
11 Probabilistic Seismic Hazard Analysis

In Chapter 3, a simplified numerical example of a probabilistic hazard calculation was

presented without using equations.  In this chapter, the mathematical framework for

PSHA is presented.  Many of the concepts discussed in Chapter 3 will be repeated in this

chapter but they will be explained in terms of equations.

In Chapter 3, discrete approximations were used for the variability in the earthquake

magintude, source location, and ground motion.  In this chapter, the hazard analysis will

be developed using continuous functions.  This means that instead of probabilities, we

will use probability density functions as described in Chapter 4.

11.1 Mathematical Framework

The basic methodology of PSHA involves computing the how often a specified level of

ground motion will be exceeded at the site. Specifically, in a PSHA the annual rate of

events, ν, that produce a ground motion parameter, Sa, that exceeds a specified level, z, at

the site is computed.  This annual rate is also called the "annual rate of exceedance".  The

inverse of ν is called the "return period".   (Note: we use Sa here for the ground motion

parameter since most hazard is computed for spectral acceleration, but this can be any

ground motion parameter)

11.1.1 Point Sources

For simplicity, we begin with the equation for the seismic hazard using point sources.

Traditionally, the equation for a seismic hazard analysis due to a single source, i, has

been given by

(11.1)

where r is the distance from the source to the site, M is earthquake magnitude, Ni(Mmin)

is the annual rate of earthquake with magnitude greater than or equal to Mmin, Mmaxi is
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ν i(Sa > z) = Ni(Mmin ) fmi
(M) f ri (r)

m=M min

M max i

∫
r= 0

∞

∫ P(Sa > z |M,r) dr dM



the maximum magnitude, fm(m), and fr(r) are probability density functions for the

magnitude, and distance which describe the relative rates of different earthquake

scenarios.  P(Sa>z|M,r) is the conditional probability of observing a ground motion

parameter Sa greater than z for a given earthquake magnitude and distance.

The form of eq. (11.1) leads to one of the common misunderstandings of PSHA.

Looking at eq. (11.1), we can see the magnitude and distance for the scenario, but the

number of standard deviation of the ground motion is not explicitly shown.  As discussed

in section 2.5, a common misunderstanding of PSHA is that it is thought to only consider

the variability in the earthquake magnitude and source-to-site distance.

The ground motion variability is contained in the P(Sa>z|M,r) term:
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P(Sa > z |M,r)= fSa (Sa,M,r)dSa
z

∞

∫ (11.2)

where fSa(Sa,M,r) is the probability density function for the ground motion as defined by

the ground motion model.  Typically, the ground motion variability is modeled by a

lognormal distribution.  The ground motion model gives the median ground motion and

the standard deviation in log units (see Chapter 7).

We can rewrite eq (11.2) in terms of the number of standard deviations above or below

the median:
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P(A > z |M,r)= fε (ε)dε
ε*(M ,r,z )

∞

∫ (11.3)

where ε is the number of standard deviations of the ground motion (above the median

ground motion), fε(ε) is the probability density function for the number of standard

deviations (a standard normal distribution with mean 0 and variance 1),  and ε* is the

number of standard deviations of the ground motion that leads to ground motion level z

given M and r.  The ε* is given by



€ 

ε* (M,r,z) =
ln(z) − ln ˆ A (M,r,Site)( )
σ M, ˆ A (M,r,Site),Site( )

(11.4)

where 

€ 

ˆ A (M,r,Site)  is the median ground motion for a given M and r based on the ground

motion model (e.g. the median from the attenuation relation), and 

€ 

σ M, ˆ A (M,r,Site),Site( )
is the standard deviation of the ground motion model in natural log units.  In eq. (11.4),

we have assumed that the ground motion model only depends on M, r, and site condition

for simplicity.  Many modern ground motion models will include additional terms such as

style-of-faulting and depth to top of rupture.  The standard deviation in eq (11.4) is shown

as being dependent on the magnitude, the amplitude of the median ground motion, and

the site condition.  As discussed in Chapter 7, many modern ground motion models

include a standard deviation that depends on the one or more of these parameters.

The integral in eq. (11.3) is just the complementary cumulative standard normal

distribution given in statistical tables:
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P(A > z |M,r)= fε (ε)dε
ε*

∞

∫ =1−Φ(ε*) (11.5)

Substituting eq. (11.5) into eq. (11.1), gives the hazard for point sources in the form

typically used in PSHA calculations:

(11.6)

While this form of the hazard integral is computationaly efficient, it still obscures the

aleatory ground motion variability.   As an alternative, eq. (11.1) can be rewritten to show

the ground motion variability explicitly:

(11.7)
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where P(Sa>z|m,r,ε) is the probability that the ground motion exceeds the test level z for

magnitude M,  distance r, and number of standard deviations ε.  For a given magnitude,

distance, and ε, the ground motion from the attenuation relation is defined.  Therefore,

the term P(Sa>z|m,r,ε) is either 0 or 1.  That is, in this form, the probability term just sorts

the scenarios into those that produce ground motions greater than z and those that

produce ground motions smaller than z.

