18
Variation in normalized shear modulus with shearing strain from resonant column tests of undisturbed
fine-grained samples from Gilroy 2.
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Figure 8.B.2-19
Variation in normalized shear modulus with shearing strain from torsional shear tests of undisturbed

fine-grained samples from Gilroy 2.
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Figure 8.B.2-20

Variation in normalized shear modulus with shearing strain from resonant column and torsional shear
tests of undisturbed fine-grained samples from Gilroy 2.
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Figure 8.B.2-21
Variation in material damping ratio with shearing strain from resonant column tests of undisturbed and
reconstituted samples from Gilroy 2.
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Figure 8.B.2-22
Variation in material damping ratio with shearing strain from torsional shear tests of undisturbed and
reconstituted samples from Gilroy 2.
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Figure 8.B.2-25
Variation in material damping ratio with shearing strain for y < 0.1% from the first cycle of torsional shear
tests of undisturbed and reconstituted samples from Gilroy 2.
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APPENDIX 8.B.2.A
TEST EQUIPMENT AND MEASUREMENT TECHNIQUES

8.B.2.A.1 Introduction

Resonant column and torsional shear (RCTS) equipment has been employed in this investigation for
measurement of the deformational characteristics (shear modulus and material damping) of intact soil
specimens. This equipment has been developed at The University of Texas at Austin over the past two
decades (Isenhower, 1979; Lodde, 1982; Ni, 1987; and Kim, 1991). The equipment is of the fixed-free type,
with the bottom of the specimen fixed and torsional excitation applied to the top. Both resonant column
(RC) and torsional shear (TS) tests can be performed in a sequential series on the same specimen over a
shearing strain range from about 10-4% to slightly more than 10-1%. The primary difference between the
two types of tests is the excitation frequency. In the RC test, frequencies above 20 Hz are required and
inertia of the specimen and drive system are needed to analyze the measurements. On the other hand,
slow cyclic loading involving frequencies generally below 5 Hz is performed in the TS test and inertia
does not enter data analysis.

8.B.2.A.2 Resonant Column and Torsional Shear Equipment

8.B.2.A.2.1 Overview of RCTS Equipment

The RCTS apparatus can be idealized as a fixed-free system as shown in Figure 8.B.2.A-1. The bottom end
of the specimen is fixed against rotation at the base pedestal, and top end of the specimen is connected to
the driving system. The driving system, which consists of a top cap and drive plate, can rotate freely to
excite the specimen in cyclic torsion.

<< Cyclic or Resonant
| .Torsional Excitation

Rigid End Mass with
k/ Mass Polar Moment of

T K__/ Inertia, I,

Length, Soil Specimen,

4 I

Fixed at Bottom

v vy
SN St
Figure 8.B.2.A-1

Idealized fixed-free RCTS equipment.
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A simplified diagram of a fixed-free resonant column (RC) test is shown in Figure 8.B.2.A-2. The basic
operational principle is to vibrate the cylindrical specimen in first-mode torsional motion. Harmonic
torsional excitation is applied to the top of the specimen over a range in frequencies, and the variation
of the acceleration amplitude of the specimen with frequency is obtained. Once first-mode resonance is
established, measurements of the resonant frequency and amplitude of vibration are made. These
measurements are then combined with equipment characteristics and specimen size to calculate shear
wave velocity and shear modulus based on elastic wave propagation. Material damping is determined
either from the width of the frequency response curve or from the free-vibration decay curve.

The torsional shear (TS) test is another method of determining shear modulus and material damping
using the same RCTS equipment but operating it in a different manner. The simplified configuration

of the torsional shear test is shown in Figure 8.B.2.A-3. A cyclic torsional force with a given frequency,
generally below 10 Hz, is applied at the top of the specimen. Instead of determining the resonant
frequency, the stress-strain hysteresis loop is determined from measuring the torque-twist response of
the specimen. Proximitors are used to measure the angle of twist while the voltage applied to the coil is
calibrated to yield torque. Shear modulus is calculated from the slope of a line through the end points of
the hysteresis loop, and material damping is obtained from the area of the hysteresis loop as shown in
Figure 8.B.2.A-3.

The RCTS apparatus used in this study has three advantages. First, both resonant column and torsional
shear tests can be performed with the same set-up simply by changing (outside the apparatus) the
frequency of the forcing function. Variability due to preparing “identical” samples is eliminated so that
both test results can be compared effectively. Second, the torsional shear test can be performed over a
shearing strain range between 104% and about 10-1%. Common types of torsional shear tests, which
generate torque by a mechanical motor outside of the confining chamber, are usually performed at strains
above 0.01% because of system compliance. However, the RCTS apparatus used in this study generates
torque with an electrical coil-magnet system inside the confining chamber, thus eliminating the problem
with an external motor. The torsional shear test can be performed at the same low-strain amplitudes as
the resonant column test, and results between torsional shear and resonant column testing can be easily
compared over a wide range of strains. Third, the loading frequency in the torsional shear test can be
changed easily from 0.01 Hz to 10 Hz. Therefore, the effect of frequency on deformational characteristics
can be conveniently investigated using this apparatus.

The RCTS apparatus consists of four basic subsystems which are: (1) a confinement system, (2) a drive
system, (3) a height-change measurement system, and (4) a motion monitoring system. The general
configuration of the RCTS apparatus (without the confinement system) is shown in Figure 8.B.2.A-4. The
RCTS apparatus was automated by Ni (1987) so that a microcomputer controls the test, collects the data,
and reduces results. Computer-aided subsystems are discussed briefly in the following sections.
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Figure 8.B.2.A-2 :
Simplified diagram of a fixed-free resonant column test and an associated frequency response curve.
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Figure 8.B.2.A-3
Configuration of a torsional shear test and evaluation of shear modulus and material damping ratio.
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General configuration of RCTS equipment (from Ni, 1987).
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8.B.2.A.2.2 RCTS Confinement System

The confining chamber is made of stainless steel. A thin-walled (0.6 cm in thickness) hollow cylinder fits
into circular grooves machined in 2.5 cm thick base and top plates. Four stainless steel connecting rods
(1.28 cm in diameter) are used to secure the base and top plates to the hollow cylinder, and O-rings in the
circular grooves are used to seal the chamber. In this configuration, the chamber has been designed to
withstand a maximum air pressure of about 200 psi (1379 kPa). To safely test samples at higher confining
pressures (pressures on the order of 600 psi (4137 kPa)), the confinement system was modified by adding
additional stainless steel rods to secure the cylinder to the top and base plates and reinforcement to the
top and base plates.

Compressed air is used to confine isotropically the specimen in the RCTS device. The air pressure to the
chamber generally is regulated by a Fairchild M 30 regulator and air supplied to the regulator is filtered.
At high confining pressures, additional regulators are used. The soil specimen is sealed in a membrane
and pore pressure in the specimen is normally vented to atmospheric pressure.

Inside the confining chamber, the air pressure acts upon a silicon fluid bath which surrounds the sides of
the soil specimen. The purpose of the silicon fluid bath is to retard air migration through the membrane
and into the specimen to prevent drying of the specimen. Figure 8.B.2.A-5 shows the simplified
configuration of the confinement system.

—
[ B Top Plate H |
Hollow
Cylinder
6]
Connecting
v d b Rod
Silicon |
Fluid Bath '
> 0)
Soil <
Membrane
<
O-Ring >
| 5 ~ BasePlate i Il -
Y o
Vent Compressed Air

Figure 8.B.2.A-5
Simplified configuration of confinement system.
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8.B.2.A.2.3 Drive System

The drive system consists of a four-armed drive plate, four magnets, eight drive coils, a power amplifier,
and a function generator. Each magnet is rigidly attached to the end of one arm of the drive plate as
shown in Figure 8.B.2.A-4. Eight drive coils encircle the ends of the four magnets so that the drive plate
excites the soil specimen in torsional motion when a current is passed through the coils. The maximum
torque that the drive system can develop depends on the strength of the magnets, size of the drive coils,
resistance of the drive coils, size of the space between the magnets and drive coils, length of the arms of
the drive plate, and the electrical characteristics of the function generator and power amplifier. For the
three drive systems used in this work, the maximum torque was about 0.60 Ib-ft (82 N-cm).

o EEH o= Low-Amplitude RC Test

.
-

oo on \
oo oo Drive Coils

Function Generator

High-Amplitude RC Test
and TS Test
- 0
i ) K(% ]
0 lo] (o]
=g Power Amplifier
Computer

Figure 8.B.2.A-6
Schematic diagram of the drive system.

A schematic diagram of the drive system is shown in Figure 8.B.2.A-6. The micro-computer activates a
function generator (HP 3314A) to input sinusoidal voltage to the drive coils. In the resonant column (RC)
test, the function generator performs frequency sweeps with a constant amplitude while in the torsional
shear test, a fixed-frequency N-cycle mode is used. For high-amplitude resonant column and torsional
shear (TS) tests, the sinusoidal input current is amplified by a power amplifier (HP 6824A) before going
to the drive coils.

8.B.2.A.2.4 Height-Change Measurement System

The height change of the soil specimen is measured to account for the changes in the length and mass of
the specimen during consolidation or swell. This measurement is also used to calculate change in the
mass moment of inertia, mass density, and void ratio during testing (by assuming isotropic strain under
isotropic confinement and constant degree of saturation). The height change is measured by a linear
variable differential transformer (LVDT). The height change measurement system consists of an LVDT
(CRL Model SH-200-53R), a function generator (HP 3314A), and a digital voltmeter (HP 3456A). The
LVDT core is not in contact with the LVDT coil housing so that no friction occurs during RCTS testing.

The output and calibration factor of an LVDT depend on both the frequency and magnitude of the
excitation voltage. In this test the computer activates the function generator to generate the input signal
in the LVDT coil at a frequency of 500 Hz and a voltage level of 4.77 RMS volts. The output from the
LVDT is read with a digital voltmeter. The height change is calculated from the output voltage combined
with the calibration factor. The schematic diagram of the height change measuring system is shown in
Figure 8.B.2.A-7.
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Figure 8.B.2.A-7
Schematic diagram of the height-change measuring system.

8.B.2.A.2.5 Motion Monitoring System

Dynamic soil properties are obtained in the RC test at the resonant frequency which is usually above

20 Hz while torsional shear testing is used to measure the low-frequency (below 10 Hz) cyclic stress-strain
relationship of soil. Because of the different frequencies applied in the resonant column and torsional
shear tests, different motion monitoring systems are used.

Resonant Column (RC) Test. The motion monitoring system in the RC test is designed to measure

the resonant frequency, shearing strain, and free-vibration decay curve. This system consists of an
accelerometer (Columbia Research Laboratory Model 3021), a charge amplifier (Columbia Research
Laboratory Model 4102M), a frequency counter (HP 5334A), a digital voltmeter (HP 3456A), and a digital
oscilloscope (Nicolet 20929-01). The schematic diagram of the motion monitoring system is shown in
Figure 8.B.2.A-8.

The accelerometer is oriented to be sensitive to torsional vibrations of the drive plate. The charge
amplifier conditions the accelerometer output to be linear for all levels of acceleration in the test. The
digital voltmeter reads the output voltage from the accelerometer at each frequency which is measured
by the frequency counter. The resonant frequency is obtained from the frequency response curve. Once
the resonant frequency is obtained, the computer activates the function generator to excite the specimen
at the resonant frequency and then suddenly stops the current so that the free-vibration decay curve is
recorded by the digital oscilloscope.
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Figure 8.B.2.A-8
Schematic diagram of the motion monitoring system in the resonant column test.

The resonant frequency of soils are typically in the range of 20 Hz to 300 Hz with this equipment. To test
soils effectively over a wide range of stiffnesses, the search for the resonant frequency is performed in two
stages, a rough sweep and a fine sweep. During the rough sweep, a fast logarithmic-linear frequency
sweep (16 seconds to sweep from 1 to 170 Hz) is used. The fine sweep is then performed to determine an
accurate resonant frequency in the neighborhood where the resonant frequency was found in the rough
sweep.

Torsional Shear (TS) Test. The motion monitoring system in the TS test (3000 Proximitor System) is
used to monitor torque-twist hysteresis loops of the specimen. This system consists of two proximitors
(Bentry Nevada M 20929-01), two proximitor probes (Bentry Nevada M 300-00), an operational amplifier
(Tektronix TM 504 with AM501), a DC power supply (Lambda M-11-902), a U-shaped target and a digital
oscilloscope (Nicolet 20929-01). The U-shaped target is secured to the top of the drive plate, and the two
proximitor probes are rigidly attached to the support stand. A schematic diagram of the motion
monitoring system in the torsional shear test is shown in Figure 8.B.2.A-9.

The function of the proximitor probes is to measure the width of the air gap between the target and the
probe tip. Because the proximitor probes do not touch the drive plate, no compliance problems are
introduced into the measurement. Two probes are used and the operational amplifier subtracts the signal
from one probe from the other so that the effect of bending in the specimen toward the probes can be
eliminated. The proximitor system is a very effective low-frequency motion monitoring system which
does not introduce any compliance problems into the measurement. With the simultaneous measurement
of torque, load-displacement hysteresis loops can be determined.
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Figure 8.B.2.A-9
Schematic diagram of the motion monitoring system in the torsional shear test (3000 Proximitor System).

