SEISMIC PROTECTIVE SYSTEMS: SEISMIC ISOLATION

Developed by: Michael D. Symans, PhD Rensselaer Polytechnic Institute

Instructional Material Complementing FEMA 451, Design Examples

Seismic Isolation 15 - 7- 1

Major Objectives

- Illustrate why use of seismic isolation systems may be beneficial
- Provide overview of types of seismic isolation systems available
- Describe behavior, modeling, and analysis of structures with seismic isolation systems
- Review building code requirements

Outline

Seismic Base Isolation

- Configuration and Qualitative Behavior of Isolated Building
- Objectives of Seismic Isolation Systems
- Effects of Base Isolation on Seismic Response
- Implications of Soil Conditions
- Applicability and Example Applications of Isolation Systems
- Description and Mathematical Modeling of Seismic Isolation Bearings
 - Elastomeric Bearings
 - Sliding Bearings
- Modeling of Seismic Isolation Bearings in Computer Software
- Code Provisions for Base Isolation

Configuration of Building Structure with Base Isolation System

Three-Dimensional View of Building Structure with Base Isolation System

Installed Seismic Isolation Bearings

Elastomeric Bearing

Behavior of Building Structure with Base Isolation System

Conventional Structure

Base-Isolated Structure

Objectives of Seismic Isolation Systems

- Enhance performance of structures at all hazard levels by:
 - Minimizing interruption of use of facility (e.g., Immediate Occupancy Performance Level)
 - Reducing damaging deformations in structural and nonstructural components
 - Reducing acceleration response to minimize contentsrelated damage

Characteristics of Well-Designed Seismic Isolation Systems

- Flexibility to increase period of vibration and thus reduce force response
- Energy dissipation to control the isolation system displacement
- Rigidity under low load levels such as wind and minor earthquakes

Effect of Seismic Isolation (ADRS Perspective)

Effect of Seismic Isolation with Supplemental Dampers (ADRS Perspective)

Spectral Displacement, Inches

Instructional Material Complementing FEMA 451, Design Examples

Seismic Isolation 15 - 7- 11

Effect of Seismic Isolation (Acceleration Response Spectrum Perspective)

Increase Period of Vibration of Structure to Reduce Base Shear

Effect of Seismic Isolation (Displacement Response Spectrum Perspective)

Increase of period increases displacement demand (now concentrated at base)

Effect of Soil Conditions on Isolated Structure Response

Applicability of Base Isolation Systems

MOST EFFECTIVE

- Structure on Stiff Soil
- Structure with Low Fundamental Period (Low-Rise Building)

LEAST EFFECTIVE

- Structure on Soft Soil
- Structure with High Fundamental Period (High-Rise Building)

First Implementation of Seismic Isolation

Foothill Community Law and Justice Center, Rancho Cucamonga, CA

- Application to new building in 1985
- 12 miles from San Andreas fault
- Four stories + basement + penthouse
- Steel braced frame
- Weight = 29,300 kips
- 98 High damping elastomeric bearings
- 2 sec fundamental lateral period
- 0.1 sec vertical period
- +/- 16 inches displacement capacity
- Damping ratio = 10 to 20% (dependent on shear strain)

Application of Seismic Isolation to Retrofit Projects Motivating Factors:

- Historical Building Preservation (minimize modification/destruction of building)
- Maintain Functionality (building remains operational after earthquake)
- Design Economy (seismic isolation may be most economic solution)
- Investment Protection (long-term economic loss reduced)
- Content Protection (Value of contents may be greater than structure)

Example of Seismic Isolation Retrofit

U.S. Court of Appeals, San Francisco, CA

- Original construction started in 1905
- Significant historical and architectural value
- Four stories + basement
- Steel-framed superstructure
- Weight = 120,000 kips
- Granite exterior & marble, plaster, and hardwood interior
- Damaged in 1989 Loma Prieta EQ
- Seismic retrofit in 1994
- 256 Sliding bearings (FPS)
- Displacement capacity = +/-14 in.

Types of Seismic Isolation Bearings

Elastomeric Bearings

- Low-Damping Natural or Synthetic Rubber Bearing
- High-Damping Natural Rubber Bearing
- Lead-Rubber Bearing (Low damping natural rubber with lead core)

Sliding Bearings

- Flat Sliding Bearing
- Spherical Sliding Bearing

Geometry of Elastomeric Bearings

Major Components:

- Rubber Layers: Provide lateral flexibility
- Steel Shims: Provide vertical stiffness to support building weight while limiting lateral bulging of rubber
- Lead plug: Provides source of energy dissipation

Low Damping Natural or Synthetic Rubber Bearings

Linear behavior in shear for shear strains up to and exceeding 100%.