An advantage of this from of the hazard integral is that it can be directly related to the

deterministic approach.  In the deterministic approach, the magnitude, distance, and

number of standard deviation of the ground motion need to be specified.  The hazard

integral in eq. (11.7) is simply constructing a suite of all possible deterministic scenarios

in terms of (M, r, ε) triplets.  The rate of each scenario is

(11.8)

The integrals in eq (11.8) are simply summing up the rates of the scenarios that produce

ground motions greater than z.  Using the P(Sa>z|M,r,ε) term is just short hand for

ranking the scenarios by ground motion level as discussed in chapter 3.

Another advantage of this form is that is shows that the aleatory variability in the

magnitude, distance, and number of standard deviations of the ground motion are all

treated in the same way.  In eq. (11.8), each aleatory variable is specified by a probability

density function. A rule for PSHA is that all aleatory variability is modeled by pdfs and

there should be an integral over each pdf.  While the integral over the ground motion pdf

is implied in eq. (11.1), the explict form in eq (11.7) is easier to follow.

Mathematically, eq. (11.7) is identical to eq. (11.6).  In computing the hazard, the form in

eq. (11.6) is more efficient, but we will use the expanded form in this discussion.  In

application, the more efficient form is used.
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11.1.2 Extended Sources (Faults)

For planar sources (e.g. faults), we need to consider the finite dimension and location of

the rupture in to compute the closest distance which is used by the ground motion

models.  The scenario earthquake is specified in terms of the rupture dimension (rupture

length and rupture width), and the rupture location (location along strike and location

down dip).  Given the rupture width, W, rupture length, L, location along strike, Locx,

and location down dip, Locy, the closest distance from the source to the site can be

computed.  These four aleatory variables replace the single aleatory variable distance

shown in eq (11.7).  Typically, the rupture area and rupture width are used rather than the

rupture length and rupture width because for many cases, the ruture width will be limited

by the fault width, implying a correlation of length and width.  This correlation can be

considered implictly by computing the rupture length given the rupture area and rupture

width. (That is, first compute the rupture area and width and then back calculcate the

length.) For extended sources, the hazard integral is given by

(11.9)

where fW(M,W), fRA(M,RA), fLocx(x), fLcy(y) are probability density functions for the

rupture width, rupture area, location of the rupture along strike and location of the rupture

down dip, respectively.  In eq. (11.9), x and y give the location of the rupture in terms of

the fraction of the fault length and fault width, respectively (e.g. x=0 is one end of the

fault and x=1.0 is the other end of the fault).

The hazard integral in eq. (11.8) appears complicated, but keep in mind that all that

integrals in eq. (11.8) are doing is defining a complete set of possible earthquake

scenarios (magnitude, rupture dimension, and rupture location) with the full range of

possible ground motions.  The probability term, P(Sa>z|...) sorts out the scenarios with

ground motions that exceed the test value z.  A PSHA is similar to a large bookkeeping

exercise.  Instead of developing a small number of deterministic scenarios, a PSHA will
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develop thousands or millions of scenarios.  We just need to keep track of each of the

scenarios and its rate.

11.1.3 Hazard From Multiple Sources

For multiple seismic sources, the total annual rate of events with ground motions that

exceed z at the site is the sum of the annual rate of events from the individual sources

(assuming that the sources are independent).

(11.10)

where Nsource is the total number of fault and areal sources. The rates are summed up over

all sources because we are interested in how often severe shaking occurs at the site,

regardless of what source caused the ground motion.  Distinctions between ground

motions from different magnitudes and distances are considered through the deaggreation

discussed later in section 11.4.

11.2 Probability Models

To convert the annual rate of events to a probability, we need to consider the probability

that the ground motion exceeds test level z at least once during a specified time interval.

Two alternative models of earthquake recurrence probabilities were discussed in Chapter

6: the Poisson model and the renewal model.  By far, the most common assumption in

practice is the Poisson model.

For a Poisson process, the probability of at least one occurrence of ground motion level z

in T years is given by

P(Sa>z|T)  =  1 - exp( -ν(Sa>z)T ) (11.11)

(see chapter 4).  For T=1 year, this probability is the annual probability.
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v(Sa > z)= ν i(Sa > z)
i=1

Nsource

∑



The hazard level is often given in terms of a probability of being exceeded in T years:  for

example, 10% chance of being exceeded in 50 years.  Using the Poisson assumption, we

can convert this probability to an equivalent annual rate.
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ν(Sa > z)=
−ln 1− P(Sa > z |T)( )

T
(11.12)

For T=50 years, and P=0.1 (10%), then the rate, ν, is 0.0021/yr.  The inverse of this rate

is 475 years which is called the return period.  The return period is slightly smaller than

500 yrs because there is a chance of more than one event exceeding the target level in 50

years.

