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SEISMIC PROTECTIVE SYSTEMS: 
SEISMIC ISOLATION

Developed by:
Michael D. Symans, PhD
Rensselaer Polytechnic Institute
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Major Objectives

• Illustrate why use of seismic isolation systems 
may be beneficial

• Provide overview of types of seismic isolation 
systems available

• Describe behavior, modeling, and analysis of 
structures with seismic isolation systems

• Review building code requirements
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Outline
Seismic Base Isolation

– Configuration and Qualitative Behavior of Isolated Building

– Objectives of Seismic Isolation Systems 

– Effects of Base Isolation on Seismic Response 

– Implications of Soil Conditions

– Applicability and Example Applications of Isolation Systems

– Description and Mathematical Modeling of Seismic
Isolation Bearings
• Elastomeric Bearings
• Sliding Bearings

– Modeling of Seismic Isolation Bearings in Computer Software

– Code Provisions for Base Isolation
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Configuration of Building Structure 
with Base Isolation System
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Three-Dimensional View of Building
Structure with Base Isolation System

Sliding
Bearing

Elastomeric
Bearing
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Installed Seismic Isolation Bearings

Elastomeric
Bearing

Sliding Bearing
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Behavior of Building Structure
with Base Isolation System

Base-Isolated StructureConventional Structure
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Objectives of Seismic Isolation Systems

• Enhance performance of structures at
all hazard levels by: 

Minimizing interruption of use of facility
(e.g., Immediate Occupancy Performance Level)

Reducing damaging deformations in structural and 
nonstructural components

Reducing acceleration response to minimize contents-
related damage
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Characteristics of Well-Designed
Seismic Isolation Systems

• Flexibility to increase period of vibration and 
thus reduce force response

• Energy dissipation to control the isolation 
system displacement

• Rigidity under low load levels such as wind and 
minor earthquakes
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Increase Period of Vibration of Structure
to Reduce Base Shear
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Increase of period increases displacement
demand (now concentrated at base)
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Applicability of Base Isolation Systems

MOST EFFECTIVE
- Structure on Stiff Soil
- Structure with Low Fundamental Period 
(Low-Rise Building)

LEAST EFFECTIVE
- Structure on Soft Soil
- Structure with High Fundamental Period 
(High-Rise Building)
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First Implementation of Seismic Isolation

Foothill Community Law and Justice Center,
Rancho Cucamonga, CA

- Application to new building in 1985
- 12 miles from San Andreas fault
- Four stories + basement + penthouse
- Steel braced frame
- Weight = 29,300 kips
- 98 High damping elastomeric bearings
- 2 sec fundamental lateral period
- 0.1 sec vertical period
- +/- 16 inches displacement capacity
- Damping ratio = 10 to 20% 

(dependent on shear strain)
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Application of Seismic Isolation to Retrofit Projects
Motivating Factors:

- Historical Building Preservation
(minimize modification/destruction of building)

- Maintain Functionality
(building remains operational after earthquake)

- Design Economy
(seismic isolation may be most economic solution)

- Investment Protection
(long-term economic loss reduced)

- Content Protection
(Value of contents may be greater than structure)
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Example of Seismic Isolation Retrofit

U.S. Court of Appeals,
San Francisco, CA
- Original construction started in 
1905
- Significant historical and 

architectural value
- Four stories + basement
- Steel-framed superstructure
- Weight = 120,000 kips
- Granite exterior & marble, plaster,  

and hardwood interior
- Damaged in 1989 Loma Prieta EQ
- Seismic retrofit in 1994
- 256 Sliding bearings (FPS)
- Displacement capacity = +/-14 in.

Isolation Bearing
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Types of Seismic Isolation Bearings

Elastomeric Bearings
- Low-Damping Natural or Synthetic Rubber Bearing
- High-Damping Natural Rubber Bearing
- Lead-Rubber Bearing 
(Low damping natural rubber with lead core)

Sliding Bearings
- Flat Sliding Bearing
- Spherical Sliding Bearing
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Geometry of Elastomeric Bearings

Major Components:
- Rubber Layers: Provide lateral flexibility
- Steel Shims: Provide vertical stiffness to support building weight 

while limiting lateral bulging of rubber
- Lead plug: Provides source of energy dissipation
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Low Damping Natural or Synthetic 
Rubber Bearings

Linear behavior in shear for shear 
strains up to and exceeding 100%.