8.B.2.A.3 Method of Analysis in the Resonant Column Test

The resonant column test is based on the one-dimensional wave equation derived from the theory of
elasticity. The shear modulus is obtained by measuring the first-mode resonant frequency while material
damping is evaluated from either the free-vibration decay curve or from the width of the frequency
response curve assuming viscous damping.

8.B.2.A.3.1 Shear Modulus

The governing equation of motion for the fixed-free torsional resonant column test is:

I opel wpel
L=V, tan ( e (8B.2.A-1)
Where,
Xl =Ig+Im+-—-
Is = mass moment of inertia of soil,
Im = mass moment of inertia of membrane,
Io =mass moment of inertia of rigid end mass at the top of the specimen,
1 = length of the specimen,
Vg = shear wave velocity of the specimen, and
on =undamped natural circular frequency of the system.

The value of I is known from the calibration of the drive plate. The values of I and | are easily
determined from the specimen size and weight. Once the first-mode resonant frequency is determined,
the shear wave velocity can be calculated from Eq. 8.B.2.A-1 by assuming that the resonant circular
frequency and wp, are equal.
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As noted above and shown in Figure 8.B.2.A-2 the resonant circular frequency, wr,is measured instead of
undamped natural frequency, o, and oy is used to calculate shear wave velocity. If the damping in the
system is zero, @y and o, are equal. The relationship between wy and wp, is:

oy = o N 1-2D2 (8.B2.A2)

A typical damping ratio encountered in the resonant column test is less than 20 percent, which
corresponds to a difference of less than 5 percent between wy and oy, In this study, the damping
measured in the resonant column test was usually less than 10 percent, and @y can be used instead
of wp with less than a two percent error.

Once the shear wave velocity is determined, shear modulus is calculated from the relationship:
G=peVg2 (8.B.2.A-3)
where p is the total mass density of the soil (total unit weight divided by gravity).

8.B.2.A.3.2 Shearing Strain

The shearing strain varies radially within the specimen and may be expressed as a function of the
distance from the longitudinal axis as illustrated in Figure 8.B.2.A-10. The equivalent shearing strain,
Yeq Or v, is represented by:

Y=req* 8max /| (8.B.2.A4)
Where,
req = equivalent radius,
Omax = angle of twist at the top of the specimen, and
1 = length of the specimen.

Chen and Stokoe (1979) studied the radial distribution in shearing strain to find a value of Teq for the
specimen tested in the RCTS equipment to evaluate an effective strain. They found that the value of Teq
varied from 0.82*r( for a peak shearing strain amplitude below 0.001% to 0.79*r( for a peak shearing
strain of 0.1% for a solid specimen. These values of Teq have been adopted in this study.

In the resonant column test, the resonant period (Ty, seconds), and output voltage of accelerometer

(A, volts (RMS)) at resonance are measured. Accelerometer output is changed to the displacement by
using the accelerometer calibration factor (CF, volts (RMS)/in. /sec2) assuming harmonic motion. The
accelerometer displacement is divided by the distance (D¢, inches) between the location of accelerometer
and the axis of the specimen to calculate the angle of twist at the top of the specimen (8myx). The shearing
strain is then calculated by:

ACOTr2 1

1
Y=Teq 5k " Dac | 1 (8.B2.A5)
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Figure 8.B.2.A-10
Shearing strain in soil column.
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8.B.2.A.3.3 Material Damping

In the resonant column test, material damping ratio can be evaluated from either the free-vibration decay
method or from the half-power bandwidth method. Each of these methods is discussed below. It is
important to note that, in these measurements, the damping measurement includes material damping in
the soil plus any damping in the equipment. Calibration of equipment damping is discussed in Section
8.B.2.A5. :

Free-Vibration Decay Method. Material damping in soils can be quite complex to define. However, the
theory for a single-degree-of-freedom system with viscous damping is a useful framework for describing
the effect of damping which occurs in soil (Richart et al., 1970). The decay of free vibrations of a single-
degree-of-freedom system with viscous damping is described by the logarithmic decrement, §, which is
the ratio of the natural logarithm of two successive amplitudes of motion as:

2nD

V1-D2

Z1
6=In (5) = (8.B.2.A-6)

Where,

Z1and Z3 = two successive strain amplitudes of motion, and
D = material damping ratio.

The free-vibration decay curve is recorded using an oscilloscope by shutting off the driving force while
the specimen is vibrating at the resonant frequency. The amplitude of each cycle is measured from the
decay curve, and the logarithmic decrement is then calculated using Eq. 8.B.2.A-6. Material damping ratio
is calculated from logarithmic decrement according to:

82
D= m (8.B.2.A-7)

A typical damping measurement from a free-vibration decay curve (from a metal calibration specimen) is
shown in Figure 8.B.2.A-11.

In this method, it is not certain which strain amplitude is a representative strain for damping ratio
calculated by Eq. 8.B.2.A-7 because strain amplitude decreases during free-vibration decay. In this study,
a representative strain amplitude was used as the peak strain amplitude during steady-state vibration for
shearing strains below 0.001%. However, at larger strains, the representative strain is smaller than the
peak strain, and the average strain determined for the first three cycles of free vibration was used.
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Figure 8.B.2.A-11
Determination of material damping ratio from the free-vibration decay curve using a metal specimen.
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Half-Power Bandwidth Method. Another method of measuring damping in the resonant column test is
the half-power bandwidth method, which is based on measurement of the width of the frequency
response curve near resonance. From the frequency response curve, the logarithmic decrement can be
calculated from:

fp2-£12 \/ A2 \1-2D2

n
§=C1 8.B.2.A-8
2 f2 Amax2-A2 1-D2 ( )
Where,
f1 = frequency below the resonance where the strain amplitude is A,
f2 = frequency above the resonance where the strain amplitude is A,
fr  =resonant frequency, and
D =material damping ratio.

If the damping ratio is small and A is chosen as 0.707 Amax, which is called the half-power point,
Eq. 8.B.2.A-8 can be simplified as:

fo—f
d=me % (8.B.2.A-9)
r
Therefore, the damping ratio can be expressed as:
f2-f1
D= T (8.B.2.A-10)

A typical damping measurement by the half-power bandwidth method (for a metal calibration specimen)
is shown in Figure 8.B.2.A-12,

Background noise can be a problem in measuring material damping using the free-vibration decay
method at strains less than about 0.001%. On the other hand, background noise generally has a smaller
effect on the frequency response curve at strains below 0.001%. Therefore, the half-power bandwidth
method is preferred to the free-vibration decay method for making small-strain damping measurements.
However, at large strains, symmetry in the frequency response curve is no longer maintained, and a
serious error can be introduced in the half-power bandwidth method (Ni, 1987). In this study, both types
of damping measurements were made at small-strains in an attempt to obtain good data sets while only
the free-vibration decay method was used at larger strains (above 0.001%).
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Figure 8.B.2.A-12
Determination of material damping from the half-power bandwidth method using a metal specimen.

8.B.2.A.4 Method of Analysis in the Torsional Shear Test

The torsional shear test is another method of determining the deformational characteristics (modulus

and damping) of soil using the same RCTS device. Rather than measuring the dynamic response of the
specimen, the actual stress-strain hysteresis loop is determined by means of measuring the torque-twist
curve. Shear modulus is calculated from the slope of the hysteresis loop, and the hysteric damping ratio is
calculated using the area of the hysteresis loop.

8.B.2.A.4.1 Shear Modulus

Because shear modulus is calculated from the stress-strain hysteresis loop, shearing stress and shearing
strain in the torsional shear test need to be defined.
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Shearing Stress. Determination of shearing stress in the torsional shear test is based on the theory of
elasticity for circular or tubular rods in pure torsion. Assume that pure torque, T, is applied to the top of
the specimen. The torque can be calculated from:

rO
T=f (2T r)rdr
ri

(8.B.2.A-11)

where 1y is the shearing stress at a distance r from the axis of specimen and, r and rj are outside and
inside radii, respectively. If the shearing stress is assumed to vary linearly across the radius:

Tr=Tm®(r/ ro) (8.B.2.A-12)

where Ty, is the maximum shearing stress at r = ro. Eq. 8.B.2.A-12 can be rewritten as:

Jtmom o4 4y Tm
T= To . > o (ro*-ri*)= To .JP (8.B.2.A-13)

where Jp is the area polar moment of inertia. From Eq. 8.B.2.A-13, one can write:

T
Tm=To*j (8.B.2.A-14)
P

Because shearing stress is assumed to vary linearly across the radius, the average torsional shearing stress
is defined as:

T

Tavg = req L E (8.B.2.A-15)

The value of req is the same value as used in the resonant column analysis for calculation of shearing
strain (Section 8.B.2.A.3.2).

The value of applied torque, T, is calculated from the input voltage applied to the drive system, VT
(Volts), and the torque calibration factor, KT (torque / Volts). Thus, average shearing stress becomes:

Tan = req . KT ° VT / ]p (8.B.2.A-16)

Shearing Strain. Calculation of shearing strain in the torsional shear test follows the same procedure
used in the resonant column test. The proximitor system directly measures the displacement (instead of
acceleration measured in the resonant test). Hence, the angle of twist (8) is calculated from the proximitor
output voltage, Vp (volts), and the proximitor calibration factor, Kp (rad / volt). Shearing strain, v, is then
calculated from:

Y=Teq X KpeVp /1 (8.B.2.A-17)

Shear Modulus. Once the stress-strain hysteresis loop is measured, the shear modulus, G, is calculated
from the slope of a line through the end points of the hysteresis loop as shown in Figure 8.B.2.A-13. Thus,
the shear modulus is calculated from:

G=1/¥y (8.B.2.A-18)

where 7 is peak shearing stress and yis peak shearing strain.
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Figure 8.B.2.A-13
Determination of shear modulus and damping ratio in the torsional shear test.

8.B.2.A.4.2 Hysteretic Damping Ratio

Hysteretic damping ratio in the torsional shear test is measured using the amount of energy dissipated in
one complete cycle of loading and the peak strain energy stored in the specimen during the cycle.

In the torsional shear test, the dissipated energy is measured from the area of the stress-strain hysteresis
loop. The energy per cycle, Wq, due to a viscous damping force, F{, is:

T [ ]
Wy =f FjeXdt
(o]

(8.B.2.A-19)
where X is a velocity and T is a period. For simple harmonic motion with frequency of ,
ie. x = A Cos (ot—9), W become:
Wg=ncoA2 (8.8.2.A-20)
From the Eq. 8.B.2.A-20, the viscous damping coefficient can be expressed as:
c=Wq/ (nwA2) (8.B.2.A-21)

The peak strain energy, Wy, stored by the spring is equal to the area under the secant modulus line in
Figure 8.B.2.A-13 and can be written as:

Wg=kA2/2 (8.B.2.A-22)

8.B.2-52



The critical damping coefficient, C¢, is

Ce=2ev km =2k / oy (8.B.2.A-23)

where k is an elastic spring constant, m is a mass, and wn, is a natural frequency of system. Using
Eq. 8.B.2.A-22, Eq. 8.B.2.A-23 can be rewritten as:

Ce=4Ws / (on A2) (8.B.2.A-24)
Therefore, the damping ratio, D, can be expressed as:
D=C/Cc=Wq/(dnWg)*(on / ®) (8.B.2.A-25)

For soils, material damping is often assumed to be frequency independent. Therefore, oy, / o is ignored
and hysteretic damping is written as:

1. %4

T4n Ws (8.B.2.A-26)

D

where W is the area of the hysteresis loop and Wy is the area of the triangle as shown in
Figure 8.B.2.A-13.

8.B.2.A.5 Evaluation of RCTS Equipment Compliance with Metal Specimens

To evaluate the RCTS equipment for system compliance, metal specimens were used. The metal
specimens were made of brass and aluminum tubes. Eighteen metal specimens of different sizes and
materials were used to obtain different resonant frequencies. Details of the metal specimens are presented
in Table 8.B.2.A-1. It was assumed that the metal specimens should have (essentially) zero damping and
that these specimens should exhibit no effect of frequency on stiffness or damping over the complete
range of frequencies used in these tests (from about 0.05 Hz to 400 Hz).
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Hysteresis loops with one metal specimen measured at a frequency of 0.5 Hz are shown in

Figure 8.B.2.A-14. The stress-strain curve is linear, resulting in no damping as expected. On the other
hand, Figures 8.B.2.A-11 and 8.B.2.A-12 show the damping measurements with the same metal specimen
in the resonant column test predict an apparent damping of 0.4% from both the free-vibration decay and
half-power bandwidth methods.

317 T

Metal Specimen 1
f=0.5Hz
1.25 cycle

Shearing Stress, k Pa
o

317 .
431 0 4 431
Shearing Strain, % * 10~

Figure 8.B.2.A-14
Hysteresis loops of metal specimen determined by torsional shear testing at a frequency of 0.5 Hz.