If the renewal model is used, the probability of an earthquake occuring is computed for a

specfied time period (e.g. the next 50 years).  In this case, it is common to convert the

earthquake probability from the renewal model to an equivalent Poisson rate:
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ν i
eqi(M > m1)=

−ln 1− Pi(M > m1 |T1 > T > T2)( )
T2 −T1

(11.13)

Using this equivalent Possion rate, the hazard can be computed using standard software

with the Poisson assumption.

11.3 Logic Trees

Scientific (epistemic) uncertainty is considered by using alternative models and/or

parameter values for the probability density functions in eq. (11.9), the attenuation

relation, and the activity rate.  For each alternative model, the hazard is recomputed

resulting in a suite of alternative hazard curves.  Scientific uncertainty is typically

handled using a logic tree approach for specifying the alternative models for the density

functions, attenuation relations, and activity rates.



Branches on logic trees represent either-or branches.  The branches represent alternative

credible models.  The weights on the branch represent the judgement about the credibility

of the alternative models.  These weights are often called probabilities, but they are better

treated as evaluations of the relative merits of the alternative models (Abrahamson and

Bommer, 2005).  Branches in logic trees do not represent “sometimes” branches (e.g.

randomness).  For example, if a fault sometimes ruptures in individual segments and

sometimes ruptures as multiple segments, then this variability is randomness that should

be part of the probability density function in the hazard integral.  The branches on the

logic tree should reflect alternative estimates of the parameters and models included in

the hazard integral.

To help keep track of the difference between what goes on the logic tree and what goes

into the probability density functions, the terms “aleatory” variability and “epistemic”

uncertainty are used (see chapter 5).  Aleatory variability is the randomness part and

epistemic uncertainty is the uncertainty part.  The reason for using aleatory and epistemic

rather than “randomness” and “uncertainty” is that randomness and uncertainty are too

common of terms that are often used interchangeably.  Using the terms aleatory and

epistemic leads to a more consistent use of terminology.



11.4 Deaggregation of Hazard

The hazard curve gives the combined effect of all magnitudes and distances on the

probability of exceeding a given ground motion level.  Since all of the sources,

magnitudes, and distances are mixed together, it is difficult to get an intuitive

understanding of what is controlling the hazard from the hazard curve by itself. To

provide insight into what events are the most important for the hazard at a given ground

motion level, the hazard curve is broken down into its contributions from different

earthquake scenarios. This process is called deaggregation (e.g. Bazzurro and Cornell,

1999).

In a hazard calculation, there is a large number of scenarios considered (e.g. thousands or

millions of scenarios).  To reduce this large number of scenarios to a managable number,

similar scenarios are grouped together.  A key issue is what consistutues “similar”

scenarios.  Typically, little thought has been given to the grouping of the scenarios.  Most

haard studies use equal spacing in magnitude space and distance space.  This may not be

appropriate for a specific project.  The selection of the grouping of scenarios should be

defined by the engineers conducting the analysis of the structure (Abrahamson, 2006).

In a deaggregation, the fractional contribution of different scenario groups to the total

hazard is computed.  The most common form of deaggregation is a two-dimensional

deaggregation in magnitude and distance bins.  Mathmatically, this is given by:

(11.14)

The deaggreation is normalized such that it sums to unity for all scenario groups.

Formally, it is the conditional probability of the ground motion being generated by a

earthquake with magnitude in the range M1-M2 and distance in the range R1-R2.)
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Deagg(Sa > z,M1 < M < M2,R1 < R < R2) =
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The deaggregation by magnitude and distance bins allows the dominant scenario

earthquakes (magnitude and distance pair) to be identified.  The results of the

deaggregation will be different for different probability levels (e.g. 100 yr vs 1000 yr

return periods) and for different spectral periods as shown in the following example.

Using the sources shown in Figure 11-1, the results of an example hazard calculation for

PGA and T=1 sec spectral acceleration are shown in Figure 11-2.  The deaggreation at

return periods of 500 and 10,000 years for T=1 sec are shown in Figures 11-3a and 11-3b.

For the 500 year return period, the hazard is dominated by large distant earthquakes, but

for the 10,000 year return period, the hazard is domianted by nearly moderate magnitude

earthquakes.

11.5.1 Mode vs Median

The dominant scenario can be characterized by an average of the deaggregation.  Two

types of averages are considered: the mean and the mode.  The mean magntiude and

mean distance are the weighted averages with the weights given by the deaggregation.