Damping ratio = 2 to 3%

Advantages:

- Simple to manufacture
- Easy to model
- Response not strongly sensitive to rate of loading, history of loading, temperature, and aging.

Disadvantage:

Need supplemental damping system

High-Damping Natural Rubber Bearings

Maximum shear strain = 200 to 350%

Damping increased by adding extrafine carbon black, oils or resins, and other proprietary fillers

- Damping ratio = 10 to 20% at shear strains of 100%
- Shear modulus = 50 to 200 psi
- Effective Stiffness and Damping depend on:
- Elastomer and fillers
- Contact pressure
- Velocity of loading
- Load history (scragging)
- Temperature

Lead-Rubber Bearings

- Solid lead cylinder is press-fitted into central hole of elastomeric bearing
- Lead yield stress = 1500 psi (results in high initial stiffness)
- Yield stress reduces with repeated cycling due to temperature rise
- Hysteretic response is strongly displacement-dependent

used extensively in New Zealand, Japan, and the United States.

Invented in 1975 in New Zealand and

- Low damping rubber combined with central lead core
- Shear modulus = 85 to 100 psi at 100% shear strain
- Maximum shear strain = 125 to 200% (since max. shear strain is typically less than 200%, variations in properties are not as significant as for high-damping rubber bearings)

Elastomeric Bearing Hysteresis Loops

Displacement

Instructional Material Complementing FEMA 451, Design Examples

Seismic Isolation 15 - 7- 24

Shear Deformation of Elastomeric Bearing

- Bearing Manufactured by Scougal Rubber Corporation.
- Test Performed at SUNY Buffalo.
- Shear strain shown is approximately 100%.

Full-Scale Bearing Prior to Dynamic Testing

Cyclic Testing of Elastomeric Bearing

Bearing Manufactured by Dynamic Isolation Systems Inc.

Testing of Full-Scale Elastomeric Bearing at UC San Diego

- Compressive load = 4000 kips
- 400% Shear Strain [1.0 m (40 in.) lateral displacement]
- Video shown at 16 x actual speed of 1.0 in/sec

Seismic Isolation 15 - 7- 28

Seismic Isolation 15 - 7- 29

Experimental Hysteresis Loops of Low Damping Rubber Bearing

Low Damping Rubber Bearing

- Reduced scale bearing for ¼-scale building frame
- Diameter and height approx. 5 in.
- Prototype fundamental period of building = 1.6 sec

Shear Storage Modulus of High-Damping Natural Rubber

Effective Damping Ratio of High-Damping Natural Rubber

Linear Mathematical Model for Natural and Synthetic Rubber Bearings

Displacement, u

- $k_{e\!f\!f}$ = Effective stiffness at design displacement
- C_{eff} = Effective damping coefficient associated with design displacement

$$P(t) = k_{eff} u(t) + c_{eff} \dot{u}(t)$$

Instructional Material Complementing FEMA 451, Design Examples

Seismic Isolation 15 - 7- 34

Equivalent Linear Properties from Idealized Bilinear Hysteresis Loop

Seismic Isolation 15 - 7- 35

Refined Nonlinear Mathematical Model for Natural and Synthetic Rubber Bearings

 α = Post-to-pre yielding stiffness ratio

 P_y = Yield force

 u_y = Yield displacement

Z = Evolutionary variable

Displacement, u

 $\gamma, \beta, \eta, \theta$ = Calibration constants

$$P(t) = \alpha \frac{P_y}{u_y} u(t) + (1 - \alpha) P_y Z(t)$$
 Shear Force in Bearing
$$u_y \dot{Z} + \gamma |\dot{u}| Z |Z|^{\eta - 1} + \beta \dot{u} |Z|^{\eta} - \theta \dot{u} = 0$$
 Evolutionary Equation

Spherical Sliding Bearing: Friction Pendulum System (FPS)

Mathematical Model of Friction Pendulum System Bearings

$$F = W \tan \theta + \frac{F_f}{\cos \theta}$$

Mathematical Model of Friction Pendulum System Bearings

 $\begin{array}{c|c} & & & \\ \theta \\ \hline \theta \\ \hline u \\ \hline \end{array} \end{array}$ For $u < 0.2R, \theta$ is small (2% error in u)