Damping ratio = 2 to 3% 

Advantages: 
- Simple to manufacture
- Easy to model
- Response not strongly sensitive to  

rate of loading, history of loading, 
temperature, and aging.

Disadvantage:
Need supplemental damping system
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High-Damping Natural Rubber Bearings
• Maximum shear strain = 200 to 350%

• Damping increased by adding extrafine
carbon black, oils or resins, and other 
proprietary fillers

• Damping ratio = 10 to 20% at shear 
strains of 100%

• Shear modulus = 50 to 200 psi

• Effective Stiffness and Damping depend on:
- Elastomer and fillers
- Contact pressure
- Velocity of loading
- Load history (scragging)
- Temperature
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Lead-Rubber Bearings
• Invented in 1975 in New Zealand and

used extensively in New Zealand, Japan, 
and the United States.

• Low damping rubber combined with 
central lead core

• Shear modulus = 85 to 100 psi at 100%
shear strain

• Maximum shear strain = 125 to 200% 
(since max. shear strain is typically less than 
200%, variations in properties are not as 
significant as for high-damping rubber bearings)

• Solid lead cylinder is 
press-fitted into central
hole of elastomeric bearing

• Lead yield stress = 1500 psi
(results in high initial stiffness)

• Yield stress reduces with repeated cycling
due to temperature rise

• Hysteretic response is  strongly displacement-dependent
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Elastomeric Bearing Hysteresis Loops
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Shear Deformation of Elastomeric Bearing

- Bearing Manufactured by Scougal Rubber Corporation.
- Test Performed at SUNY Buffalo.
- Shear strain shown is approximately 100%.

Deformed
Shape

Load
Cell
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25.4 cm (10 in.)

1.3 m (4.3 ft)

Full-Scale Bearing Prior to Dynamic Testing
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Testing of Full-Scale Elastomeric Bearing at UC San Diego
- Compressive load = 4000 kips
- 400% Shear Strain [1.0 m (40 in.) lateral displacement]
- Video shown at 16 x actual speed of 1.0 in/sec

Cyclic Testing of Elastomeric Bearing

Bearing Manufactured by
Dynamic Isolation Systems Inc.
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Note: Damping force 90o out of phase with elastic force.
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Experimental Hysteresis Loops 
of Low Damping Rubber Bearing

Low Damping Rubber Bearing
- Reduced scale bearing for ¼-scale building frame
- Diameter and height approx. 5 in. 
- Prototype fundamental period of building = 1.6 sec
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Shear Storage Modulus of High-Damping Natural Rubber
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Effective Damping Ratio of High-Damping Natural Rubber
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Linear Mathematical Model for
Natural and Synthetic Rubber Bearings
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Equivalent Linear Properties from Idealized
Bilinear Hysteresis Loop
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Refined Nonlinear Mathematical Model for
Natural and Synthetic Rubber Bearings
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Spherical Sliding Bearing:
Friction Pendulum System (FPS)

Stainless Steel 
Concave Surface

Concave 
Plate

Articulated 
Slider With

PTFE 
Coating

Concave Plate and Slider
for FPS Bridge Bearing
- Seismic retrofit of Benicia-Martinez Bridge, 

San Francisco, CA
- 7.5 to 13 ft diameters
- Displ. Capacity of 13 ft bearings = +/- 4.3 ft

Housing Plate 
With PTFE 

Coating Above 
Slider
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Free-Body Diagram 
of Top Plate and 
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Radius of Curvature of FPS Bearings

+
R
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Note: Bearing will not recenter if
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FPS Bearing
- Reduced-scale bearing for ¼-scale building frame
- R = 18.6 in; D = 11 in.; H = 2.5 in. (reduced scale)
- Prototype fundamental period of building = 2.75 sec (R = 74.4 in. = 6.2 ft)

Stick-Slip

Stick-Slip
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Velocity-Dependence of Coefficient of Friction
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Pressure-Dependence of Coefficient of Friction

Pressure- and Velocity-Dependence
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Pressure-Dependence of Coefficient of Friction
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Figure is based on studies of PTFE-based 
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Evaluation of Dynamic Behavior
of Base-Isolated Structures