The variations in shear modulus and damping ratio with loading frequency for four of the metal
specimens are plotted in Figure 8.B.2.A-15. The shear modulus of each metal specimen determined from
the RCTS equipment is independent of loading frequency as expected. Therefore, shear modulus can be
measured properly with RCTS equipment over a wide frequency range without any compliance problem.

On the other hand, the damping ratio measured by the RCTS equipment is affected by the loading
frequency. For frequencies less than or equal to 0.5 Hz, damping ratio evaluated by the torsional shear
test is essentially zero as expected. In this frequency range, material damping can be evaluated without
any equipment correction. For higher frequencies, however, non-zero damping values are obtained with
all metal specimens in the torsional shear as shown in Figures 8.B.2.A-15b and 8.B.2.A-16. In this case the
apparent material damping increases significantly as the excitation frequency increases from 1 to 10 Hz.
Strain amplitude has little effect on the damping values as shown in Figure 8.B.2.A-16. These values of
apparent material damping are considered to be due to a compliance problem with the complete RCTS
system (back-EMF generated by the drive system) and are, therefore, subtracted from all damping
measurements in the torsional shear test at the same frequencies when soil specimens are tested.
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Variation in shear modulus and material damping ratio with loading frequency determined for metal
specimens (from Kim, 1991).
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Figure 8.B.2.A-16
Measured damping ratio for metal specimen #2 in the torsional shear test.
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It should be noted that excitation frequencies in the torsional shear test never exceeded 0.1 times the
resonant frequency of the soil specimen. This approach was followed so that dynamic amplification did
not affect the TS measurements. Even in this case, however, corrections were made for minor dynamic
amplification which occurs near 0.1 times the resonant frequency.

In the resonant column test, non-zero damping values were obtained at all resonant frequencies as seen
in Figures 8.B.2.A-15b and 8.B.2.A-17. Equipment damping values ranged from about 3.5% at 20 Hz to
about 0.4% at 200 Hz. These resonant frequencies are in the frequency range where all soil testing was
conducted. Just as in the TS test, the values of equipment damping measured with the metal specimens
were subtracted from the damping measurements in all RC tests with soil specimens at the same resonant
frequencies. Strain amplitude had a negligible effect on equipment damping as shown in

Figure 8.B.2.A-18.

Finally, to be sure that coil-magnet interaction was the cause of the equipment damping problem, free-
vibration tests were conducted with the RC equipment. In this case, however, all coils were removed
which required that the drive plate be excited by hand in free vibration. The resulting tests with drive
plate #4 are given in Figure 8.B.2.A-19 by the solid square symbols. As seen, damping values less than
0.1% were measured. These values are considered to equal zero in this work, indicating the coil-magnet
interaction is mainly the cause of the equipment damping.
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Figure 8.B.2.A-17
Equipment damping measured in the resonant column test.
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Effect of strain amplitude on equipment damping measured in the resonant column test.
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Figure 8.B.2.A-19
Comparison of equipment damping measured in free vibration RC tests with and without the electrical
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APPENDIX 8.B.2.B
DYNAMIC TESTS OF SAMPLE G1, DEPTH = 10 FT (3.0 M)
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Figure 8.B.2.B-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G1.
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Figure 8.B.2.B-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample G1.
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Figure 8.B.2,B-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample G1.
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Figure 8.B.2.B-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G1.
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Figure 8.B.2.B-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample G1.
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Figure 8.B.2.B-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G1.
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Figure 8.B.2.B-7

Variation in shear modulus with shearing strain at an effective confining pressure of 6 psi
(864 psf, 41 kPa) from RCTS tests of sample G1.
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Figure 8.B.2.B-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 6 psi

(864 psf, 41 kPa) from RCTS tests of sample G1.
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Figure 8.B.2.B-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample G1.
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Figure 8.B.2.B-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining

pressure from resonant column tests of sample G1.
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Figure 8.B.2.B-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 6 psi
(864 psf, 41 kPa) from RCTS tests of sample G1.
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Figure 8.B.2.B-12 _
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

6 psi (864 psf, 41 kPa) from RCTS tests of sample G1.
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Figure 8.B.2.B-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample G1.
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Figure 8.B.2.B-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G1.
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Figure 8.B.2.B-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 6 psi (864 psf, 41 kPa) from RCTS tests of sample G1.
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Figure 8.B.2.B-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 6 psi (864 psf, 41 kPa) from RCTS tests of sample G1.
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APPENDIX 8.B.2.C
DYNAMIC TESTS OF SAMPLE G2, DEPTH = 20 FT (6.1 M)
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Variation in low-amplitude shear modulus with ma
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from resonant column tests of sample G2.
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Figure 8.B.2.C-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample G2.
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G2.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample G2.
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Variation in void ratio with effective confining pressure from resonant column tests of sample G2.
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Figure 8.B.2.C-7
Variation in shear modulus with shearing strain at an effective confining pressure of 12 psi
(1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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Figure 8.B.1.C-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 12 psi

(1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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Figure 8.B.2.C-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G2.
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Figure 8.B.2.C-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining

pressure from resonant column tests of sample G2.
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Figure 8.B.2.C-11

Variation in material damping ratio with shearing strain at an effective confining pressure of 12 psi

(1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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Figure 8.B.2.C-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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Figure 8.B.2.C-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample G2.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G2.
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Figure 8.B.2.C-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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Figure 8.B.2.C-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining

pressure of 12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2.
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APPENDIX 8.B.2.D
DYNAMIC TESTS OF SAMPLE G2-1, DEPTH =20 FT (6.1 M)
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Figure 8.B.2.D-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G2-1.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample G2-1.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
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Figure 8.B.2.D-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G2-1.
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Figure 8.B.2.D-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample G2-1.
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Figure 8.B.2.D-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G2-1.
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Figure 8.B.2.D-7
Variation in shear modulus with shearing strain at an effective confining pressure of 12 psi
(1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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Figure 8.B.1.D-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 12 psi

(1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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Figure 8.B.2.D-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample G2-1.
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Figure 8.B.2.D-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining

pressure from resonant column tests of sample G2-1.
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Figure 8.B.2.D-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 12 psi
(1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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Figure 8.B.2.D-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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Figure 8.B.2.D-13

Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G2-1.
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Figure 8.B.2.D-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective

confining pressure from resonant column tests of sample G2-1.
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Figure 8.B.2.D-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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Figure 8.B.2.D-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 12 psi (1.73 ksf, 83 kPa) from RCTS tests of sample G2-1.
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APPENDIX 8.B.2.E
DYNAMIC TESTS OF SAMPLE G3, DEPTH =50 FT (15.2 M)
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Figure 8.B.2.E-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G3.
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Figure 8.B.2.E-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample G3.
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column tests of sample G3.

8.B.2-113
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Figure 8.B.2.E-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G3.
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Figure 8.B.2.E-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample G3.
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Figure 8.B.2.E-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G3.
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Figure 8.B.2.E-7
Variation in shear modulus with shearing strain at an effective confining pressure of 30 psi
(4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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Figure 8.B.2.E-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 30 psi
(4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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Figure 8.B.2.E-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G3.
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining

pressure from resonant column tests of sample G3.
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Figure 8.B.2.E-11 :
Variation in material damping ratio with shearing strain at an effective confining pressure of 30 psi
(4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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Figure 8.B.2.E-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
30 psi (4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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Figure 8.B.2.E-13

Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G3.
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Figure 8.B.2.E-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective

confining pressure from resonant column tests of sample G3.
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Figure 8.B.2.E-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 30 psi (4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 30 psi (4.32 ksf, 207 kPa) from RCTS tests of sample G3.
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APPENDIX 8.B.2.F
DYNAMIC TESTS OF SAMPLE G4, DEPTH =85 FT (25.9 M)
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Figure 8.B.2.F-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G4.
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Figure 8.B.2.F-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample G4.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample G4.
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Figure 8.B.2.F-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G4.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant
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Variation in void ratio with effective confining pressure from resonant column tests of sample G4.
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Figure 8.B.2.F-7
Variation in shear modulus with shearing strain at an effective confining pressure of 36 psi
(5.18 ksf, 248 kPa) from RCTS tests of sample G4.
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Variation in normalized shear modulus with shearing strain at an effective confining pressure of 36 psi
(5.18 ksf, 248 kPa) from RCTS tests of sample G4.

8.B.2-134



3000 14 LILLLALRA] T | BLLIARLI i LI AR A | T T 1TFTH T LELBL LR A
C T T T T M 140
2500 [ © 0% o0 3 120
i o 3
- - o 3 100
» 2000 |- E
x - 3
3 | A -é 80
_g 1500 |- A 3
8 i 0o © 3
% I U g 4 - 60
o i oo, ;
_: -
1000 |- o b
@ [ Gilroy #2 - :
| Depth = 85 f(25.9 m) < 40
| Elastic Silt(MH) 3
| Time = 1 day 3
500 | Drive Plate #5 .
- ' fini ressur - 20
- O 18 psi(=2.59 ksf=124 KPa) 3
- A 36 psi(=5.18 ksf=248 KPa) -
- O 72 psi(=10.37 ksf=496 KPa) 3
o 1 L0 r1atil 4 L L11t1 1 I3 lllllll 1 1 lllllll L L1 11l 0
10° 10" 10 102 10" 10°
Shearing Strain, v, %
Figure 8.B.2.F-9

Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G4.
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Variation in material damping ratio with shearing strain at an effective confining pressure of 36 psi
(5.18 ksf, 248 kPa) from RCTS tests of sample G4.
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Figure 8.B.2.F-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4.
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Figure 8.B.2.F-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample G4.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G4.

8.B.2-140



3000 L] ¥ lllllll i T llllli' T T l([llll T T IIIIIII ¥ LERELEL

Gilroy #2 o 140
- Depth = 85 ft(25.9 m) ]
- Elastic Silt(MH) 3
- o = 36 psi(=5.18 ksf=248 KPa) 3
2500 — Time = 1 day - 120
- Drive Plate #5 3
| W y=0.0006 %(TS 1st) 3
[ A Y=0.004 %(TS 1st) 3
B 2000 3% ¢
2 B 3 §
g [ e~ .3 B
- [ | RC :
3 . A A A 3 Q
3 1500 |- A . c
T | - c
o 3 )
= I de0 o
3 1
& 1000 |- i 3
X 3 o
[ 5 40
500 [ .
I 3 20
0 i 1 1 lllllll 1 L lllllll ) 1 lllllll 1 1 lllllll 1 l lllllq 0
0.01 0.1 1 10 100 1000
Loading Frequency, f, Hz
Figure 8.B.2.F-15

Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4.
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Figure 8.B.2.F-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining

pressure of 36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4.
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APPENDIX 8.B.2.G
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Figure 8.B.2.G-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G4-1.
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Figure 8.B.2.G-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample G4-1.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
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Figure 8.B.2.G-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G4-1.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample G4-1.
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Figure 8.B.2.G-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G4-1.
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Figure 8.B.2.G-7

Variation in shear modulus with shearing strain at an effective confining pressure of 36 psi

(5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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Figure 8.B.2.G-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 36 psi
(5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G4-1.
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Figure 8.B.2.G-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 36 psi
(5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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Figure 8.B.2.G-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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Figure 8.B.2.G-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample G4-1.

8.B.2-155



18

i G”'ror I#2IIIII| 1 LI llllll LI LR | llllrll . ! ! F]flir;:r;ll Ir LB lllll-l
- Depth = 85 t(25.9 m) O 9 psi(=1.30 ksf=62 KPa) -
16 L Elastic Silt(MH) A 18 psi(=2.59 ksf=124 KPa) ]
. [ Time = 1 day o 36 psi(=5.18 ksf=248 KPa) |
T _ Drive Plate #5 ] ® 72 psi(=10.37 ksf=496 KPa) A
Q 14 [[Shearing strains in RC test were ]
o [|corrected to the average of the ]
o | |first 3 free-vibration cycles. i
= i A -
e 12+ -
o il 4
£ - o ]
s 10f- —
P L [ -
(an] B O -
- F o -
8 8 -
g | o ]
g I ;
- 5 -
Q [ c® }
= [ 4 i
E 4 ~ -
< - ® .
s f & :
o ‘ -
2+ -
- o ok 0i 6% §
0— 1 1 lllllll 1 [l lllllll 1 1 lllllll 1 1 lllllll 1 1 Illll-‘

10° 10* 10° 102 10"

Figure 8.B.2.G-14

Shearing Strain, v, %

10°

Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G4-1.