 $\sin \theta = \theta - \frac{\theta^3}{3!} + \dots \approx \theta$ $\cos \theta = 1 - \frac{\theta^2}{2!} + \dots \approx 1$ **R**

$$\begin{array}{ll}
\left[\begin{array}{ccc}
 & \theta &\approx \frac{u}{R} & N = \frac{W}{\cos \theta} \approx W \\
\end{array} & F_{f} &= \mu N \, sgn\left(\dot{u}\right) \\
\end{array}$$
Ref

Instructional Material Complementing FEMA 451, Design Examples

Vertical Displacement of FPS Bearings $\mathbf{R}\cos\theta \qquad v = R(1 - \cos\theta) = R\left[1 - \cos\left(\sin^{-1}\left(\frac{u}{R}\right)\right)\right]$ R $v \approx \frac{R\theta^2}{2} \approx \frac{u^2}{2R}$ **R** sin $\sin \theta = \theta - \frac{\theta^3}{3!} + \dots \approx \theta$ 1 v (in.) T = 2.75 sec $\cos \theta = 1 - \frac{\theta^2}{2t} + \dots \approx 1$ 0.5 $\frac{\theta}{\theta} = \frac{R}{\theta} \approx \frac{u}{R}$

Rθ

Instructional Material Complementing FEMA 451, Design Examples

that of lateral frequency

Note: Vertical frequency is twice

0

0

5

u (in.)

10

Components of FPS Bearing Lateral Force

Note: Bearing will not recenter if $F_r < F_f$ ($u < \mu R$) For large T, and thus large R, this can be a concern.

Mechanical Model of Friction Pendulum System Bearings

Hysteretic Behavior of Friction Pendulum System Bearings

Instructional Material Complementing FEMA 451, Design Examples

Idealized FPS Bearing Hysteresis Loop

Seismic Isolation 15 - 7- 45

Actual FPS Bearing Hysteresis Loop

FPS Bearing

- Reduced-scale bearing for ¹/₄-scale building frame
- -R = 18.6 in; D = 11 in.; H = 2.5 in. (reduced scale)
- Prototype fundamental period of building = 2.75 sec (R = 74.4 in. = 6.2 ft)

Pressure-Dependence of Coefficient of Friction

Pressure- and Velocity-Dependence

Pressure-Dependence of Coefficient of Friction

Instructional Material Complementing FEMA 451, Design Examples

Evaluation of Dynamic Behavior of Base-Isolated Structures

- Isolation Systems are Almost Always Nonlinear and Often Strongly Nonlinear
- Equivalent Linear Static Analysis Using Effective Bearing Properties is Commonly Utilized for Preliminary Design
- Final Design Should be Performed Using Nonlinear Dynamic Response History Analysis

Equivalent Linear Properties of FPS Isolation Bearings

Effective linear properties are displacement-dependent. Therefore, design using effective linear properties is an iterative process.

Seismic Analysis using Nonlinear and Equivalent Linear Models

Example: Seismic Response Using Nonlinear and Linear Models

Flat Sliding Bearings

For Spherical Bearings:

• Flat Bearings:
$$R \to \infty$$
 \therefore $F(t) = \mu W sgn(\dot{u})$

- Bearings do NOT increase natural period of structure; Rather they limit the shear force transferred into the superstructure
- Requires supplemental self-centering mechanism to prevent permanent isolation system displacement
- Not commonly used in building structures