• Isolation Systems are Almost Always 
Nonlinear and Often Strongly Nonlinear

• Equivalent Linear Static Analysis Using 
Effective Bearing Properties is Commonly
Utilized for Preliminary Design

• Final Design Should be Performed Using
Nonlinear Dynamic Response History Analysis

Instructional Material Complementing FEMA 451, Design Examples Seismic Isolation 15 - 7- 52

F

u
Keff

K

Equivalent Linear Properties of FPS Isolation Bearings

( ) ( ) ( )usgnWtu
R
WtF &μ+=

u
W

R
W

u
FKeff

μ
+==

Area = Ed

( ) ( )uR
R2

uK5.04
Wu4

E4
E

2
effs

d
eff +

===
μπ
μ

π
μ

π
ξ

Effective (Secant) Stiffness 
at Displacement u

Effective Damping Ratio
at Displacement u

Effective linear properties are displacement-dependent.  Therefore, 
design using effective linear properties is an iterative process.
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Seismic Analysis using Nonlinear
and Equivalent Linear Models
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Flat Sliding Bearings

• Flat Bearings:  

• Bearings do NOT increase natural period of structure;
Rather they limit the shear force transferred into the
superstructure

• Requires supplemental self-centering mechanism
to prevent permanent isolation system displacement

• Not commonly used in building structures
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Examples of Computer Software for
Analysis of Base-Isolated Structures

• ETABS
Linear and nonlinear analysis of buildings

• SAP2000
General purpose linear and nonlinear analysis

• DRAIN-2D
Two-dimensional nonlinear analysis

• 3D-BASIS 
Analysis of base-isolated buildings
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Simplified Evaluation of Dynamic Behavior
of Base-Isolated Structures

Fixed-Base

Base-Isolated

Mode 1
(T = Tf)

Mode 1
(T = TI1)

Mode 2
(T = TI2)

Eigenproblem 
Analysis
Results:

TI1 >> Tf

TI1 >> TI2
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Modeling Isolation Bearings Using the 
SAP2000 NLLINK Element
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Modeling Isolation Bearings Using the 
SAP2000 NLLINK Element

ISOLATOR2 Property – Biaxial Friction Pendulum Isolator
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Displacement, D3
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Mechanical Model of FPS Bearing in SAP2000

ISOLATOR2 Property 
– Biaxial Friction Pendulum Isolator

Fo
rc

e,
 F

Displacement, DSpherical Slider

D(t)

F(t)

Hookean Spring Sliding Friction Element

P

P
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Forces in Biaxial FPS Isolator
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32 k,k Elastic Shear Stiffnesses (stiffness prior to sliding)

Note:  Flat Bearings: Set R = 0 for both directions 
(restoring forces will be set equal to zero).

Cylindrical Bearings: Set R = 0 for one direction.
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Historical Development of Code 
Provisions for Base Isolated Structures

• Late 1980’s: BSB (Building Safety Board of California)
“An Acceptable Method for Design and Review of Hospital Buildings

Utilizing Base Isolation”

• 1986 SEAONC “Tentative Seismic Isolation Design Requirements”
- Yellow book [emphasized equivalent lateral force (static) design]

• 1990 SEAOC “Recommended Lateral Force Requirements and Commentary”
- Blue Book
- Appendix 1L: “Tentative General Requirements for the Design and

Construction of Seismic-Isolated Structures”

•1991 and 1994 Uniform Building Code
- Appendix entitled: “Earthquake Regulations for Seismic-Isolated Structures”
- Nearly identical to 1990 SEAOC Blue Book

• 1994 NERHP Recommended Provisions for Seismic Regulations for
New Buildings (FEMA 222A – Provisions; FEMA 223A - Commentary)

- Section 2.6: Provisions for Seismically Isolated Structures
- Based on 1994 UBC but modified for strength design and national applicability
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Historical Development of Code 
Provisions for Base Isolated Structures

• 1996 SEAOC “Recommended Lateral Force Requirements and Commentary”
- Chapter 1, Sections 150 to 161 (chapters/sections parallel those of 1994 UBC)

• 1997 Uniform Building Code
- Appendix entitled: “Earthquake Regulations for Seismic-Isolated Structures”
- Essentially the same as 1991 and 1994 UBC

• 1997 NEHRP Recommended Provisions for Seismic Regulations for
New Buildings and Other Structures

