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Major Objectives

• Illustrate why use of passive energy dissipation 
systems may be beneficial

• Provide overview of types of energy dissipation 
systems available

• Describe behavior, modeling, and analysis of 
structures with energy dissipation systems

• Review developing building code requirements
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Outline: Part I

• Objectives of Advanced Technology Systems 
and Effects on Seismic Response

• Distinction Between Natural and Added 
Damping

• Energy Distribution and Damage Reduction
• Classification of Passive Energy Dissipation 

Systems
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers, Unbonded 
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Energy Dissipation Systems
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Outline: Part III

• Seismic Analysis of MDOF Structures with 
Passive Energy Dissipation Systems

• Representations of Damping
• Examples: Application of Modal Strain 

Energy Method and Non-Classical 
Damping Analysis

• Summary of MDOF Analysis Procedures
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Outline: Part IV

• MDOF Solution Using Complex Modal 
Analysis

• Example: Damped Mode Shapes and 
Frequencies

• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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Outline: Part I

• Objectives of Advanced Technology Systems 
and Effects on Seismic Response

• Distinction Between Natural and Added 
Damping

• Energy Distribution and Damage Reduction
• Classification of Passive Energy Dissipation 

Systems
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Objectives of Energy Dissipation and 
Seismic Isolation Systems

• Enhance performance of structures at all hazard levels by: 

Minimizing interruption of use of facility 
(e.g., Immediate Occupancy Performance Level)

Reducing damaging deformations in structural and 
nonstructural components

Reducing acceleration response to minimize contents-
related damage
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Effect of Damping and Yield Strength 
on Deformation Demand
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Outline: Part I

• Objectives of Advanced Technology Systems 
and Effects on Seismic Response

• Distinction Between Natural and Added 
Damping

• Energy Distribution and Damage Reduction
• Classification of Passive Energy Dissipation 

Systems

Passive Energy Dissipation 15 – 6 - 16Instructional Material Complementing FEMA 451, Design Examples

Natural (Inherent) Damping

Added Damping

ξ

%0.7to5.0NATURAL =ξ

ξ is a structural property, dependent on
system mass, stiffness, and the 
added damping coefficient C

%30to10ADDED =ξ

C

Distinction Between Natural and Added Damping

is a structural property, dependent on
system mass, stiffness, and inherent
energy dissipation mechanisms
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1981/1982 US-JAPAN PROJECT
Response of Bare Frame Before and After Adding Ballast

Model Weight

Bare Model       18 kips
Loaded Model  105 kips
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Outline: Part I
• Objectives of Advanced Technology Systems 

and Effects on Seismic Response
• Distinction Between Natural and Added 

Damping
• Energy Distribution and Damage Reduction
• Classification of Passive Energy Dissipation 

Systems
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Energy Balance:
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Effect of Damping and Yield Strength 
on Hysteretic Energy
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Energy and Damage Histories, 5% Damping
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Outline: Part I

• Objectives of Advanced Technology Systems 
and Effects on Seismic Response

• Distinction Between Natural and Added 
Damping

• Energy Distribution and Damage Reduction
• Classification of Passive Energy Dissipation 

Systems
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Classification of Passive Energy 
Dissipation Systems

Velocity-Dependent Systems
• Viscous fluid or viscoelastic solid dampers
• May or may not add stiffness to structure

Displacement-Dependent Systems
• Metallic yielding or friction dampers
• Always adds stiffness to structure

Other
• Re-centering devices (shape-memory alloys, etc.)
• Vibration absorbers (tuned mass dampers)
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers,Unbonded
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems
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Cross-Section of Viscous Fluid Damper

Source: Taylor Devices, Inc.
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Possible Damper Placement Within Structure

Augmented
Bracing
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Chevron Brace and Viscous Damper

Passive Energy Dissipation 15 – 6 - 33Instructional Material Complementing FEMA 451, Design Examples

Diagonally Braced Damping System

θ
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Fluid Dampers within Inverted Chevron Brace
Pacific Bell North Area Operation Center (911 Emergency Center)

Sacramento, California
(3-Story Steel-Framed Building Constructed in 1995)

62 Dampers:  30 Kip Capacity, +/-2 in. Stroke
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Fluid Damper within Diagonal Brace

San Francisco State 
Office Building

San Francisco, CA

Huntington Tower
Boston, MA
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Toggle Brace Damping System
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Toggle Brace Deployment

Huntington Tower, Boston, MA
- New 38-story steel-framed building
- 100 direct-acting and toggle-brace dampers 
- 1300 kN (292 kips), +/- 101 mm (+/- 4 in.)
- Dampers suppress wind-induced vibration
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Harmonic Behavior of Fluid Damper

Note: Damping force 90o out-of-phase with elastic force.
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Dependence of Damping Coefficient on Frequency
for Typical “Single-Ended” Fluid Damper
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Dependence of Phase Angle on Frequency 
for Typical “Single-Ended” Fluid Damper
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Behavior of Fluid Damper with Zero Storage 
Stiffness
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Actual Hysteretic Behavior of Fluid Damper

Seismic Loading

Harmonic Loading

Source:
Constantinou and Symans (1992)
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Linear Damper: ooD uPE π=

Nonlinear Damper: ooD uPE λ=

)2(
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Energy Dissipated Per Cycle for Linear 
and Nonlinear Viscous Fluid Dampers

Γ = Gamma Function

Hysteretic Energy Factor
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Relationship Between λ and α
for Viscous Fluid Damper
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Relationship Between Nonlinear and Linear Damping
Coefficient for Equal Energy Dissipation Per Cycle

αω
λ
π −= 1

o
L

NL )u(
C
C

Note: Ratio is frequency- and displacement-dependent
and is therefore meaningful only for steady-state
harmonic response.
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Loading Freqency = 6.28 Hz
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Maximum Displacement = 1
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Recommendations Related to Nonlinear Viscous Dampers

• Do NOT attempt to linearize the problem when nonlinear
viscous dampers are used.  Perform the analysis with
discrete nonlinear viscous dampers.