8.B.2-156



5000 o Ll | llIlll[ 1 T IIIIII[ L T lllllll L) T IFIITI] ] LI R AAL]
- Gilroy #2 .
[ Depth = 85 ft(25.9 m) J
~ Elastic Silt(MH) :
[ 0, =36 psi(=5.18 ksf=248 KPa) i
[ Time = 1 day -1 200
4000 — Drive Plate #4 -
[ @ y=0.0006 %(TS 1st) .
- A Y=0.004 %(TS 1st) .
- o %)
g f 1iso 3
& 3000 770 8
& C ] s
5 F m——pc | &
3 " e Y= 1 £
2 - "2 1 &
= 2000 [ 1% o
Q - j =
£ L
7] - . Y
: -
1000 |- -1 50
0- 1 1 lllllll 1 L lllllll 1 L lllllll 1 1 lllllll 1 Lt Litll o
0.01 0.1 1 10 100 1000

Loading Frequency, f, Hz

Figure 8.B.2.G-15 _
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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Figure 8.B.2.G-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 36 psi (5.18 ksf, 248 kPa) from RCTS tests of sample G4-1.
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APPENDIX 8.B.2.H
DYNAMIC TESTS OF SAMPLE G5, DEPTH = 120 FT (36.6 M)
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Figure 8.B.2.H-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G5.
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Figure 8.B.2.H-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample G5.
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Figure 8.B.2.H-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G5.
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Figure 8.B.2.H-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample G5.
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Figure 8.B.2.H-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G5
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Figure 8.B.2.H-7
Variation in shear modulus with shearing strain at an effective confining pressure of 48 psi
(6.91 ksf, 331 kPa) from RCTS tests of sample G5
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Figure 8.B.2.H-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 48 psi
(6.91 ksf, 331 kPa) from RCTS tests of sample G5
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Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample G5
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining

pressure from resonant column tests of sample G5
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Figure 8.B.2.H-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 48 psi
(6.91 ksf, 331 kPa) from RCTS tests of sample G5.
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Figure 8.B.2.H-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5
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Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G5
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
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Figure 8.B.2.H-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure

of 48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5.
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Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5.

8.B.2-174



APPENDIX 8.B.2.1
DYNAMIC TESTS OF SAMPLE G5-1, DEPTH = 120 FT (36.6 M)
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Figure 8.B.2.1-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample G5-1.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample

G5-1.
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Figure 8.B.2.1-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample G5-1.
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Figure 8.B.2.1-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample G5-1.
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Variation in void ratio with effective confining pressure from resonant column tests of sample G5-1.
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Figure 8.B.2.1-7
Variation in shear modulus with shearing strain at an effective confining pressure of 48 psi
(6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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Figure 8.B.2.1-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 48 psi
{6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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Figure 8.B.2.1-9

Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample G5-1.
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Figure 8.B.2.1-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 48 psi

(6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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Figure 8.B.2.1-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G5-1.

8.B.2-187



12 ] L] IR LRI I ] ] Illlll T LI lllllll 1 ] LRI
- Gilroy #2 .
- Sandy Silt(ML) A ~
c L Time = 1 day 3
€ 10 [ Drive Plate #5 3
o :
Q_ 9 lIsotropic  Confining Pressure _:
o e 6 psi(=864 psf=41 KPa) c® .
I 8 C 0O 12 psi(=1.73 ksf=83 KPa) .
o [~ A 24 psi(=3.46 ksf=166 KPa) =
g’ - O 48 psi(=6.91 ksf=331 KPa) A :
‘s 7F ® 100 psi(=14.40 ksf=689 KPa) * 3
£ - ° -
] - _ __ o .
O 6 [Shearing strains in RC test were .
- - |corrected to the average of the A .
‘= g [first 3 free-vibration cycles. PR p
O — ]
5 f :
= alb o ]
° n * 3
o - ﬁ L ]
s 3F .° 3
I “ ]
Zz 2r . ﬁ’ o° .
- o ;
0: 1 1 1 ILJlLl i 1 1 llllll L 1 1 llllll 1 1 1 lllll:

10 10° 1072 10 10°

Shearing Strain, v, %

Figure 8.B.2.1-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective

confining pressure from resonant column tests of sample G5-1.
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Figure 8.B.2.1-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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Figure 8.B.1.1-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 48 psi (6.91 ksf, 331 kPa) from RCTS tests of sample G5-1.
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APPENDIX 8.B.2.J
DYNAMIC TESTS OF SAMPLE G6, DEPTH =170 FT (51.8 M)
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Figure 8.B.2.]-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample G6.
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Figure 8.B.2.J-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample G6.
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Figure 8.B.2.]-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample G6.
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Figure 8.B.2.]-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample Gé.
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Figure 8.B.2.J-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample G6.
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Figure 8.B.2.J-6
Variation in void ratio with effective confining pressure from resonant column tests of sample G6.
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Figure 8.B.2.J-7

Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G6.
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Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G6.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
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APPENDIX 8.B.2.K
DYNAMIC TESTS OF SAMPLE G7, DEPTH =210 FT (64.0 M)
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Figure 8.B.2.K-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G7.

8.B.2-201



20 T ¥ L§ IIIIII ¥ T ITITIII 1 T 1 IITIII T 14 LI 2_5
- Gilroy #2 Isotropi nfini Pr r
Depth = 210 (64 m) O 9 psi(=1.29 kst=62 KPa)
2 - Sand with Silt(SW-SM) m 18 psi(=2.59 ksf=124 KPa)
£ - Drive Plate #5 A 36 psi(=5.18 ksf=248 KPa)
E ¥<0.001 % A 72 psi(=10.37 ksf=496 KPa)
Qa r o 140 psi(=20.16 ksf=956 KPa)
o 15| — 3.3
© !
oo
@) L
£ 9]
£ | 5
8 I g
e 10 [~ 150 n
= - Q
2 o
(1] L -
= D! - o
o - O
E s BNRR 3§ WA
= i 8 A AAAALA A 4 gA A
2 sk A O 000 0O OO0 10
£
<. -
3 i
o)
~J !
0 1 (] lllllll L 1 Illllll L 1 lllllll [ [l L1 i 141
1 10 100 1000 10000

Duration of Confinement, t, minutes

Figure 8.B.2.K-2
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
of sample G7.
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant
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Variation in void ratio with effective confining pressure from resonant column tests of sample G7.
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Variation in shear modulus with shearing strain at an effective confining pressure of 72 psi
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Variation in normalized shear modulus with shearing strain at an effective confining pressure of 72 psi
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Figure 8.B.2.K-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G7.
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Figure 8.B.2.K-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample G7.
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Variation in material damping ratio with shearing strain at an effective confining pressure of 72 psi

(10.37 ksf, 496 kPa) from RCTS tests of sample G7.
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Figure 8.B.2.K-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

72 psi (10.37 ksf, 496 kPa) from RCTS tests of sample G7.
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Figure 8.B.2.K-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample G7.
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Figure 8.B.2.K-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G7.
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Figure 8.B.2.K-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 72 psi (10.37 ksf, 496 kPa) from RCTS tests of sample G7.
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Figure 8.B.1.K-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
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APPENDIX 8.B.2.L
DYNAMIC TESTS OF SAMPLE G8, DEPTH = 348 FT (106.0 M)
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Figure 8.B.2.L-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G8.
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Figure 8.B.2.L-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample G8.

8.B.2-218



0.70

T L 1 llllll T T lIllllI ¥ | T llflll ¥ ¥ LML R A
- Gilroy #2 ropi nfinin r 4
Depth = 348 ft(106.1 m) O 32 psi(=4.61 ksf=221 KPa) .
~ Sandy Lean Clay(CL) B 63 psi(=9.07 ksf=434 KPa) N
. Drive Plate #5 A 126 psi(=18.14 ksf=869 KPa) -
i Y<0.001 % A 250 psi(=36 ksf=1724 KPa)
0.65 |- -
" 4 4
o - U0 0 0 0oomomm .
o " n g
- B m g 7
oc OV = A -
=) AA%
> = A A A
A
. Aaa,, -
055 —
0.50 ] i 1 llllll 1 1 1 llllll I 1 1 llllll ] 1 L1 1111
1 10 100 1000 10000

Figure 8.B.2.L-3

Duration of Confinement, t, minutes
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
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Variation in shear modulus with shearing strain and effective confining pressure from resonant column
tests of sample G8.
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Variation in material damping ratio with shearing strain at an effective confining pressure of 126 psi
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Figure 8.B.2.L-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample G8.

8.B.2-229



6 L | L lll[lll L 1 llllill L) 1 lllil.ll ] L 'll'lllll 1 4 LR AAL
Gilroy #2 .
Depth = 348 f(106.1 m) O 63 psi(=9.07 ksf=434 KPa)

Sandy Lean Clay(CL) A 126 psi(=18.14 ksf=869 KPa)
Drive Plate #5

- I'Shearing strains in RC test were
f

[ |corrected to the average of the

irst 3 free-vibration cycles.

Normalized Material Damping Ratio, D/D
w

A
DADADADADAD‘D

caaabasaalassateaaabessstasaalaigatsraa bl aaaataaaslaagatens

N
llll|llll|llT]'lllIIllllllllllllll'llllllll

[ I Illllll [} £ Lllllll -1 lllllll 1 1 lllllll I} 1 1 441t
10" 10° 102 - 10" 10°
Shearing Strain, v, %

- O
e
(]

Figure 8.B.2.L-14
Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample G8.
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Figure 8.B.2.L-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 126 psi (18.14 ksf, 869 kPa) from RCTS tests of sample G8.
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Figure 8.B.1.L-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
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APPENDIX 8.B.2.M
DYNAMIC TESTS OF SAMPLE G9, DEPTH =410 FT (138.0 M)
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Figure 8.B.2.G-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample G9.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample G9.
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APPENDIX 8.B.3
DYNAMIC PROPERTIES OF UNDISTURBED SOIL
SAMPLES FROM LOTUNG, TAIWAN

8.B.3.1 Introduction

An investigation of the dynamic properties in shear of undistributed soil samples from the Lotung
experiment in Taiwan was conducted as part of the EPRI/DOE Ground Motion Project. The soil samples
were obtained in February 1992 as described in the report by Moh and Associates (1992). The samples
were sealed in steel Shelby tubes and shipped to the University of Texas at Austin in mid-March.
Dynamic laboratory testing of the undisturbed samples occurred between May and October 1992.

A total of eight samples was tested. The samples were obtained from depths ranging from 18 ft (5.5 m) to
146 ft (44.5 m). Initial properties of the samples are listed in Table 8.B.3-1. The samples range from silty
sands (SM) to silts (ML). Samples in the upper 133 ft (40.5 m) of the profile exhibit a rather narrow range
in water contents (31% to 37%), void ratios (0.82 to 1.02) and total unit weights (109 to 119 pcf (17.1 to 18.7
kN/m?3)). Grain size distribution curves for the five, nonplastic samples are given in Figure 8.B.3-1.

To minimize disturbance effects, each sample was extruded from the 3 in. (7.6 cm) diameter sampling
tube and hand trimmed to the final specimen dimensions. The dimensions were nominally either 2 in. (5.1
cm) in diameter and 4 in. (10.2 cm) in height or 1.5 in. (3.8 cm) in diameter and 3 in. (7.6 cm) in height. The
smaller of the two specimen sizes was used to obtain the larger dynamic strains in testing. No significant
problems were encountered in preparation and testing of the undisturbed specimens. The key in the
preparation process was cutting the sampling tubes using a high-speed (25,000 rpm) rotary bit used by
hobby enthusiasts. The tubes were cut into approximately 6 in. (15.2 cm) lengths before extruding the
samples.

8.B.3.2 Dynamic Laboratory Tests

Resonant column and torsional shear (RCTS) equipment was used to investigate the dynamic
characteristics of the intact Lotung samples. This equipment is described in detail in Appendix 8.B.3.A.
The dynamic characteristics of concern are the shear modulus, G, and the material damping ratio in shear,
D. These parameters were evaluated to determine the influence on them of the following variables:

. magnitude of isotropic state of stress. Four to six isotropic pressures were used which ranged from
below to above the estimated in situ mean effective stress.

° time of confinement at each isotropic state of stress. Confinement times at each pressure ranged
from 1 to about 3 days.

. shearing strain amplitude. Strains ranged from the small-strain range, less than 0.001%, to rather
large strain amplitudes, strains slightly above 0.2%.

. numbers of cycles of loading. One to ten cycles of loading were used in the torsional shear test
followed by 500 to 1000 cycles in the resonant column test.

] excitation frequency. Frequencies ranging from 0.1 Hz to about 10 Hz were used in the torsional

shear test while the frequency associated with resonance in the resonant column test varied with
soil stiffness and ranged from 20 Hz to about 130 Hz.

8.B.3-2
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8.B.3.2.1. Testing Program

Before dynamic testing was started, the in situ mean effective stress, Om, had to be estimated. This was
done at the Lotung site by assuming the water table is at a depth of 1.2 ft (0.4 m), the total unit weight of
the soil averages 120 pef (18.8 kN/m?3), the soil is saturated throughout the profile, and the effective
coefficient of earth pressure at rest, K', is 0.5. The resulting values of 6y’ for each sample are given in
Table 8.B.3-2. ‘

Once oy, was estimated, the range in confining pressures over which G and D would be evaluated was
determined. Typically, isotropic confining pressures on the order of 0.250', 0.56,', Om' 201’ and 46y,
were selected. Low-amplitude resonant column testing was performed at each confining pressure to
determine the influence of time and confining pressure on the small-strain shear modulus, Gpax, and
small-strain material damping ratio, Dmin. Low-amplitude dynamic tests are defined as those tests in
which the resonant amplitude did not exceed 0.001% and typically was considerably below that level.