FFMA

Instructional Material Complementing FEMA 451, Design Examples

μW

 $-\mu W$

U

Examples of Computer Software for Analysis of Base-Isolated Structures

• ETABS

Linear and nonlinear analysis of buildings

• SAP2000

General purpose linear and nonlinear analysis

• DRAIN-2D

Two-dimensional nonlinear analysis

3D-BASIS Analysis of base-isolated buildings

Simplified Evaluation of Dynamic Behavior of Base-Isolated Structures

Instructional Material Complementing FEMA 451, Design Examples

Modeling Isolation Bearings Using the SAP2000 NLLINK Element

ISOLATOR1 Property – Biaxial Hysteretic Isolator

Coupled Plasticity Equations

$$\begin{aligned} F_{2} &= \beta_{2}k_{2}D_{2} + (1 - \beta_{2})F_{y2}Z_{2} \\ F_{3} &= \beta_{3}k_{3}D_{3} + (1 - \beta_{3})F_{y3}Z_{3} \end{aligned}$$
 Shear Force Along Each Orthogonal Direction
$$\begin{cases} \dot{Z}_{2} \\ \dot{Z}_{3} \end{cases} = \begin{bmatrix} 1 - a_{2}Z_{2}^{2} &- a_{3}Z_{2}Z_{3} \\ -a_{2}Z_{2}Z_{3} & 1 - a_{3}Z_{3}^{2} \end{bmatrix} \begin{cases} \frac{k_{2}}{F_{y2}}\dot{D}_{2} \\ \frac{k_{3}}{F_{y3}}\dot{D}_{3} \end{cases} \begin{array}{c} \text{Coupled} \\ \text{Evolutionary} \\ \text{Equations} \end{cases} \\ a_{2} &= \begin{cases} 1 & \text{if } \dot{D}_{2}Z_{2} > 0 \\ 0 & \text{otherwise} \end{cases} & \sqrt{Z_{2}^{2} + Z_{3}^{2}} \leq 1 \end{array} \begin{array}{c} \text{Range of} \\ \text{Evolutionary} \\ \text{Variables} \end{cases} \\ a_{3} &= \begin{cases} 1 & \text{if } \dot{D}_{3}Z_{3} > 0 \\ 0 & \text{otherwise} \end{cases} & \sqrt{Z_{2}^{2} + Z_{3}^{2}} = 1 \end{array} \right. \end{aligned}$$

Instructional Material Complementing FEMA 451, Design Examples

Modeling Isolation Bearings Using the SAP2000 NLLINK Element

ISOLATOR2 Property – Biaxial Friction Pendulum Isolator

Mechanical Model of FPS Bearing in SAP2000

Forces in Biaxial FPS Isolator

Resultant Velocity

Effective Inverse Velocity

Instructional Material Complementing FEMA 451, Design Examples

Forces in Biaxial FPS Isolator

$$\begin{cases} \dot{Z}_{2} \\ \dot{Z}_{3} \end{cases} = \begin{bmatrix} 1 - a_{2}Z_{2}^{2} & -a_{3}Z_{2}Z_{3} \\ -a_{2}Z_{2}Z_{3} & 1 - a_{3}Z_{3}^{2} \end{bmatrix} \begin{cases} \frac{k_{2}}{P\mu_{2}} \dot{D}_{2} \\ \frac{P\mu_{2}}{P\mu_{3}} \dot{D}_{3} \end{cases}$$

Coupled Evolutionary Equations

$$a_{2} = \begin{cases} 1 & \text{if } \dot{D}_{2}Z_{2} > 0 \\ 0 & \text{otherwise} \end{cases} \qquad \sqrt{Z_{2}^{2} + Z_{3}^{2}} \leq 1 \qquad \text{Range of} \\ \text{Evolutionary} \\ \text{Variables} \end{cases}$$
$$a_{3} = \begin{cases} 1 & \text{if } \dot{D}_{3}Z_{3} > 0 \\ 0 & \text{otherwise} \end{cases} \qquad \sqrt{Z_{2}^{2} + Z_{3}^{2}} = 1 \qquad \text{Defines Yield Surface} \end{cases}$$

 k_2 , k_3 Elastic Shear Stiffnesses (stiffness prior to sliding)

Note: Flat Bearings: Set R = 0 for both directions (restoring forces will be set equal to zero). Cylindrical Bearings: Set R = 0 for one direction.

FEMA

Historical Development of Code Provisions for Base Isolated Structures

- Late 1980's: BSB (Building Safety Board of California)
 "An Acceptable Method for Design and Review of Hospital Buildings Utilizing Base Isolation"
- 1986 SEAONC "Tentative Seismic Isolation Design Requirements"
 - Yellow book [emphasized equivalent lateral force (static) design]
- 1990 SEAOC "Recommended Lateral Force Requirements and Commentary"
 - Blue Book
 - Appendix 1L: "Tentative General Requirements for the Design and Construction of Seismic-Isolated Structures"

•1991 and 1994 Uniform Building Code

- Appendix entitled: "Earthquake Regulations for Seismic-Isolated Structures"
- Nearly identical to 1990 SEAOC Blue Book
- 1994 NERHP Recommended Provisions for Seismic Regulations for New Buildings (FEMA 222A – Provisions; FEMA 223A - Commentary)
 - Section 2.6: Provisions for Seismically Isolated Structures
 - Based on 1994 UBC but modified for strength design and national applicability

