
5-1

5 Aleatory Variability and Epistemic Uncertainty

Aleatory variability and epistemic uncertainty are terms used in seismic hazard analysis

that are not commonly used in other fields, but the concepts are well known.

Aleatory variability is the natural randomness in a process.  For discrete variables, the

randomness is parameterized by the probability of each possible value.  For continuous

variables, the randomness is parameterized by the probability density function.

Epistemic uncertainty is the scientific uncertainty in the model of the process.  It is due to

limited data and knowledge.  The epistemic uncertainty is characterized by alternative

models.  For discrete random variables, the epistemic uncertainty is modelled by

alternative probability distributions.  For continuous random variabiles, the epstemic

uncertainty is modelled by alternative probability density functions.  In addition, there is

epistemic uncertainty in parameters that are not random by have only a single correct (but

unknown) value.

The terms randomness and uncertainty have also been used for aleatory variability and

epistemic uncertainty, respectively; however, these terms are commonly used in generic

ways.  As a result, they are often mixed up when used in hazard analysis.  The terms

“aleatory variability” and “epistemic uncertainty” do not roll off the tongue easily.  This

unfamiliarity causes people to stop and think about what they are trying to say before

using them.  The overall goal is to have a clear terminology that will avoid

misunderstandings.

5.1 Example of the Unknown Die

As a simple example, consider the problem of rolling a die.  Assume that you have not

seen the die, but you have seen the results of four previous rolls.  Those four previous

rolls came up 2, 3, 3, and 4.  What is the model for this die?
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As one approach to developing a model, you may consider that although there are only

four observations from this die, you have previous experience with dice.  Most dice have

six sides that are equally likely.  The sparse data set is consistent with a standard die. So

you construct a model of the die in which the aleatory is given by a uniform distribution

with values between 1 and 6 (model 1 in Table 5-1).

An alternative approach to developing the model could be purely empirical. Given the

four observations are all between 2 and 4, you could develop a model that assumes that

this is a five-sided loaded die so that it comes up 3 most often, 2 and 4 less often, and 1

and 5 least often.  This model is shown as model 2 in Table 51.

Which one of these two models is correct?  We don’t know until additional data is

collected (e.g. more rolls of the die).  With time, as more rolls of the die become

available, we will be able to distinguish between these two models.  These two models

represent epistemic uncertainty in the properties of the die.

As additional rolls of the die become available, the aleatory variability does not go to

zero.  Rather, our estimate of the aleatory variability becomes more accurate.  It may

increase or decrease from our original estimate.  In contrast, the epistemic uncertainty

will go to zero as the number of rolls of the die becomes large.  If we had a large enough

number of rolls, we could develop a very accurate empirical model of the die.

Table 5-1.  Example of aleatory variability and epistemic
uncertainty for a die with unknown properties.

Probability
Value Model 1 Model 2

1 1/6 0.1
2 1/6 0.2
3 1/6 0.4
4 1/6 0.2
5 1/6 0.1
6 1/6 0.0

The alternative models may not be equally credible.  In this example, it may be judged to

be more likely that the die is a standard six-sided die than some special loaded five-sided
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die.   The alternative models are assigned weights using logic trees as discussed in detail

in section 5.3.

This example demonstrates the situation that is common in developing models for

seismic hazard analysis.  Often we have a very small amount of data that is from the

particular region under study.  The two alternatives are to build a model based on the

very limited, but region-specific data (e.g. model 2 above) or to use a larger set of data

from regions that we consider to be analogous to the region under study (model 1 above).

5.2 Is it Aleatory Variability or Epistemic Uncertainty?

The idea of distinguishing between aleatory variability and epistemic uncertainty sounds

simple enough and if seismic hazard analyses were about throwing dice it would be easy.

In practice, the distinction between aleatory variability and epistemic uncertainty can get

confusing.

In distinguishing between aleatory variability and epistemic uncertainty it can be helpful

to think how you would describe, in words, the parameter under consideration.  If the

parameter sometimes has one value and sometimes has another values, then it has

aleatory variability.  That is, the variability is random.  If the parameter always has either

one value or another, but we are not sure which it is, then the parameter has epistemic

uncertainty.

As an example, consider a fault with a postulated segmentation point.  One model may

consider that the segmentation point is an impenetrable barrier and an alternative model

may consider that the segmentation point does not exist.  In this case, the existence of the

segmentation point is epistemic uncertainty.  There are two alternative segmentation

models for the fault.  The fault is either unsegmented or it is segmented and always stops

the rupture.

Another model of the fault segmentation may consider that the segmentation point exists,

but only stops some of the ruptures.  In this case, there is aleatory variability in rupture
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mode.  Sometimes the rupture is stopped at the segmentation point and sometimes the

rupture breaks through the segmentation point.  In this model, the epistemic uncertainty is

in the probability that the rupture will stop at the segmentation point.  For example, one

model may have a 30% probability that the rupture is stopped at the segmentation point,

whereas, another model may have a 10% probability that the rupture is stopped at the

segmentation point.

One recurring issue in separating aleatory variability and epistemic uncertainty concerns

the limits of what could be learned in the future.  There is a school of thought that there is

no aleatory variability in the earthquake process.  In principle, earthquakes are

responding to stresses and strains in the earth.  Eventually, given enough time, we will

collect enough data to develop detailed models of the earthquake process that give the

magnitudes and locations of future earthquakes.  Since the earthquake process is in theory

knowable, there is only epistemic uncertainty due to our lack of knowledge which will be

reduced in time.