A summary of all confining pressures at which low-amplitude resonant column tests were performed is
given in Table 8.B.3-2. At the estimated in situ mean effective stress, high-amplitude dynamic and cyclic
testing was also conducted. This testing is defined as any tests in which the peak shearing strain exceeds
0.001%. This testing was composed of two series of tests. The first involved cyclic torsional (TS) shear
testing as illustrated in Figure 8.B.3-2. A complete set of torsional shear tests took about three hours to
perform, was performed under drained conditions although no drainage was observed, and involved
shearing strains, ¥, from less than 0.001% to above 0.05%, depending on the soil stiffness. The majority of
the measurements were performed at 0.5 Hz and are labeled as TS1 in Figure 8.B.3-2. However, two sets
of TS tests, one at y= 0.001% and one at y = 0.01%, were conducted to evaluate the effect of excitation
frequency on G and D at those strain amplitudes. In these tests, (denoted as TS2 in Figure 8.B.3-2) one to
four cycles of loading was applied at about five different frequencies ranging from 0.1 Hz to about 10 Hz.

After the TS tests were completed, confinement of the sample was continued at 6p’, and a series of high-
amplitude resonant column (RC) tests was performed the next day. However, before high-amplitude RC
testing commenced, small-strain RC tests were performed to determine if any changes in the soil skeleton
had occurred from the TS tests. In essentially all cases, no changes in Gyax or Dpyjn from the TS tests
were measured.

Once the small-strain datum was re-established after the TS tests, high-amplitude resonant column
testing was conducted to evaluate the influence of strain amplitude on G and D. This series of tests is
illustrated in Figure 8.B.3-3. A complete set of resonant column tests took about one hour to perform, was
performed under drained conditions just as in the case of the TS tests, and involved shearing strains from
less than 0.001% to above 0.1%, depending on the soil stiffness. In these tests, 500 to 1000 cycles of loading
is required at each strain measurement.

Upon completion of the high-amplitude RC tests, low-amplitude RC tests were performed to determine if
any changes in the soil skeleton had occurred from the high-amplitude tests. In some cases, changes
occurred. At that point, confinement of the sample at 6p,' was continued until Gax and Dpn returned to
the values before the high-amplitude tests or the change in values was noted in the next stage of testing.

The confining pressure was then increased to about 26y, and low-amplitude resonant column testing
was performed for one to several days. For six of the samples, high-amplitude resonant column tests were
again performed. Table 8.B.3-2 gives a summary of these tests. In most cases, the pressure was again
doubled, and low-amplitude RC testing was repeated.

It should be noted that, in three cases (samples CH1(T7), CH2(T11) and CH1(T10)), high-amplitude RC
tests were also performed at one confining pressure below Gp". This was carefully done with only
intermediate strain levels so as not to disturb the sample before testing at 6y,

8.B.3-5
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Y = elastic threshold strain; below Yf .-G is constant and equal to Gmax
RC (LA) = resonant column test at low-amplitudes (strains < 0.001%)
TS1 = torsional shear test in which 1 to 10 cycles are applied at 0.5 Hz

TS2 = torsional shear test in which 4 cycles are applied at each of
approximately 5 frequencies between 0.1 to 10 Hz

Figure 8.B.3-2
Testing procedure used in the torsional shear test to investigate the effects of strain amplitude, number of-

loading cycles, and excitation frequency of undisturbed Lotung samples.
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Figure 8.B.3-3
Testing procedure used in the resonant column test to investigate the effect of strain amplitude on G and

D of undisturbed Lotung samples.
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8.B.3.2.2 Test Results

The results of the RC and TS tests are shown in Appendices 8.B.3.B through 8.B.3.I for the eight Lotung
samples. Each appendix presents the results for one sample in the following general order (using
Appendix 8.B.3.B as the example).

1.

2.

10.
11.

12.
13.

Figure 8.B.3.B-1 shows the influence of magnitude and duration of isotropic confining pressure on
Gmax as determined by RC tests.

Figure 8.B.3.B-2 shows the influence of magnitude and duration of isotropic confining pressure on
Dmin as determined by RC tests.

Figure 8.B.3.B-3 shows the change in void ratio of the sample with magnitude and duration of
isotropic confining pressure.

Figure 8.B.3.B-4 shows the variation in Gx at a confinement time of 1000 minute with effective
confining pressure from the RC tests.

Figure 8.B.3.B-5 shows the variation in Dy, at a confinement time of 1000 minutes with effective
confining pressure from the RC tests.

Figure 8.B.3.B-6 shows the variation in void ratio of the sample at a confinement time of 1000
minutes with effective confining pressure.

Figure 8.B.3.B-7 shows the variation in G with log yat 6y from the high-amplitude RC and TS
tests.

Figure 8.B.3.B-8 shows the variation in G/Gmax with log y at 6’ from the high-amplitude RC and
TS tests.

Figure 8.B.3.B-9 shows the variation in G with log y at all tests pressures where high-amplitude RC
tests were performed.

Figure 8.B.3.B-10 is the normalized (G/Gmax) version of Figure 8.B.3.B-9.

Figures 8.B.3.B-11 through 8.B.3.B-14 are simply the damping ratio curves which are the
companions to the modulus curves given in Figures 8.B.3.B-7 through 8.B.3.B-10.

Figure 8.B.3.B-15 shows the effect of excitation frequency on G at y~ 0.001% and v = 0.01%.

Figure 8.B.3.B-16 shows the effect of excitation frequency on D at ¥ = 0.001% and y = 0.01%.

8.B.3.3 Comparison of Results

The variation in Gmax with 6’ for all undisturbed samples tested in this study at the 6y,' and above is
shown in Figure 8.B.3-4. (Therefore, the samples should be normally consolidated samples in the pressure
range shown.) The results fall in a narrow band which can be fit with the Hardin (1978) equation as
shown in Figure 8.B.3-5. In Figure 8.B.3-5, the void ratio associated with each confining pressure has been
used in plotting the results. Moduli from earlier resonant column tests performed at the National Taiwan
University (1978) are shown in Figure 8.B.3-6 and are fit with the Hardin (1978) equation in Figure 8.B.3-7.
In Figure 8.B.3-7, only the void ratio at the start of testing was available for use in these results. Moduli
determined at the University of Texas (UT) and at the National Taiwan University (NTU) are compared
in Figure 8.B.3-8 without accounting for variation in void ratio and in Figure 8.B.3-9 by accounting for
void ratio variations. The Gpax values determined at UT and NTU compared very favorably.

The same set of comparisons for the variation in small-strain material damping ratio, Dpin, with 6’ is
presented in Figures 8.B.3-10,-11 and -12. In this case, the UT results again fall in a rather narrow range.
But Dpin exhibits more scatter than in the case with Gpax. The values of Dppjn, are also quite low, all less
than 2% (or Q > 25). The NTU results, on the other hand, exhibit more scatter and are equal to or greater
than the values determined in this study.
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column tests at 6p' = om' of undisturbed samples from Lotung site; NTU tests.
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Figure 8.B.3-12

Comparison of Dpin - log 6o’ relationships from resonant column tests at 6o' 2 6m’' of undisturbed

samples from Lotung site; UT and NTU tests.
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The variation in normalized modulus, G/Gmax, with log ¥ for all samples tested in this study at the
estimated in situ means effective stress, 61y, is presented in Figure 8.B.3-13 for the RC tests and in Figure
8.B.3-14 for the first cycle in the TS test. In each case, the results for all samples form a narrow band which
is very close to the upper range proposed by Seed and Idriss (1970) for sands. The results from both the
RC and TS tests are compared in Figure 8.B.3-15 and are essentially the same. It should be noted at this
point that all samples are essentially unsaturated and hence any development in pore water pressure due
to cyclic loading is significantly inhibited. Therefore, values of G determined at strains above amplitudes
on the order of 0.05% do not reflect any reduction which would occur if pore pressures were generated.

A comparison of G/Gmax versus log y from the resonant column tests performed at 6, by UT and NTU
is presented in Figure 8.B.3-16. With the exception of the results from one or two samples, the comparison
is quite reasonable. The results from additional cyclic triaxial (CT) tests performed at the National Taiwan
University (1987 and 1989) and the University of California at Davis (UCD) (1991) combined with the
resonant column tests from NTU are presented in Figure 8.B.3-17. These results are compared with the
results from this study in Figure 8.B.3-18. In Figure 8.B.3-18, considerable scatter can be seen.

Similar results for the variation in material damping ratio with strain amplitude are shown in the
remaining figures. Figure 8.B.3-19 shows the variation in D with log ¥ as determined by RC tests in this
study. The results fall in a rather narrow band which is closest to the lower range proposed by Seed and
Idriss (1970) for sands. Figure 8.B.3-20 shows the same results determined in the first cycle in the TS test.
In this case, material damping values are slightly higher in the TS tests than those determined in the RC
test at all strains above about 0.003%. This behavior is typical of sandy material with few fines (Kim,
1991). Both results are compared in Figure 8.B.3-21 and expanded versions of Figures 8.B.3-19 through
8.B.3-21 are presented in Figures 8.B.3-22 through 8.B.3-24.

The variation in D with log y determined by NTU and UCD with resonant column and cyclic triaxial tests
is shown in Figures 8.B.3-25 and 8.B.3-26. The results from the previous studies and this study are
compared in Figures 8.B.3-27 and 8.B.3-28. In general, material damping values determined in the
previous studies are equal to or greater than the values determined in this study, especially at small
strains.
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APPENDIX 8.B.3.A
TEST EQUIPMENT AND MEASUREMENT TECHNIQUES

8.B.3.A.1 Introduction

Resonant column and torsional shear (RCTS) equipment has been employed in this investigation for
measurement of the deformational characteristics (shear modulus and material damping) of intact soil
specimens. This equipment has been developed at The University of Texas at Austin over the past two
decades (Isenhower, 1979; Lodde, 1982; Ni, 1987; and Kim, 1991). The equipment is of the fixed-free type,
with the bottom of the specimen fixed and torsional excitation applied to the top. Both resonant column
(RC) and torsional shear (TS) tests can be performed in a sequentlal series on the same specimen over a
shearing strain range from about 1074% to slightly more than 10~ lo,, The primary difference between the
two types of tests is the excitation frequency. In the RC test, frequencies above 20 Hz are required and
inertia of the specimen and drive system are needed to analyze the measurements. On the other hand,
slow cyclic loading involving frequencies generally below 5 Hz is performed in the TS test and inertia
does not enter data analysis.

8.B.3.A.2 Resonant Column and Torsional Shear Equipment
8.B.3.A.2.1 Overview of RCTS Equipment

The RCTS apparatus can be idealized as a fixed-free system as shown in Figure 8.B.3.A-1. The bottom end
of the specimen is fixed against rotation at the base pedestal, and top end of the specimen is connected to
the driving system. The driving system, which consists of a top cap and drive plate, can rotate freely to
excite the specimen in cyclic torsion.

<l Cyclic or Resonant
| Torsional Excitation

Rigid End Mass with
K/ Mass Polar Moment of
Inertia, I,

Soil Specimen,

Length,
l I

Fixed at Bottom

R ¥
S\NSSSe
Figure 8.B.3.A-1

Idealized fixed-free RCTS equipment.
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A simplified diagram of a fixed-free resonant column (RC) test is shown in Figure 8.B.3.A-2 The basic
operational principle is to vibrate the cylindrical specimen in first-mode torsional motion. Harmonic
torsional excitation is applied to the top of the specimen over a range in frequencies, and the variation of
the acceleration amplitude of the specimen with frequency is obtained. Once first-mode resonance is
established, measurements of the resonant frequency and amplitude of vibration are made. These
measurements are then combined with equipment characteristics and specimen size to calculate shear
wave velocity and shear modulus based on elastic wave propagation. Material damping is determined
either from the width of the frequency response curve or from the free-vibration decay curve.

The torsional shear (TS) test is another method of determining shear modulus and material damping
using the same RCTS equipment but operating it in a different manner. The simplified configuration of
the torsional shear test is shown in Figure 8.B.3.A-3. A cyclic torsional force with a given frequency,
generally below 10 Hz, is applied at the top of the specimen. Instead of determining the resonant
frequency, the stress-strain hysteresis loop is determined from measuring the torque-twist response of the
specimen. Proximitors are used to measure the angle of twist while the voltage applied to the coil is
calibrated to yield torque. Shear modulus is calculated from the slope of a line through the end points of
the hysteresis loop, and material damping is obtained from the area of the hysteresis loop as shown in
Figure 8.B.3.A-3.