Historical Development of Code Provisions for Base Isolated Structures

- 1996 SEAOC "Recommended Lateral Force Requirements and Commentary"
 - Chapter 1, Sections 150 to 161 (chapters/sections parallel those of 1994 UBC)
- 1997 Uniform Building Code
 - Appendix entitled: "Earthquake Regulations for Seismic-Isolated Structures"
 - Essentially the same as 1991 and 1994 UBC
- 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures
 - (FEMA 302 Provisions; FEMA 303 Commentary)
 - Chapter 13: Seismically Isolated Structures Design Requirements
 - Based on 1997 UBC (almost identical)
- 1997 NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273 – Guidelines; FEMA 274 - Commentary)
 - Chapter 9: Seismic Isolation and Energy Dissipation
 - Introduces Nonlinear Static (pushover) Analysis Procedure
 - Isolation system design is similar to that for new buildings but superstructure design considers differences between new and existing structures

Historical Development of Code Provisions for Base Isolated Structures

- 1999 SEAOC "Recommended Lateral Force Requirements and Commentary" - Chapter 1, Sections 150 to 161 (chapters/sections parallel those of 1997 UBC)
- 2000 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 368 – Provisions; FEMA 369 - Commentary)
 - Chapter 13: Seismically Isolated Structures Design Requirements
- 2000 Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356)
 - Chapter 9: Seismic Isolation and Energy Dissipation

• 2000 International Building Code (IBC)

- Section 1623: Seismically Isolated Structures
- Based on 1997 NEHRP Provisions
- Similar to FEMA 356 since same key persons prepared documents

General Philosophy of Building Code Provisions

- No specific isolation systems are described
- All isolation systems must:
 - Remain stable at the required displacement
 - Provide increasing resistance with increasing displacement
 - Have non-degrading properties under repeated cyclic loading
 - Have quantifiable engineering parameters

Design Objectives of 2000 NEHRP and 2000 IBC Base Isolation Provisions

Minor and Moderate Earthquakes

- No damage to structural elements
- No damage to nonstructural components
- No damage to building contents

Major Earthquakes

- No failure of isolation system
- No significant damage to structural elements
- No extensive damage to nonstructural components
- No major disruption to facility function
- Life-Safety

2000 NEHRP and 2000 IBC Base Isolation Provisions

General Design Approach

EQ for Superstructure Design

Design Earthquake

- 10%/50 yr = 475-yr return period
- Loads reduced by up to a factor of 2 to allow for limited Inelastic response; a similar fixed-base structure would be designed for loads reduced by a factor of up to 8

EQ for Isolation System Design (and testing)

Maximum Considered Earthquake

2%/50 yr = 2,500-yr return period

- No force reduction permitted for design of isolation system

Analysis Procedures of 2000 NEHRP and 2000 IBC Base Isolation Provisions

• Equivalent Lateral Response Procedure

- Applicable for final design under limited circumstances
- Provides lower bound limits on isolation system displacement and superstructure forces
- Useful for preliminary design

Dynamic Lateral Response Procedure

- May be used for design of any isolated structure
- Must be used if structure is geometrically complex or very flexible
- Two procedures:
 - Response Spectrum Analysis (linear)
 - Response-History Analysis (linear or nonlinear)

Presented

Herein

Isolation System Displacement (Translation Only)

Design is evaluated at two levels:

Design Earthquake: 10% / 50 yr = 475-yr return period Maximum Considered Earthquake: 2% / 50 yr = 2,500-yr return period

Design Response Spectrum

Damping Reduction Factor

Instructional Material Complementing FEMA 451, Design Examples

Effective Isolation Period

Minimum stiffness used so as to produce largest period and thus most conservative design displacement.

Instructional Material Complementing FEMA 451, Design Examples

Isolation System Displacement (Translation and Rotation)

Note: A smaller total design displacement may be used (but not less than $1.1D_D$) provided that the isolation system can be shown to resist torsion accordingly.

Base Shear Force

Isolation System and Elements Below Isolation System

$$V_b = k_{D max} D_D$$

No Force Reduction; Therefore Elastic Response Below Isolation System

Maximum Effective Isolation System Stiffness

Shear Force Above Isolation System

Structural Elements Above Isolation System

$$V_S = \frac{k_{D \max} D_D}{R_I}$$

Response Modification Factor for Isolated Superstructure

$$R_I = \frac{3}{8}R = \frac{R}{2.67} \le 2$$

Ensures essentially elastic superstructure response

Minimum Values of V_s :

- Base shear force for design of conventional structure of fixed-base period T_D
- Shear force for wind design.
- 1.5 times shear force that activates isolation system.