The equation for the mean magnitude, for example, is given by multiplying by the

magnitude inside the hazard integral:

(11.15)

The mean distance is computed in a similar manner:

(11.16)

The mean has advanatages in that it is defined unambigously and is simple to compute.

The disadvantage is that it may give a value that does not correspond to a realistic
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scenario.  For example, using the deaggregation shown in Figure 11-3a , the mean

distance would be about 20-30 km which does not correspond to either of the fault

sources.

The mode is the most likely value.  It is given by the scenario group that has the largest

deaggegation value.  The mode has the advantage it will always correspond to a realistic

source.  The disadvantage is that the mode depends on the grouping of the scenarios, so it

is not robust.

11.5 Rates of Scenarios

In addition to defining the controlling scenarios, the deaggregation can also be used to

convert the hazard results back to rates of occurrence of specific scenarios and ground

motion levels.   The hazard curve gives the rate of exceeding a ground motion level.

Therefore, subtracting the hazard at two ground motion levels gives the rate of

occurrence of ground motions between the two levels:
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ν(z1 < Sa < z2)=v(Sa > z1) − v(Sa > z2) (11.17)

Since the deaggregation gives the fractional contribution to the hazard, then multiplying

the hazard by the deaggreagation gives the rate of exceedance from the specified

magnitude and distance range:
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ν(Sa > z,M1 < m < M2,R1 < R < R2)=
ν(Sa > z)Deagg(Sa > z,M1 < M < M2,R1 < R < R2)

    (11.18)

The rate of occurrence is of a ground motion level from a specific scenario group is

given by subtracting this rate of exceedance:
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ν(z1 < Sa < z2,M1 < m < M2,R1 < R < R2)=
ν(Sa > z1)Deagg(Sa > z1,M1 < M < M2,R1 < R < R2)
−ν(Sa > z2)Deagg(Sa > z2,M1 < M < M2,R1 < R < R2)

(11.19)



11.6 Uniform Hazard Spectra

A common method for developing design spectra based on the probabilistic approach is

uniform hazard spectra (also called equal hazard spectra).  A uniform hazard spectrum

(UHS) is developed by first computing the hazard at a suite of spectral periods using

response spectral attenuation relations.  That is, the hazard is computed independently for

each spectral period.  For a selected return period, the ground motion for each spectral

period is measured from the hazard curves.  These ground motions are then plotted at

their respective spectral periods to form the uniform hazard spectrum.  This process is

shown graphically in Figure 11-4.

The term “uniform hazard spectrum” is used because there is an equal probability of

exceeding the ground motion at any period.  Since the hazard is computed independently

for each spectral period, in general, a uniform hazard spectrum does not represent the

spectrum of any single earthquake.  It is common to find that the high frequency (f>5 Hz)

ground motions are controlled by nearby moderate magnitude earthquakes, whereas, the

long period (T>1 sec) ground motions are controlled by distant large magnitude

earthquakes.

The “mixing” of earthquakes in the UHS is often cited as a disadvantage of PSHA.  There

is nothing in the PSHA method that requires using a UHS.  Based on the deaggregation,

multiple spectra (for each important source) can be developed.  The reason for using a

UHS rather than using multiple spectra for the individual scenarios is to reduce the

number of engineering analyses required.  A deterministic analysis has the same issue.  If

one deterministic scenario leads to the largest spectral values for long spectral periods

and a different deterministic scenario leads to the largest spectral values for short spectral

periods, it is common practice to develop a single design spectrum that envelopes the two

deterministic spectra.  In this case, the design spectrum also does not represent a single

earthquake.



The choice of using a UHS rather than multiple spectra for the different scenarios is the

decision of the engineering analyst, not the hazard analyst.  If it is worth the additional

analysis costs to avoid exciting a broad period range in a single evaluation, then the

engineer should request multiple scenario spectra from the hazard analyst.

In practice, the hazard analyst often only provides the UHS to the engineer in the hazard

report.  A hazard report should also include a comparison of the UHS with the spectra

from the individual representative events indentified by the deaggregation.  This gives the

engineer the information needed to make a decision whether to evaluate multiple

scenarios one at a time or to envelope the spectra from the multiple scenarios to reduce

the number of analyses required. The development of scenario spectra is dicussed further

in Chapter 12.



Figure 11-1.  Sources used in the example hazard

Figure11-2.  Hazard curves for the example.



Figure 11.3a.  Deaggregation for T=1 sec for a return period of 475 years.

Figure 11.3b.  Deaggregation for T=1 sec for a return period of 10,000 years.



Figure 11-4.  Procedure for developing equal hazard spectra.  In this example, a return
period of 500 years used.