The RCTS apparatus used in this study has three advantages. First, both resonant column and torsional
shear tests can be performed with the same set-up simply by changing (outside the apparatus) the
frequency of the forcing function. Variability due to preparing “identical” samples is eliminated so that
both test results can be compared effectively. Second the torsional shear test can be performed over a
shearing strain range between 10™% and about 1071%. Common types of torsional shear tests, which
generate torque by a mechanical motor outside of the confining chamber, are usually performed at strains
above 0.01% because of system compliance. However, the RCTS apparatus used in this study generates
torque with an electrical coil-magnet system inside the confining chamber, thus eliminating the problem
with an external motor. The torsional shear test can be performed at the same low-strain amplitudes as
the resonant column test, and results between torsional shear and resonant column testing can be easily
compared over a wide range of strains. Third, the loading frequency in the torsional shear test can be
changed easily from 0.01 Hz to 10 Hz. Therefore, the effect of frequency on deformational characteristics
can be conveniently investigated using this apparatus.

The RCTS apparatus consists of four basic subsystems which are: (1) a confinement system, (2) a drive
system, (3) a height-change measurement system, and (4) a motion monitoring system. The general
configuration of the RCTS apparatus (without the confinement system) is shown in Figure 8.B.3.A-4. The
RCTS apparatus was automated by Ni (1987) so that a microcomputer controls the test, collects the data,
and reduces results. Computer-aided subsystems are discussed briefly in the following sections.
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Figure 8.B.3.A-2
Simplified diagram of a fixed-free resonant column test and an associated frequency response curve.
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Figure 8.B.3.A-3
Configuration of a torsional shear test and evaluation of shear modulus and material damping ratio.
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Figure 8.B.3.A-4

General configuration of RCTS equipment (from Ni, 1987).
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8.B.3.A.2.2 RCTS Confinement System

The confining chamber is made of stainless steel. A thin-walled (0.6 cm in thickness) hollow cylinder fits
into circular grooves machined in 2.5 cm thick base and top plates. Four stainless steel connecting rods
(1.28 cm in diameter) are used to secure the base and top plates to the hollow cylinder, and O-rings in the
circular grooves are used to seal the chamber. In this configuration, the chamber has been designed to
withstand a maximum air pressure of about 200 psi (1379 kPa). To safely test samples at higher confining
pressures (pressures on the order of 600 psi (4137 kPa)), the confinement system was modified by adding
additional stainless steel rods to secure the cylinder to the top and base plates and reinforcement to the
top and base plates.

Compressed air is used to confine isotropically the specimen in the RCTS device. The air pressure to the
chamber generally is regulated by a Fairchild M 30 regulator and air supplied to the regulator is filtered.
At high confining pressures, additional regulators are used. The soil specimen is sealed in a membrane
and pore pressure in the specimen is normally vented to atmospheric pressure.

Inside the confining chamber, the air pressure acts upon a silicon fluid bath which surrounds the sides of
the soil specimen. The purpose of the silicon fluid bath is to retard air migration through the membrane
and into the specimen to prevent drying of the specimen. Figure 8.B.3.A-5 shows the simplified
configuration of the confinement system.

—
] Top Plate H |
: Hollow
: Cylinder
Connecting
g v 4 b Rod
Silicon ‘
Fluid Bath
> o
Soil <
Membrane
<
O-Ring >f b
[ E " Base Plate IIL .
\j o
Vent Compressed Air

Figure 8.B.3.A-5
Simplified configuration of confinement system.
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8.B.3.A.2.3 Drive System

The drive system consists of a four-armed drive plate, four magnets, eight drive coils, a power amplifier,
and a function generator. Each magnet is rigidly attached to the end of one arm of the drive plate as
shown in Figure 8.B.3.A-4. Eight drive coils encircle the ends of the four magnets so that the drive plate
excites the soil specimen in torsional motion when a current is passed through the coils. The maximum
torque that the drive system can develop depends on the strength of the magnets, size of the drive coils,
resistance of the drive coils, size of the space between the magnets and drive coils, length of the arms of
the drive plate, and the electrical characteristics of the function generator and power amplifier. For the
three drive systems used in this work, the maximum torque was about 0.60 Ib-ft (82 N-cm).

A schematic diagram of the drive system is shown in Figure 8.B.3.A-6. The micro-computer activates a
function generator (HP 3314A) to input sinusoidal voltage to the drive coils. In the resonant column (RC)
test, the function generator performs frequency sweeps with a constant amplitude while in the torsional
shear test, a fixed-frequency N-cycle mode is used. For high-amplitude resonant column and torsional
shear (TS) tests, the sinusoidal input current is amplified by a power amplifier (HP 6824A) before going to
the drive coils.

o BB oo Low-Amplitude RC Test

A .

>

an oo
oo oo Drive Coils

Function Generator

High-Amplitude RC Test
and TS Test

- o [P

00Oo

o

Power Amplifier

AL LLY

Computer

Figure 8.B.3.A-6
Schematic diagram of the drive system.

8.B.3.A.2.4 Height-Change Measurement System

The height change of the soil specimen is measured to account for the changes in the length and mass of
the specimen during consolidation or swell. This measurement is also used to calculate change in the
mass moment of inertia, mass density, and void ratio during testing (by assuming isotropic strain under
isotropic confinement and constant degree of saturation). The height change is measured by a linear
variable differential transformer (LVDT). The height change measurement system consists of an LVDT
(CRL Model SH-200-53R), a function generator (HP 3314A), and a digital voltmeter (HP 3456A). The
LVDT core is not in contact with the LVDT coil housing so that no friction occurs during RCTS testing.

The output and calibration factor of an LVDT depend on both the frequency and magnitude of the
excitation voltage. In this test the computer activates the function generator to generate the input signal in
the LVDT coil at a frequency of 500 Hz and a voltage level of 4.77 RMS volts. The output from the LVDT
is read with a digital voltmeter. The height change is calculated from the output voltage combined with
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the calibration factor. The schematic diagram of the height change measuring system is shown in Figure
8.B.3.A-7.

o EEH == Input

oo oo N LVDT
/8@ °d 4.77 RMS volts '
Function Generator 500 Hz
1 Output

< ZZZ1 gooo
goono

Voltmeter

Computer

Figure 8.B.3.A-7
Schematic diagram of the height-change measuring system.

8.B.3.A.2.5 Motion Monitoring System

Dynamic soil properties are obtained in the RC test at the resonant frequency which is usually above

20 Hz while torsional shear testing is used to measure the low-frequency (below 10 Hz) cyclic stress-strain
relationship of soil. Because of the different frequencies applied in the resonant column and torsional
shear tests, different motion monitoring systems are used.

Resonant Column (RC) Test. The motion monitoring system in the RC test is designed to measure the
resonant frequency, shearing strain, and free-vibration decay curve. This system consists of an
accelerometer (Columbia Research Laboratory Model 3021), a charge amplifier (Columbia Research
Laboratory Model 4102M), a frequency counter (HP 5334A), a digital voltmeter (HP 3456A), and a digital
oscilloscope (Nicolet 20929-01). The schematic diagram of the motion monitoring system is shown in
Figure 8.B.3.A-8.

The accelerometer is oriented to be sensitive to torsional vibrations of the drive plate. The charge
amplifier conditions the accelerometer output to be linear for all levels of acceleration in the test. The
digital voltmeter reads the output voltage from the accelerometer at each frequency which is measured by
the frequency counter. The resonant frequency is obtained from the frequency response curve. Once the
resonant frequency is obtained, the computer activates the function generator to excite the specimen at
the resonant frequency and then suddenly stops the current so that the free-vibration decay curve is
recorded by the digital oscilloscope.
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Figure 8.B.3.A-8
Schematic diagram of the motion monitoring system in the resonant column test.

The resonant frequency of soils are typically in the range of 20 Hz to 300 Hz with this equipment. To test
soils effectively over a wide range of stiffnesses, the search for the resonant frequency is performed in two
stages, a rough sweep and a fine sweep. During the rough sweep, a fast logarithmic-linear frequency
sweep (16 seconds to sweep from 1 to 170 Hz) is used. The fine sweep is then performed to determine an
accurate resonant frequency in the neighborhood where the resonant frequency was found in the rough
sweep.

Torsional Shear (TS) Test. The motion monitoring system in the TS test (3000 Proximitor System) is
used to monitor torque-twist hysteresis loops of the specimen. This system consists of two proximitors
(Bentry Nevada M 20929-01), two proximitor probes (Bentry Nevada M 300-00), an operational amplifier
(Tektronix TM 504 with AM501), a DC power supply (Lambda M-11-902), a U-shaped target and a digital
oscilloscope (Nicolet 20929-01). The U-shaped target is secured to the top of the drive plate, and the two
proximitor probes are rigidly attached to the support stand. A schematic diagram of the motion
monitoring system in the torsional shear test is shown in Figure 8.B.3.A-9.

The function of the proximitor probes is to measure the width of the air gap between the target and the
probe tip. Because the proximitor probes do not touch the drive plate, no compliance problems are
introduced into the measurement. Two probes are used and the operational amplifier subtracts the signal
from one probe from the other so that the effect of bending in the specimen toward the probes can be
eliminated. The proximitor system is a very effective low-frequency motion monitoring system which
does not introduce any compliance problems into the measurement. With the simultaneous measurement
of torque, load-displacement hysteresis loops can be determined.
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Figure 8.B.3.A-9
Schematic diagram of the motion monitoring system in the torsional shear test (3000 Proximitor System).

8.B.3.A.3 Method of Analysis in the Resonant Column Test

The resonant column test is based on the one-dimensional wave equation derived from the theory of
elasticity. The shear modulus is obtained by measuring the first-mode resonant frequency while material
damping is evaluated from either the free-vibration decay curve or from the width of the frequency
response curve assuming viscous damping.

8.B.3.A.3.1 Shear Modulus

The governing equation of motion for the fixed-free torsional resonant column test is:

zl_o.)n.l (On.l
IO_ VS

(8.B3.A-1)

where 2 1=1Ig + Iy, + -

Is = mass moment of inertia of soil,

Im = mass moment of inertia of membrane,

I, = mass moment of inertia of rigid end mass at the top of the specimen,
1 = length of the specimen,

Vs = shear wave velocity of the specimen, and

®n = undamped natural circular frequency of the system.

The value of I, is known from the calibration of the drive plate. The values of I and | are easily
determined from the specimen size and weight. Once the first-mode resonant frequency is determined,
the shear wave velocity can be calculated from Eq. 8.B.3.A-1 by assuming that the resonant circular
frequency and wy are equal.
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As noted above and shown in Figure 8.B.3.A-2 the resonant circular frequency, oy,is measured instead of
undamped natural frequency, oy, and @ is used to calculate shear wave velocity. If the damping in the
system is zero, @y and wp, are equal. The relationship between ®; and oy, is:

o = 0y N 1-2D? (8.B3.A2)

A typical damping ratio encountered in the resonant column test is less than 20 percent, which
corresponds to a difference of less than 5 percent between wy and @y, In this study, the damping
measured in the resonant column test was usually less than 10 percent, and ©; can be used instead of oy,
with less than a two percent error.

Once the shear wave velocity is determined, shear modulus is calculated from the relationship:
G=pe Vg2 (8.B3.A-3)
where p is the total mass density of the soil (total unit weight divided by gravity).

8.B.3.A.3.2 Shearing Strain

The shearing strain varies radially within the specimen and may be expressed as a function of the
distance from the longitudinal axis as illustrated in Figure 8.B.3.A-10. The equivalent shearing strain, Yeq
or v, is represented by:

Y="req " Omax /1 (8.B.3.A4)
Where

I'eq = equivalent radius,
Omax = angle of twist at the top of the specimen, and
1 = length of the specimen.

Chen and Stokoe (1979) studied the radial distribution in shearing strain to find a value of req for the
specimen tested in the RCTS equipment to evaluate an effective strain. They found that the value of req
varied from 0.82*rq for a peak shearing strain amplitude below 0.001% to 0.79*rg for a peak shearing
strain of 0.1% for a solid specimen. These values of req have been adopted in this study.

In the resonant column test, the resonant period (Ty, seconds), and output voltage of accelerometer (A,
volts(RMS)) at resonance are measured. Accelerometer output is changed to the displacement by using
the accelerometer calibration factor (CF, volts(RMS)/in./sec ) assuming harmonic motion. The
accelerometer displacement is divided by the distance (D,, inches) between the location of accelerometer
and the axis of the specimen to calculate the angle of twist at the top of the specimen(6yx). The shearing
strain is then calculated by:

ACOTr2 1 1
Y=Teq 4n2eCF . Dac *1 (8.B.3.A-5)
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Figure 8.B.3.A-10
Shearing strain in soil column.
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8.B.3.A.3.3 Material Damping

In the resonant column test, material damping ratio can be evaluated from either the free-vibration decay
method or from the half-power bandwidth method. Each of these methods is discussed below. It is
important to note that, in these measurements, the damping measurement includes material damping in
the soil plus any damping in the equipment. Calibration of equipment damping is discussed in Section
8.B.3.A5.

Free-Vibration Decay Method. Material damping in soils can be quite complex to define. However, the
theory for a single-degree-of-freedom system with viscous damping is a useful framework for describing
the effect of damping which occurs in soil (Richart et al., 1970). The decay of free vibrations of a single-
degree-of-freedom system with viscous damping is described by the logarithmic decrement, 6, which is
the ratio of the natural logarithm of two successive amplitudes of motion as:

Z 2nD
d=In (Z—;) - (8.B.3.A-6)

1-D?
Where

Z1 and Z; = two successive strain amplitudes of motion, and
D = material damping ratio.