Design Shear Force for Conventional and Isolated Structures

Example: Evaluation of Design Shear Force

Base Shear Coefficient

$$BSC_{I} = \frac{V_{S}}{W} = \frac{k_{Dmax}D_{D}}{WR_{I}} = \frac{S_{DI}}{B_{D}R_{I}T_{D}}$$
$$BSC_{C} = \frac{V_{S}}{W} = C_{S} = \frac{S_{DI}}{T(R/I)} \quad Co_{Pe}$$
$$\frac{BSC_{I}}{BSC_{C}} = \frac{T(R/I)}{B_{D}R_{I}T_{D}}$$

Isolated Structure

Conventional Structure Having Period of One-Second or More

Example:

- Fire Station (*I* = 1.5)
- Conventional: Special steel moment frame (R = 8.5) and T = 1.0 sec
- Isolated: $T_D = 2.0$ sec, damping ratio = 10% ($B_D = 1.2$), $R_I = 2$

Result:

$$\frac{BSC_I}{BSC_C} = 1.18$$

Isolating structure results in 18% *increase* in shear force for design of superstructure

Distribution of Shear Force

Lateral Force at Level x of the Superstructure

Instructional Material Complementing FEMA 451, Design Examples

Seismic Isolation 15 - 7-80

Interstory Drift Limit

Displacement at Level x of Superstructure

Note: For Isolated Structures, C_d is replaced by R_l .

Interstory Drift of Story x

$$\Delta_x \leq 0.015 \quad h_{sx}$$
Height of Story x

Displacement and Shear Force Design Spectrum

Required Tests of Isolation System

Prototype Tests on Two Full-Size Specimens of Each Predominant Type of Isolation Bearing

- Check Wind Effects
 - 20 fully reversed cycles at force corresponding to wind design force
- Establish Displacement-Dependent Effective Stiffness and Damping
 - 3 fully reversed cycles at 0.25 D_D
 - 3 fully reversed cycles at 0.5 D
 - 3 fully reversed cycles at $1.0D_D$
 - 3 fully reversed cycles at $1.0D_{M}$
 - 3 fully reversed cycles at 1.0 D_{TM}
- Check Stability
 - Maximum and minimum vertical load at 1.0 D_{TM}
- Check Durability
 - $30S_{D1}B_D/S_{DS}$, but not less than 10, fully reversed cycles at 1.0 D_{TD}

For cyclic tests, bearings must carry specified vertical (dead and live) loads

Effective Linear Properties of Isolation Bearing from Cyclic Testing

 $k_{eff} = \frac{\left|F^{+}\right| + \left|F^{-}\right|}{\left|A^{+}\right| + \left|A^{-}\right|} \qquad \text{Effective Stiffness} \\ \text{of Isolation Bearing} \\$

Equivalent Viscous Damping Ratio of Isolation Bearing

Displacement, Δ

Effective properties determined for each cycle of loading

Effective Linear Properties of Isolation System from Cyclic Testing

Absolute Maximum Force at Positive D_D over 3 Cycles of Motion at $1.0D_D$

Additional Issues to Consider

- Buckling and stability of elastomeric bearings
- High-strain stiffening of elastomeric bearings
- Longevity (time-dependence) of bearing materials (Property Modification Factors to appear in 2003 NEHRP Provisions)
- Displacement capacity of non-structural components that cross isolation plane
- Displacement capacity of building moat
- Second-order (P-∆) effects on framing above and below isolation system

Example Design of Seismic Isolation System Using 2000 NEHRP Provisions

Seismically Isolated Structures by Charles A. Kircher Chapter 11 of *Guide to the Application of the 2000 NEHRP Provisions; Note: The Guide is in final editing. Chapter 11 is in the handouts.*

Structure and Isolation System

- "Hypothetical" Emergency Operations Center, San Fran., CA
- Three-Story Steel Braced-Frame with Penthouse
- High-Damping Elastomeric Bearings

Design Topics Presented:

- Determination of seismic design parameters
- Preliminary design of superstructure and isolation system
- Dynamic analysis of isolated structure
- Specification of isolation system design and testing criteria