(FEMA 302 – Provisions; FEMA 303 - Commentary)
- Chapter 13: Seismically Isolated Structures Design Requirements
- Based on 1997 UBC (almost identical)

• 1997 NEHRP Guidelines for the Seismic Rehabilitation of Buildings
(FEMA 273 – Guidelines; FEMA 274 - Commentary)

- Chapter 9: Seismic Isolation and Energy Dissipation
- Introduces Nonlinear Static (pushover) Analysis Procedure
- Isolation system design is similar to that for new buildings but superstructure

design considers differences between new and existing structures
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Historical Development of Code 
Provisions for Base Isolated Structures

• 1999 SEAOC “Recommended Lateral Force Requirements and Commentary”
- Chapter 1, Sections 150 to 161 (chapters/sections parallel those of 1997 UBC)

• 2000 NEHRP Recommended Provisions for Seismic Regulations for 
New Buildings and Other Structures
(FEMA 368 – Provisions; FEMA 369 - Commentary)

- Chapter 13: Seismically Isolated Structures Design Requirements

• 2000 Prestandard and Commentary for the Seismic Rehabilitation 
of Buildings (FEMA 356)

- Chapter 9: Seismic Isolation and Energy Dissipation

• 2000 International Building Code (IBC)
- Section 1623: Seismically Isolated Structures
- Based on 1997 NEHRP Provisions
- Similar to FEMA 356 since same key persons prepared documents
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General Philosophy of Building 
Code Provisions

• No specific isolation systems are described

• All isolation systems must:
• Remain stable at the required displacement
• Provide increasing resistance with increasing
displacement

• Have non-degrading properties under repeated
cyclic loading

• Have quantifiable engineering parameters 
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• Minor and Moderate Earthquakes
• No damage to structural elements
• No damage to nonstructural components
• No damage to building contents

• Major Earthquakes
• No failure of isolation system
• No significant damage to structural elements
• No extensive damage to nonstructural components
• No major disruption to facility function
• Life-Safety

Design Objectives of 2000 NEHRP and
2000 IBC Base Isolation Provisions
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2000 NEHRP and 2000 IBC Base Isolation Provisions

General Design Approach
EQ for Superstructure Design
Design Earthquake
10%/50 yr = 475-yr return period
- Loads reduced by up to a factor of 2 to allow for limited
Inelastic response; a similar fixed-base structure would
be designed for loads reduced by a factor of up to 8

EQ for Isolation System Design (and testing)
Maximum Considered Earthquake
2%/50 yr = 2,500-yr return period
- No force reduction permitted for design of isolation system
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• Equivalent Lateral Response Procedure
• Applicable for final design under limited circumstances
• Provides lower bound limits on isolation system
displacement and superstructure forces

• Useful for preliminary design

• Dynamic Lateral Response Procedure
• May be used for design of any isolated structure
• Must be used if structure is geometrically complex

or very flexible
• Two procedures:

- Response Spectrum Analysis (linear)
- Response-History Analysis (linear or nonlinear)

Analysis Procedures of 2000 NEHRP
and 2000 IBC Base Isolation Provisions

Presented
Herein
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Isolation System Displacement (Translation Only)

D

D1D
2D B

TS
4

gD ⎟
⎠
⎞

⎜
⎝
⎛=

π

Design Displacement Design Spectral Acceleration 
at One-Second Period (g)

Effective Period of Isolated
Structure at Design Displacement

Damping Reduction Factor
for Isolation System at Design
Displacement

Design is evaluated at two levels:
Design Earthquake: 10% / 50 yr = 475-yr return period
Maximum Considered Earthquake: 2% / 50 yr = 2,500-yr return period
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gk
W2T
minD

D π=

Effective Period

Total Seismic Dead Load Weight

Minimum Effective Stiffness of Isolation
System at Design Displacement

Minimum stiffness used so as to produce largest period
and thus most conservative design displacement. 

Effective Isolation Period
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Isolation System Displacement 
(Translation and Rotation)
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Total Design Displacement

Eccentricity (actual + accidental)
Between CM of Superstructure 
and CR of Isolation System

Shortest and Longest Plan
Dimensions of Building

Distance Between CR of Isolation 
System and Element of Interest

Note: A smaller total design displacement may be used (but not less than 1.1DD)
provided that the isolation system can be shown to resist torsion accordingly.