The free-vibration decay curve is recorded using an oscilloscope by shutting off the driving force while
the specimen is vibrating at the resonant frequency. The amplitude of each cycle is measured from the
decay curve, and the logarithmic decrement is then calculated using Eq. 8.B.3.A-6. Material damping ratio
is calculated from logarithmic decrement according to:

82
D= - Y 8.B.3.A-7
V 4n2 + &2 ( )

A typical damping measurement from a free-vibration decay curve (from a metal calibration specimen) is
shown in Figure 8.B.3.A-11.

In this method, it is not certain which strain amplitude is a representative strain for damping ratio
calculated by Eq. 8.B.3.A-7 because strain amplitude decreases during free-vibration decay. In this study,
a representative strain amplitude was used as the peak strain amplitude during steady-state vibration for
shearing strains below 0.001%. However, at larger strains, the representative strain is smaller than the
peak strain, and the average strain determined for the first three cycles of free vibration was used.
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Figure 8.B.3.A-11
Determination of material damping ratio from the free-vibration decay curve using a metal specimen.
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Half-Power Bandwidth Method. Another method of measuring damping in the resonant column test is
the half-power bandwidth method, which is based on measurement of the width of the frequency
response curve near resonance. From the frequency response curve, the logarithmic decrement can be
calculated from:

5=1 i A2 N (8.B.3.A-8)
2 f2 Amax2— A% 1-D? o
Where
f1 = frequency below the resonance where the strain amplitude is A,
fs» = frequency above the resonance where the strain amplitude is A,
fr = resonant frequency, and
D = material damping ratio.
If the damping ratio is small and A is chosen as 0.707 Amay, which is called the half-power point,
Eq. 8.B.3.A-8 can be simplified as:
fo-f1
o=Te T (8.B.3.A-9)
r
Therefore, the damping ratio can be expressed as:
fo—f1
D= o (8.B.3.A-10)

A typical damping measurement by the half-power bandwidth method (for a metal calibration specimen)
is shown in Figure 8.B.3.A-12.

Background noise can be a problem in measuring material damping using the free-vibration decay
method at strains less than about 0.001%. On the other hand, background noise generally has a smaller
effect on the frequency response curve at strains below 0.001%. Therefore, the half-power bandwidth
method is preferred to the free-vibration decay method for making small-strain damping measurements.
However, at large strains, symmetry in the frequency response curve is no longer maintained, and a
serious error can be introduced in the half-power bandwidth method (Ni, 1987). In this study, both types
of damping measurements were made at small-strains in an attempt to obtain good data sets while only
the free-vibration decay method was used at larger strains (above 0.001%).
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Figure 8.B.3.A-12
Determination of material damping from the half-power bandwidth method using a metal specimen.

8.B.3.A.4 Method of Analysis in the Torsional Shear Test

The torsional shear test is another method of determining the deformational characteristics (modulus and
damping) of soil using the same RCTS device. Rather than measuring the dynamic response of the
specimen, the actual stress-strain hysteresis loop is determined by means of measuring the torque-twist
curve. Shear modulus is calculated from the slope of the hysteresis loop, and the hysteric damping ratio is

calculated using the area of the hysteresis loop.
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8.B.3.A.4.1 Shear Modulus

Because shear modulus is calculated from the stress-strain hysteresis loop, shearing stress and shearing
strain in the torsional shear test need to be defined.

Shearing Stress. Determination of shearing stress in the torsional shear test is based on the theory of
elasticity for circular or tubular rods in pure torsion. Assume that pure torque, T, is applied to the top of
the specimen. The torque can be calculated from:

r

[o]
T=fr Tr(27 r) rdr
;

(8.B.3.A-11)

where 7, is the shearing stress at a distance r from the axis of specimen and, r, and rj are outside and
inside radii, respectively. If the shearing stress is assumed to vary linearly across the radius:

Tr=Tme®(r/ 10) : (8.B.3.A-12)

where Ty, is the maximum shearing stress at r = r,. Eq. 8.B.3.A-12 can be rewritten as:

T:T—n—\o

T 4__4y_'m
To ¢ (ro™ - )—rO *Jp (8.B.3.A-13)

where J; is the area polar moment of inertia. From Eq. 8.B.3.A-13, one can write:

T
Tm=Tfo*]" (8.B.3.A-14)
p
Because shearing stress is assumed to vary linearly across the radius, the average torsional shearing stress
is defined as:

T

Tavg =Teq ® E (8.B.3.A-15)

The value of req is the same value as used in the resonant column analysis for calculation of shearing
strain (Section 8.B.3.A.3.2).

The value of applied torque, T, is calculated from the input voltage applied to the drive system, VT
(Volts), and the torque calibration factor, K ( torque / Volts ). Thus, average shearing stress becomes:

Tavg =Teq®*KT* VT / Jp (8.B.3.A-16)

Shearing Strain. Calculation of shearing strain in the torsional shear test follows the same procedure
used in the resonant column test. The proximitor system directly measures the displacement (instead of
acceleration measured in the resonant test). Hence, the angle of twist (8) is calculated from the proximitor
output voltage, Vp (volts), and the proximitor calibration factor, Kp (rad / volt). Shearing strain, v, is then
calculated from:

Y=TeqXKpeVp /1 (8.8.3.A-17)

8.B.3-53



Shear Modulus. Once the stress-strain hysteresis loop is measured, the shear modulus, G, is calculated
from the slope of a line through the end points of the hysteresis loop as shown in Figure 8.B.3.A-13. Thus,
the shear modulus is calculated from:

G=1/% (8.B.3.A-18)

where 1 is peak shearing stress and 7y is peak shearing strain.

T

Shearing Stress,

A

-

Shearing Strain, Y

G=71 /Y

D =Wd/(47t Ws)

Figure 8.B.3.A-13
Determination of shear modulus and damping ratio in the torsional shear test.

8.B.3.A.4.2 Hysteretic Damping Ratio

Hysteretic damping ratio in the torsional shear test is measured using the amount of energy dissipated in
one complete cycle of loading and the peak strain energy stored in the specimen during the cycle.

In the torsional shear test, the dissipated energy is measured from the area of the stress-strain hysteresis
loop. The energy per cycle, Wy, due to a viscous damping force, Fy, is:

T [
Wq =f FjeXdt
o]

(8.B.3.A-19)
where Xis a velocity and T is a period. For simple harmonic motion with frequency of o,
i.e. x = A Cos(wt-¢), W4 become:
Weg=nco A2 (8.B.3.A-20)
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From the Eq. 8.B.3.A-20, the viscous damping coefficient can be expressed as:
c=Wq/(nw A? ) (8.B.3.A-21)

The peak strain energy, Wy, stored by the spring is equal to the area under the secant modulus line in
Figure 8.B.3.A-13 and can be written as:

We=kAZ/2 (8.8.3.A-22)
The critical damping coefficient, C, is

C.=2e Vkm =2k/ ®n (8.B.3.A-23)

where k is an elastic spring constant, m is a mass, and y, is a natural frequency of system. Using
Eq. 8.B.3.A-22, Eq. 8.B.3.A-23 can be rewritten as:

Ce=4Ws / (on A?) (8.B.3.A-24)

Therefore, the damping ratio, D, can be expressed as:

D=C/Cc=Wq/(@nWg)*(w,/ ®) (8.B.3.A-25)

For soils, material damping is often assumed to be frequency independent. Therefore, @y, / ® is ignored
and hysteretic damping is written as:

1, Wdq

D=41t Wy

(8.B.3.A-26)

where W is the area of the hysteresis loop and Wj is the area of the triangle as shown in
Figure 8.B.3.A-13.

8.B.3.A.5 Evaluation of RCTS Equipment Compliance with Metal Specimens

To evaluate the RCTS equipment for system compliance, metal specimens were used. The metal
specimens were made of brass and aluminum tubes. Eighteen metal specimens of different sizes and
materials were used to obtain different resonant frequencies. Details of the metal specimens are presented
in Table 8.B.3.A-1. It was assumed that the metal specimens should have (essentially) zero damping and
that these specimens should exhibit no effect of frequency on stiffness or damping over the complete
range of frequencies used in these tests (from about 0.05 Hz to 400 Hz).
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Hysteresis loops with one metal specimen measured at a frequency of 0.5 Hz are shown in

Figure 8.B.3.A-14. The stress-strain curve is linear, resulting in no damping as expected. On the other
hand, Figure 8.B.3.A-11 and 8.B.3.A-12 show the damping measurements with the same metal specimen
in the resonant column test predict an apparent damping of 0.4% from both the free-vibration decay and
half-power bandwidth methods.

317 T

Metal Specimen 1
f=05H:z
1.25 cycle

Shearing Stress, k Pa
=)

-317 .
-4.31 0 431
Shearing Strain, % * 10~

Figure 8.B.3.A-14
Hysteresis loops of metal specimen determined by torsional shear testing at a frequency of 0.5 Hz.

The variations in shear modulus and damping ratio withdoading frequency for four of the metal
specimens are plotted in Figure 8.B.3.A-15. The shear modulus of each metal specimen determined from
the RCTS equipment is independent of loading frequency as expected. Therefore, shear modulus can be
measured properly with RCTS equipment over a wide frequency range without any compliance problem.

On the other hand, the damping ratio measured by the RCTS equipment is affected by the loading
frequency. For frequencies less than or equal to 0.5 Hz, damping ratio evaluated by the torsional shear
test is essentially zero as expected. In this frequency range, material damping can be evaluated without
any equipment correction. For higher frequencies, however, non-zero damping values are obtained with
all metal specimens in the torsional shear as shown in Figures 8.B.3.A-15b and 8.B.3.A-16. In this case the
apparent material damping increases significantly as the excitation frequency increases from 1 to 10 Hz.
Strain amplitude has little effect on the damping values as shown in Figure 8.B.3.A-16. These values of
apparent material damping are considered to be due to a compliance problem with the complete RCTS
system (back-EMF generated by the drive system) and are, therefore, subtracted from all damping
measurements in the torsional shear test at the same frequencies when soil specimens are tested.
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Figure 8.B.3.A-15
Variation in shear modulus and material damping ratio with loading frequency determined for metal

specimens (from Kim, 1991).
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Figure 8.B.3.A-16

Measured damping ratio for metal specimen #2 in the torsional shear test.
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It should be noted that excitation frequencies in the torsional shear test never exceeded 0.1 times the
resonant frequency of the soil specimen. This approach was followed so that dynamic amplification did
not affect the TS measurements. Even in this case, however, corrections were made for minor dynamic
amplification which occurs near 0.1 times the resonant frequency.

In the resonant column test, non-zero damping values were obtained at all resonant frequencies as seen in
Figures 8.B.3.A-15b and 8.B.3.A-17 Equipment damping values ranged from about 3.5% at 20 Hz to about
0.4% at 200 Hz. These resonant frequencies are in the frequency range where all soil testing was con-
ducted. Just as in the TS test, the values of equipment damping measured with the metal specimens

were subtracted from the damping measurements in all RC tests with soil specimens at the same

resonant frequencies. Strain amplitude had a negligible effect on equipment damping as shown in

Figure 8.B.3.A-18.

Finally, to be sure that coil-magnet interaction was the cause of the equipment damping problem, free-
vibration tests were conducted with the RC equipment. In this case, however, all coils were removed
which required that the drive plate be excited by hand in free vibration. The resulting tests with drive
plate #4 are given in Figure 8.B.3.A-19 by the solid square symbols. As seen, damping values less than
0.1% were measured. These values are considered to equal zero in this work, indicating the coil-magnet
interaction is mainly the cause of the equipment damping.
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Figure 8.B.3.A-17
Equipment damping measured in the resonant column test.
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Effect of strain amplitude on equipment damping measured in the resonant column test.
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Comparison of equipment damping measured in free vibration RC tests with and without the
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APPENDIX 8.B.3.B
DYNAMIC TESTS OF SAMPLE T1 FROM BOREHOLE CH1,
DEPTH = 18 FT (5.5 M)
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Figure 8.B.3.B-1

Variation in low-amplitude shear modulus with magnitude and duration of isotropic pressure from

resonant column tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T1 from borehole CH2.

8.B.3-67



Effective Confining Pressure, 6., KPa

5678910 2 3 45678300 2 3 4

'Ivv--vvvv"-'v-l T

10000 r——T1 T

Lotung, Taiwan

Depth = 18 (5.5 m)

Siit(ML)

L Freq. Range = 36.9-58.8 Hz

| Time = 1000 min. at each 0o
Drive Plate #5

Tvrrrry

LELEL

h th O NGO
L]

g

edN ™ ‘sninpopy Jeays apnijdwy-moT

1000

llll'

LJ

h O OO NODO

10

Low-Amplitude Shear Modulus, G, kst

100 L
100

1000 16000
Effective Confining Pressure, o, pst

Figure 8.B.3.B-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests
of sample T1 from borehole CH2.
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Figure 8.B.3.B-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-7
Variation in shear modulus with shearing strain at an effective confining pressure of 5 psi (720 psf,

35 kPa) from RCTS tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 5 psi
(720 psf, 35 kPa) from RCTS tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 5 psi
(720 psf, 35 kPa) from RCTS tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
5 psi (720 psf, 35 kPa) from RCTS tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T1 from borehole CH2.

