
Application: Nondestructive Testing of Drilled Shaft Foundations

Nondestructive tests offer a rapid, economical means of evaluating the characteristics of
deep foundations (i.e. drilled shafts, piles, auger-cast piles). There are two broad
applications:

• quality control testing of new foundations and

• determining the type and depth of "unknown" foundations.

For the first application, nondestructive tests are used to check for defects in cast-in-place
foundations such as drilled shafts. The figures on the next page illustrate two methods of
constructing cast-in-place foundations. Defects in the constructed foundation may arise
from one of the following problems that could adversely affect the performance of the
shaft (O'Neill 1992).

• drilling,

• casing,

• slurry, or

• concreting problems.

Nondestructive tests are ideally suited to use as a construction quality control tool to
detect the presence or absence of a void arising from one or more of these problems.

Sonic Echo

Conceptually, the sonic echo method is very simple. The end of the shaft and any defects
that exist along its length cause reflections of the seismic waves as they propagate
downward through the shaft. By observing the time required for these reflections to return
to the top of the shaft, the depth to the reflector can be determined:
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where z is the depth to a reflector (a defect or the bottom of the shaft), Vb is the
longitudinal wave velocity in concrete, and ∆t is the travel time of the reflected wave.
Since ∆t is a two-way travel time, the numerator in Eq. 1 must be divided by two.

The acceleration time history recorded at the top of a drilled shaft is shown in Figure 1.
There is a clearly identified reflection that occurs 9.47 msec after the initial impact. The
longitudinal wave velocity of the concrete measured on 15-cm by 30-cm (6-in. by 12-in.)



test cylinders was equal to 3700 m/sec (12,130 ft/sec). Using the observed travel time and
compression wave velocity, the depth to the reflector is calculated to be 17.5 m (57.4 ft).
The depth agrees well with the design length of 16.9 m (55.5 ft). No other reflections can
be identified in the acceleration record.
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Figure 1 Sonic Echo Test Results

In the absence of a measured value of Vb, it is common to assume the velocity of the
concrete using the guidelines shown in Table 1.

Table 1 Suggested Compression Wave Velocity Ratings for Concrete Quality

Compression Wave Velocity
(ft/sec)

General Concrete Condition

Above 13,500 Excellent
10,800 to 13,500 Good
9,000 to 10,800 Questionable
6,300 to 9,000 Poor
Below 6,300 Very Poor

Sonic Mobility

Theory

Wave propagation in a long, slender foundation can be reasonably modelled using the one-
dimensional wave equation. Recall that the one-dimensional wave equation is:
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Consider a rod of finite length L with a free-fixed boundary conditions. This corresponds
to a drilled shaft foundation end bearing into rock.

Consider a solution to the wave equation of the form:
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with U(x) of the form:
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At x = 0 (the fixed end), U = 0 and at x = L, 
∂
∂
U
x

= 0 . The first boundary condition implies

A = 0. The second results in:
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This equation is satisfied only if:
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To determine the length of the shaft (or possibly the depth to a significant defect), we can
rearrange Eq. 7 as follows:
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where Lfixed denotes the length of the drilled shaft with a fixed end condition. We can
derive similar expressions for other boundary conditions. For example, suppose that the
drilled shaft is "floating" and relies primarily on side friction for resistance. In this case, the
drilled shaft is more accurately modeled as a "free" end. The corresponding equation for
this condition is:
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Clearly, the length is not only a function of the natural frequency of the  drilled shaft in
longitudinal vibration (and the longitudinal velocity), but also of the end condition. This
raises an important practical question because the end (bottom) of the shaft is not perfectly
fixed or free and, in fact, may not be known.

To solve this practical problem, consider the difference between any two adjacent natural
frequencies. For the fixed end condition:
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After rearranging, we obtain:
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For the free end condition:
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which is the same result we obtained for the fixed end. Thus, although the natural
frequencies differ for various boundary conditions, the difference between adjacent natural
frequencies is the same for different boundary conditions. We can take advantage of this
fact to determine the length of a drilled shaft without having to assume or know the
boundary conditions at the bottom of the shaft.

Testing Procedure

In the sonic mobility method, the force and acceleration time histories are transformed to
the frequency domain using the FFT analyzer. The results are the spectra, P(f) and A(f), of
the force and acceleration, respectively. The mobility is a frequency response function
defined as the particle velocity observed at the top of the shaft normalized by the force:
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where V(f) is the particle velocity spectrum, ω = 2πf is the circular frequency, and i is -1.
The particle velocity spectrum is obtained by integrating the particle acceleration spectrum
in the frequency domain as shown in the right-hand term of Eq. 13. The mobility is a
complex quantity, but typically only the magnitude is plotted. The figure below shows the
mobility curve measured for a drilled shaft. The shaft length and depth to defects, average
diameter, and stiffness are determined from the curve using the following interpretive
procedures.
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The length of the shaft and the depth to any defects are determined from the spacing
between peaks, ∆f:
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In the figure, the spacing between adjacent peaks is 107.5 Hz. This corresponds to a shaft
length of 17.2 m (56.4 ft) which also agrees well with the design length of 16.9 m (55.5
ft). Defects in the shaft would appear as more widely spaced peaks with larger amplitudes.
No other peaks are evident in the figure, indicating that the shaft has no major defects.

The average impedance of the shaft can be determined using the average value of the
mobility at higher frequencies:
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where N is the average value of the mobility at high frequencies, ρc is the mass density of
concrete, and A is the average cross-sectional area of the concrete. In the figure the
average value of the mobility from 200 to 1000 Hz is approximately 1.5 x 10-4 mm/sec/N.
Using the measured Vb and a measured unit weight of 23.5 kN/m3 (150 pcf), the average
diameter of the shaft is 979 mm (38.5 in.).

The low-strain stiffness is calculated from the slope of the initial portion of the mobility
plot:
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where Kmob is the low-strain stiffness, fM is the frequency of a point on the initial slope of
the curve, and term in the denominator of Eq. 15 is the magnitude of the mobility at that
frequency. The low-strain stiffness varies depending on the frequency used in Eq. 15. For
this example, the stiffness varies from 2.0 MN/mm to 2.7 MN/mm (11,421 kips/in. to
15,420 kips/in.) when frequencies from 25 to 50 Hz are used in Eq. 15.

The low-strain stiffness is often several times larger than the working load stiffness
because of the difference in strain levels. For this reason, the low-strain stiffness is often
used as a relative measurement. Once a typical value is established for the shafts at a site,
shafts that have stiffnesses that differ significantly from the typical value can be identified
as suspect.


