
Transfer (Frequency Response) Functions

To characterize the response of a SDOF system to forced vibrations it is useful to define a
transfer function or frequency response function between the input and output of the
system.
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By normalizing the output of the system with respect to the input, we emphasize the
characteristics and response of the system over the characteristics of the output or input.

Let's define a transfer function between the steady-state displacement output and force
input of a SDOF system undergoing forced vibrations:
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Notice that the transfer function is a complex-valued quantity meaning the response of the
SDOF system can be characterized by a magnitude and phase. Figure 6 shows the
magnitude and phase plots for a SDOF system expressed as a function of the normalized
frequency, nωΩ .



Figure 6 Magnitude and Phase of Transfer Function

Equations 45c and 45d and Figure 6 can be used to provide insight into the parameters
that control the response of a SDOF in different frequency ranges. Note in Equations 45c
and d that when Ω→0, the transfer function reduces to:
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Thus, the stiffness of the system controls the response at low frequency. As Ω→ωn, the
transfer function reduces to:
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and the response of the system is controlled to a large extent by the damping in the
system. Finally, as Ω becomes large, the transfer function becomes:
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and the response of the system is largely controlled by the mass (the inertia) of the system.

Other Forms of the Transfer Function

The transfer function defined above was expressed in terms of the displacement. Other
response quantities such as the velocity and acceleration of the mass can also be used to
define a transfer function for various applications. The names associated with each of
these transfer or frequency response functions are given in Table 1.

Table 1 Transfer Functions Used in Vibration Analysis (after Inman, 1994)

Response Parameter Transfer Function Inverse Transfer Function

Displacement Receptance Dynamic Stiffness

Velocity Mobility Impedance

Acceleration Inertance Apparent Mass

 Ground Displacement and Acceleration

Consider the situation in which the system
vibrates because of motion introduced at the
base of the system, not by a force applied to
the mass. The system is shown at the right.

The forces exerted by the spring and the
dashpot on the mass are functions of the
relative displacement and velocity between
the mass and the base of the system. The
absolute acceleration of the mass is still used
(F=ma).

Thus, the equation of motion of the system
becomes:

mu c u z k u z&& ( & &) ( )+ − + − = 0 (49)

The right hand side is set equal to zero because there are no external forces applied to the
mass. Rearranging yields:
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mu cu ku cz kz&& & &+ + = + (50)

We can assume that the ground motion is given by a harmonic function:

z t Ae i t( ) = Ω (51)

and that the response of the mass is given by:

u t Be i t( ) = Ω (52)

After differentiating, substituting, and solving, we obtain the solution for the steady-state
displacement of the mass:
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We can also define a transfer function between the displacement of the mass and the input
ground displacement:
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As before we can express the complex-valued transfer function in terms of the magnitude
and phase:



Figure 7 Magnitude and Phase of Transfer Function for Ground Displacement



In many earthquake engineering problems,
the ground motion input at the base of the
system is specified in terms of a ground
acceleration.

&&( )z t Ce i t= Ω (55)

Furthermore, the response parameter of
interest is the relative displacement between
the base and the mass. The latter is important
because it is the relative displacements that
are proportional to the forces induced in the
structure.
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Recall that the equation of motion is:

mu c u z k u z&& ( & &) ( )+ − + − = 0 (49 again)

After substituting Eq. 56 we obtain:

m y z cy ky(&& &&) &+ + + = 0 (55a)

or

my cy ky mz&& & &&+ + = − (57b)

After solving for y(t) we obtain:
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Finally, we can define the transfer function between the ground acceleration and the
relative displacement of the mass and base:
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Figure 8 Magnitude and Phase of Transfer Function for Ground Acceleration