8.B.3-77



14. ¥ L 1 IIIIII 1 | 11 llllll 1 R rllllTI i T s IIIIL'
E Lotung, Taiwan i ini 3
- Depth = 18 (5.5 m) B 5 psi(=720 psf =35 KPa) 3
E Silt(ML) a 10 psi(=1.44 kst =69 KPa) 3
e 12f Time=1day o 20 psi(=2.88 ksf =138 KPa) 3
t - Drive Plate #5 3
Q E [Shearing strains in RC test were 3
°_ - |corrected to the average of the 3
O 10| [first 3 free-vibration cycles. =
r—4 - - L
o a .
« 3 ° 3
=y : 3
£ : 3
=8 8 — -
E : o :
o o A 3
8 _f = ]
s °F | E
© . :
= = & r
° C ] 3
g 3
I ' s
5 5 [ 3
< 2F L 3 E
C (@) 3
C ‘m -
- osmosm © E
0: 1 1 i llllll L L4 llllll 1 1 llllLLl 1 1 llllllfﬂ:I

10* 10° 10 10" 10°

Shearing Strain, v, %

Figure 8.B.3.B-14

Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure

of 5 psi (720 psf, 35 kPa) from RCTS tests of sample T1 from borehole CH2.
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Figure 8.B.3.B-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 5 psi (720 psf, 35 kPa) from RCTS tests of sample T1 from borehole CH2.
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APPENDIX 8.B.3.C
DYNAMIC TESTS OF SAMPLE T5 FROM BOREHOLE CH2,
DEPTH = 34.5 FT (10.5 M)

3000 ¥ L] IIlllll T T ¥ Tlllll ] 1 IYIIIF] 1 T T Uil
- Lotung, Taiwan ' ini E 140
- Depth = 34.5 f£(10.5 m) o 3 psi(=432 pst=21 KPa) 3
L Silt(ML) ® 5psi(=720 pst=35 KPa) 4
- Drive Plate #5 A 10 psi(=1.44 ksf=69 KPa) 3
« 2500 - Y<0.001% a 20 psi(=2.88 ksf=138 KPa) g 120
2 i o 40 psi(=5.76 kst=276 KPa) 3
it :
05 . :
: < 100
@ 2000 - o 0000 © 3
S - © ' 3
3 i 3
= i 3 80
= i .
S 1500 E
& i :
3 - a Aa as 4 sl E %
- - 3
= 1000 |- S
E P
g i A A ADAOA .
o - 2
- 500 = m EmE B 0 - 3
- L 0 ooo O 0O oood 320
0- 'l ' 1111!!1 ] 11 llllll 1 11 141111 I i1 lllll.'l o
1 10 100 1000 10000

Duration of Confinement, t, Minutes

Figure 8.B.3.C-1 :
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Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure

from resonant column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T5 from borehole CH2.
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Figure 8.B.3.C-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T5 from
borehole CH2.
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Figure 8.B.3.C-7

Variation in shear modulus with shearing strain at an effective confining pressure of 10 psi (1.44 ksf,

69 kPa) from RCTS tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 10 psi

(1.44 ksf, 69 kPa) from RCTS tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-10
Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 10 psi

(1.44 ksf, 69 kPa) from RCTS tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T5 from borehole CH2.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T5 from borehole CH2.
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Figure 8.B.3.C-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 10 psi (1.44 ksf, 69 kPa) from RCTS tests of sample T5 from borehole CH2.
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APPENDIX 8.B.3.D
DYNAMIC TESTS OF SAMPLE T4 FROM BOREHOLE CH1,
DEPTH =59 FT (18.0 M)
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Figure 8.B.3.D-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-2
Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining

pressure from resonant column tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T4 from borehole CHI.
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Figure 8.B.3.D-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T4 from borehole CH1.
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Figure 8.B.3.D-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-7 :
Variation in shear modulus with shearing strain at an effective confining pressure of 16 psi (2.3 ksf,
110 kPa) from RCTS tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 16 psi
(2.3 ksf, 110 kPa) from RCTS tests of sample T4 from borehole CHI.
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Figure 8.B.3.D-9
Variation in material damping ratio with shearing strain at an effective confining pressure of 16 psi

(2.3 ksf, 110 kPa) from RCTS tests of sample T4 from borehole CHI1.
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Figure 8.B.3.D-10
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
16 psi (2.3 ksf, 110 kPa) from RCTS tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-11
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 16 psi (2.3 ksf, 110 kPa) from RCTS tests of sample T4 from borehole CH1.
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Figure 8.B.3.D-12
Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 16 psi (2.3 ksf, 110 kPa) from TCTS tests of sample T4 from borehole CH1.
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APPENDIX 8.B.3.E
DYNAMIC TESTS OF SAMPLE T7 FROM BOREHOLE CH1,
DEPTH = 82 FT (25.0 M)
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Figure 8.B.3.E-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T7 from borehole CHI1.
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Figure 8.B.3.E-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T7 from borehole CH1.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T7 from borehole CH1.
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Figure 8.B.3.E-5
Variation in low-amplitude material damping ratio with effective confmmg pressure from resonant

column tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T7 from

borehole CH1.
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Variation in shear modulus with shearing strain at an effective confining pressure of 22 psi (3.17 ksf,
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152 kPa) from RCTS tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 22 psi
(3.17 ksf, 152 kPa) from RCTS tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-9
Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T7 from borehole CH1.
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Comparison of the variation in normalized shear modulus with shearing strain and effective confining
pressure from resonant column tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 22 psi
(3.17 ksf, 152 kPa) from RCTS tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of
22 psi (3.17 ksf, 152 kPa) from RCTS tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant
column tests of sample T7 from borehole CH1.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective
confining pressure from resonant column tests of sample T7 from borehole CH1.
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Figure 8.B.3.E-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 22 psi (3.17 ksf, 152 kPa) from RCTS tests of sample T7 from borehole CH1.

8.B.3-123



5 LR RALI LEL) lllllll LI | "IIII‘I LI llITlll LEBAI lIlllll LB ALY 10.0

[ Lotung, Taiwan
~ Depth = 82 ft(25 m)
- Clayey Silt(ML)
L Cp =22 psi(=3.17 ksf=152 KPa)
- Time = 1 day
ar- Drive Plate #5 -1 125
0 C B y=0.001 %(TS 1st)
o~ - A Y=0.01%(TS 1st)
(o C
g r o
E 3;— — 16.7 i
o> - =
c - <
£ L a A A A A A "
E ¥ 2
Q 2 PP
S RC (s}
| b .
2 -
S C
= u
- |
1| C I | C I (] 50
0 C 94 Llllllll $ l[llllll ' llllllll 1 lllll.ll 13 lllllll 4 111}
0.001 0.01 0.1 1 10 100 1000

Loading Frequency, f, Hz

Figure 8.B.3.E-16
Variation in material damping ratio with loading frequency and shearing strain at an effective confining

pressure of 22 psi (3.17 ksf, 152 kPa) from RCTS tests of sample T7 from borehole CH1.
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APPENDIX 8.B.3.F
DYNAMIC TESTS OF SAMPLE T9 FROM BOREHOLE CH2,
DEPTH = 93.5 FT (28.5 M)
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Figure 8.B.3.F-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T9 from borehole CH2.
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Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T9 from borehole CH2.
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Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T9 from borehole CH2.
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Figure 8.B.3.F-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant
column tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T9 from

borehole CH2.
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Figure 8.B.3.F-7
Variation in shear modulus with shearing strain at an effective confining pressure of 25 psi (3.6 ksf,
172 kPa) from RCTS tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 25 psi
(3.6 ksf, 172 kPa) from RCTS tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-9

Variation in shear modulus with shearing strain and effective confining pressure from resonant column

tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-10

Comparison of variation in normalized shear modulus with shearmg strain and effective confining

pressure from resonant column tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-11
Variation in material damping ratio with shearing strain at an effective confining pressure of 25 psi
(3.6 ksf, 172 kPa) from RCTS tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-12
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

25 psi (3.6 ksf, 172 kPa) from RCTS tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-13
Variation in material damping ratio with shearing strain and effective confining pressure from resonant

column tests of sample T9 from borehole CH2.
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Comparison of the variation in normalized material damping ratio with shearing strain and effective

confining pressure from resonant column tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-15
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 25 psi (3.6 ksf, 172 kPa) from RCTS tests of sample T9 from borehole CH2.
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Figure 8.B.3.F-16

Variation in material damping ratio with loading frequency and shearing strain at an effective confining
pressure of 25 psi (3.6 ksf, 172 kPa) from RCTS tests of sample T9 from borehole CH2.
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APPENDIX 8.B.3.G
DYNAMIC TESTS OF SAMPLE T8 FROM BOREHOLE CHf1,
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Figure 8.B.3.G-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T8 from borehole CH1.
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Figure 8.B.3.G-2

Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T8 from borehole CHI.
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Figure 8.B.3.G-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant
column tests of sample T8 from borehole CHI1.

8.B.3-143



Effective Confining Pressure, 6,, KPa

1
108 Prrrerd it o2 1 are O o

<
-

Lotung, Taiwan

Depth = 113 ft (34.5 m)
Claye'x_‘Sdt (ML)

Freq. Range = 30.3-51.8 Hz_
Time = 1000 min. at each &,
Drive Plate #5

N L b O~

g

8
BdN **“n'‘sninpopy 1e3ys epnijjdiny-mo

Low-Amplitude Shear Modulus,G,,,,, kst
)

[ X KL

10

102
102

10° 10 10°
Effective Confining Pressure, o, pst

Figure 8.B.3.G-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T8 from borehole CHI1.
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Figure 8.B.3.G-5
Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T8 from borehole CH1.
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Figure 8.B.3.G-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T8 from

borehole CH1.
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Figure 8.B.3.G-7
Variation in shear modulus with shearing strain at an effective confining pressure of 30 psi (4.3 ksf,
207 kPa) from RCTS tests of sample T8 from borehole CH1.
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Figure 8.B.3.G-8
Variation in normalized shear modulus with shearing strain at an effective confining pressure of 30 psi

(4.3 ksf, 207 kPa) from RCTS tests of sample T8 from borehole CHI1.
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Figure 8.B.3.G-9 »
Variation in material damping ratio with shearing strain at an effective confining pressure of 30 psi
(4.3 ksf, 207 kPa) from RCTS tests of sample T8 from borehole CHI1.
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Figure 8.B.3.G-10
Variation in normalized material damping ratio with shearing strain at an effective confining pressure of

30 psi (4.3 ksf, 207 kPa) from RCTS tests of sample T8 from borehole CH1.
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Figure 8.B.G-11
Variation in shear modulus with loading frequency and shearing strain at an effective confining pressure
of 30 psi (4.3 ksf, 207 kPa) from RCTS tests of sample T8 from borehole CH1.
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Figure 8.B.3.G-12
Variation in material damping ratio with loading frequency and shearing strain at an effective confining

pressure of 30 psi (4.3 ksf, 207 kPa) from RCTS tests of sample T8 from borehole CH1.
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APPENDIX 8.B.3.H
DYNAMIC TESTS OF SAMPLE T11 FROM BOREHOLE CH2,
DEPTH =133 FT (40.5 M)
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Figure 8.B.3.H-1
Variation in low-amplitude shear modulus with magnitude and duration of isotropic confining pressure
from resonant column tests of sample T11 from borehole CH2.
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Variation in low-amplitude material damping ratio with magnitude and duration of isotropic confining
pressure from resonant column tests of sample T11 from borehole CH2.
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Figure 8.B.3.H-3
Variation in void ratio with magnitude and duration of isotropic confining pressure from resonant

column tests of sample T11 from borehole CH2.
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10556 10 2 3 45¢ 100 2 3 456 1000 2 3 4
'llll""'l L 3 1 ITIIII""U ¥ L llIlT""'l LI
7 Lotung, Taiwan
6 Depth = 133 {t(40.5 m)
5k Clayey Silt(ML) -
B 4F Freq. Range = 55.4-120 Hz _ o
. [ Time = 1000 min. at each oo €
- ol Drive Plate #5 1000 >
(0] ! 3
- ! -1
S 10| g
) . a
° [ o
: 3 -
- Ar o
o 3} 2
o
$ | £
.‘:‘ 10° - .5
e qf 0
6-
I &
4= E,
g 3l =
- S
2k 10
10°
102 10° 10 10°

Effective Confining Pressure, o, , pst

Figure 8.B.3.H-4
Variation in low-amplitude shear modulus with effective confining pressure from resonant column tests

of sample T11 from borehole CH2.
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Figure 8.B.3.H-5
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Variation in low-amplitude material damping ratio with effective confining pressure from resonant

column tests of sample T11 from borehole CH2.
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Figure 8.B.3.H-6
Variation in void ratio with effective confining pressure from resonant column tests of sample T11 from

borehole CH2.
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