Use only if isolation
system has uniform 
spatial distribution of
lateral stiffness
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Isolation System and Elements
Below Isolation System

Maximum Effective Isolation System Stiffness

Base Shear Force

DmaxDb DkV = No Force Reduction; Therefore Elastic
Response Below Isolation System
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2
67.2
RR

8
3R I ≤==

Response Modification Factor 
for Isolated Superstructure

Shear Force Above Isolation System

I

DmaxD
S R

DkV =

Structural Elements Above
Isolation System

Ensures essentially elastic 
superstructure response

Minimum Values of VS:
• Base shear force for design of conventional structure

of fixed-base period TD
• Shear force for wind design.
• 1.5 times shear force that activates isolation system.
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Design Shear Force for Conventional
and Isolated Structures
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Conventional
Difference Results in
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Response for Isolated
Structures
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Example: Evaluation of Design Shear Force
Base Shear Coefficient

Conventional Structure Having
Period of One-Second or More

Example:
• Fire Station (I = 1.5)
• Conventional: Special steel moment frame (R = 8.5) and T = 1.0 sec
• Isolated: TD = 2.0 sec, damping ratio = 10% (BD = 1.2), RI = 2

Isolated Structure

Result: Isolating structure results in 18% increase
in shear force for design of superstructure18.1
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Lateral Force at Level x of the Superstructure

Distribution of Shear Force

∑
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hwVF Standard Inverted Triangular
Distribution of Base Shear
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Displacement at Level x of Superstructure

Interstory Drift Limit

I
C xed

x
δδ =

Deflection Amplification Factor Displacement at Level x of
Superstructure Based on 
Elastic Analysis

Occupancy Importance Factor

Note:  For Isolated Structures, Cd is replaced by RI.

sxx h015.0≤Δ

Interstory Drift of Story x

Height of Story x
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DmaxDb DkV =

Displacement and Shear Force Design Spectrum
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Required Tests of Isolation System
Prototype Tests on Two Full-Size Specimens 
of Each Predominant Type of Isolation Bearing

• Check Wind Effects
• 20 fully reversed cycles at force corresponding to wind design force

• Establish Displacement-Dependent Effective Stiffness and Damping
• 3 fully reversed cycles at 0.25DD
• 3 fully reversed cycles at 0.5DD
• 3 fully reversed cycles at 1.0DD
• 3 fully reversed cycles at 1.0DM
• 3 fully reversed cycles at 1.0 DTM

• Check Stability
• Maximum and minimum vertical load at 1.0 DTM

• Check Durability
• 30SD1BD/SDS, but not less than 10, fully reversed cycles at 1.0 DTD

For cyclic tests, bearings must carry specified vertical (dead and live) loads
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Effective Linear Properties of 
Isolation Bearing from Cyclic Testing
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Effective Linear Properties of Isolation 
System from Cyclic Testing
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Minimum Effective Stiffness
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Use smallest value from cyclic tests

Absolute Maximum Force at Positive DD over 3 Cycles of Motion at 1.0DD

Instructional Material Complementing FEMA 451, Design Examples Seismic Isolation 15 - 7- 86

Additional Issues to Consider
• Buckling and stability of elastomeric bearings

• High-strain stiffening of elastomeric bearings

• Longevity (time-dependence) of bearing materials
(Property Modification Factors to appear in 2003 NEHRP Provisions)

• Displacement capacity of non-structural
components that cross isolation plane

• Displacement capacity of building moat

• Second-order (P-Δ) effects on framing above
and below isolation system
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Example Design of Seismic Isolation
System Using 2000 NEHRP Provisions

Seismically Isolated Structures by Charles A. Kircher
Chapter 11 of Guide to the Application of the 2000 NEHRP 
Provisions; Note: The Guide is in final editing.  Chapter 11 is in the handouts.

Structure and Isolation System
- “Hypothetical” Emergency Operations Center, San Fran., CA
- Three-Story Steel Braced-Frame with Penthouse
- High-Damping Elastomeric Bearings

Design Topics Presented:
- Determination of seismic design parameters
- Preliminary design of superstructure and isolation system
- Dynamic analysis of isolated structure
- Specification of isolation system design and testing criteria