A similar issue comes up for ground motion attenuation relations.  Ground motion

attenuation relations typically only use distance from the site to the source to describe the

wave propagation.  The detailed 3-D structure of the crust is knowable (or empirical

Green’s functions could be collected).  In principle, with time, a wave propagation model

could be determined for each specific source and site.  One could argue that the

variability of the ground motion attenuation relation that is due to the complexities of the

wave propagation should be epistemic uncertainty since it can be determined as

additional data become available.

In practise, we have not used this concept of what is potentially knowable long in the

future in the estimation of epistemic uncertainty and aleatory variability. Rather, the

aleatory variability is determined in the context of the models and is based on the

parameterization used in the model.  With this approach, a model that only uses distance

for the wave propagation will include the variability due to different wave propagation

effects as part of the aleatory variability even though it is potentially knowable.
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With this approach, the aleatory variability can be reduced as additional fixed parameters

are added to the model.  For example, consider the case of attenuation relations.  In the

1980s, attenuation relations began to include a parameter for the style-of-faulting (e.g.

strike-slip or reverse) as part of the model.  Since there was a systematic difference in the

median ground motion from strike-slip and reverse faults, the inclusion of this factor

reduced the standard deviation (aleatory variability) of the attenuation relation.  For faults

with a single predominate style-of-faulting, then this factor is fixed for future earthquakes

and there is a net reduction in the aleatory variability.  The penalty for the additional

parameter is that in the short term, there is additional epistemic uncertainty as to the value

of the style-of-faulting factor term.

What then happens to the models that did not include this additional parameter?  If the

new parameterization results in a significant reduction in the aleatory variability, then the

previous models that did not use this improved parameterization should be down-

weighted, until they are finally given zero weight (e.g. they are superseeded).

The addition of parameters to the model that are not fixed for future events does not lead

to a reduction of the aleatory variability.  For example, consider a new attenuation

relation that includes stress-drop as a parameter.  The addition of this parameter results in

a reduction of the standard deviation determined from a regression analysis; however,

since the stress-drop is not fixed for future earthquakes, it must then be randomized for

future earthquakes.  The result is that there is no systematic reduction in aleatory

variability.  (There is still a net benfit as the source of the aleatory varibaility is better

understood.  This is discussed further in sections 6, 7, and 8).
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5.3 Logic Trees

Epistemic uncertainty is considered by using alternative models and/or parameter values

for the source characterization and ground motion attenuation relation. For each

combination of alternative models, the hazard is recomputed resulting in a suite of

alternative hazard curves. In seismic hazard analyses, it is common to use logic trees to

handle the epistemic uncertainty.

A logic tree consists of a series of branches that describe the alternative models and/or

parameter values.  At each branch, there is a set of branch tips that represent the

alternative credible models or parameter.  The weights on the branch tips represent the

judgment about the credibility of the alternative models.  The branch tip weights must

sum to unity at each branch point.  Only epistemic uncertainty should be on the logic tree.

A common error in seismic hazard analyses is to put aleatory variability on some of the

branches.

The weights on the branches of logic trees are often called probabilities, but they are

better characterized as weights that reflect the current scientific judgments in the relative

merit in the alternative models.  Calling these weights “probabilities” implies a

mathematical basis that does not exist.  Epistemic uncertainty is due to limited data (often

very limited).   In seismic hazard analyses, evaluating the alternative models involves

considering alternative simplified physical models, data from analogous regions, and

empirical observations.  These are subjective.  In some cases, uncertainties are developed

from statistical evaluations, but that is not usually the case.

Prior to the use of logic tress, the approach was to develop the single best model.  In

controversial projects, there would be disagreement between the project sponsors,

regulators, and interveners as to which model was the best model.  Logic trees were used

to allow multiple models to be considered with weights that reflected the degree of belief

of the scientific community (or at least the seismic hazard analyst) in the alternative

models.  In this way, all proposed models that were credible could be considered without

having to select a single best model.
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Using logic trees results in a suite of alternative of the estimates of the hazard each with

an associated weight.

5.4 Underestimation of Epistemic Uncertainty

In the above discussion, the logic trees are interpreted to represent the scientific

uncertainty in the source characterization and ground motion attenuation; however, in

practice, logic trees represent the range of available alternative models.  In many cases,

the range of available models will not cover the epistemic uncertainty.  In developing the

epistemic uncertainty, the guiding concept should be that less data means larger

uncertainty.  This seems like a simple concept, yet it is often not followed.

Consider two faults, one that has had many studies and another that has had only a single

study.  In current practice, the logic tree will consider only available models (sometime

this is further restricted to models published in referred journals).  So for the well-studied

fault, there will be several alternative models available, but for the poorly studied fault

there will be only a single model available.  By considering only the one available model

for the poorly studied fault, 100% weight is given to that model, implying that there is no

uncertainty in the model.  In contrast, for the well-studied fault, there will be several

alternative models available over which the weights will be spread.  The result of this

approach is that the computed epistemic uncertainty will be larger for the fault with more

data.

An additional consequence of the current practice is that as additional research is

conducted, additional models will be developed, leading to more branches on the logic

tree and larger uncertainty in the computed hazard.  Over time this is what has happened.

In many cases, our estimates of the epistemic uncertainty have increased, not decreased

as additional data have been collected and models developed (ref).  This reflects a

tendency of scientists to underestimate epistemic uncertainty in regions with little data.

But how can you develop uncertainty estimates with no data?  Recall our guiding concept

is that less data means larger uncertainty.  Regions with more data and more models can
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be used as a lower bound of the uncertainty for regions with little or no data.  What is

needed is a set of generic uncertainties that can be used with simple models to capture the

possible range of behaviors of more complex models for regions with little or no data.