• Do NOT attempt to calculate effective damping in terms
of a damping ratio (ξ) when using nonlinear viscous 
dampers.  

• DO NOT attempt to use a free vibration analysis to 
determine equivalent viscous damping when nonlinear
viscous dampers are used. 
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Advantages of Fluid Dampers

• High reliability
• High force and displacement capacity
• Force Limited when velocity exponent < 1.0
• Available through several manufacturers
• No added stiffness at lower frequencies
• Damping force (possibly) out of phase with

structure elastic forces
• Moderate temperature dependency
• May be able to use linear analysis
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Disadvantages of Fluid Dampers

• Somewhat higher cost
• Not force limited (particularly when exponent = 1.0)
• Necessity for nonlinear analysis in most practical 

cases (as it has been shown that it is generally not 
possible to add enough damping to eliminate all inelastic 
response)
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Viscoelastic Dampers

Section A-A

h

h

W

Developed in the 1960’s
for Wind Applications

Viscoelastic Material
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u(t)

P(t)P(t)
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Implementation of Viscoelastic Dampers

Building 116, US Naval Supply 
Facility, San Diego, CA
- Seismic Retrofit of 3-Story 

Nonductile RC Building
- 64 Dampers Within Chevron 
Bracing Installed in 1996
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Harmonic Behavior of Viscoelastic Damper
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( ) ( ) ωγγτ /tGtG)t( &′′+′=

Apply Fourier Transform:

( ) ( ) ωωγωωγωτ /iGG)( ′′+′=

[ ] ( )ωγωτ GiG)( ′′+′=

[ ] ( )ωγηωτ i1G)( +′=

Complex Shear Modulus:

( ) ( )
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ωγ
ωτω i1GG* +′==

Compact Stress-Strain Relation
for Viscoelastic Materials

( ) ( ) ( )ωγωωτ *G=

ℜ

ℑ
( )ω*G

( )ωG ′

( )ωG ′′δ

Frequency-Domain Stress-Strain Relation
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Dependence of Storage and Loss Moduli on Temperature 
and Frequency for Typical Viscoelastic Damper
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Dependence of Loss Factor on Temperature 
and Frequency for Typical Viscoelastic Damper
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Actual Hysteretic Behavior of Viscoelastic Damper

Seismic Loading

Harmonic Loading
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Advantages of Viscoelastic Dampers

• High reliability

• May be able to use linear analysis

• Somewhat lower cost
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Disadvantages of Viscoelastic Dampers

• Strong Temperature Dependence

• Lower Force and Displacement Capacity

• Not Force Limited
• Necessity for nonlinear analysis in most
practical cases (as it has been shown that it is
generally not possible to add enough damping 
to eliminate all inelastic response)
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Outline: Part II

• Velocity-Dependent Damping Systems:
Fluid Dampers and Viscoelastic Dampers

• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers, Unbonded 
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems

Passive Energy Dissipation 15 – 6 - 69Instructional Material Complementing FEMA 451, Design Examples

Modeling Viscous Dampers:
Simple Dashpot

Useful For :
Fluid Dampers with Zero Storage Stiffness  

This Model Ignores Temperature Dependence

( )tuC)t(P D &=

u(t)

P(t)
DC

Newtonian Dashpot
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Useful For :
Viscoelastic Dampers and Fluid Dampers with 
Storage Stiffness and Weak Frequency Dependence.  

This Model Ignores Temperature Dependence

Modeling Linear Viscous/Viscoelastic 
Dampers:  Kelvin Model

DC

( ) ( )tuCtuK)t(P DD &+=

Newtonian Dashpot

DK
u(t)

P(t)

Hookean Spring
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Kelvin Model (Continued)

Apply Fourier Transform:

( )[ ] D
*

S KK)(K =ℜ= ωω
Storage Stiffness:

Loss Stiffness:
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)(C ω

ω
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)(K S ω

( ) ( )tuCtuK)t(P dD &+=

[ ] ( )ωωω uCiK)(P dD +=

Complex Stiffness:

dD
* CiK)(K ωω +=

( )[ ] ωωω D
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L CK)(K =ℑ=
Damping Coefficient:

( )
D

L CK)(C ==
ω

ωω
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Kelvin Model (Continued)

Equivalent Kelvin 
Modelu(t)

P(t)
DC)(C =ω

DS K)(K =ω

Kelvin Model

DK u(t)

P(t)
DC
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Useful For :
Viscoelastic Dampers and Fluid Dampers with Strong
Frequency Dependence.  
This Model Ignores Temperature Dependence

Modeling Linear Viscous/Viscoelastic
Dampers: Maxwell Model

CD KD u(t)

P(t)

( ) ( )tuCtP
K
C)t(P D

D

D && =+
Newtonian Dashpot;
Hookean Spring
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Maxwell Model (Continued)

DD KC=λRelaxation Time:
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Maxwell Model Parameters from Experimental 
Testing of Fluid Viscous Damper
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Maxwell Model Parameters from Experimental 
Testing of Fluid Viscous Damper
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Note: - If KD is very large, λ is very small, KS is small 
and C = CD

- If CD is very small, λ is very small, KS is small 
and C = CD

- If KD is very small, λ is very large, C is small
and KS = KD. KD

CD

Maxwell Model (Continued)

CD KD u(t)

P(t)
Maxwell Model

Equivalent Kelvin 
Modelu(t)

P(t)
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers,Unbonded
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems
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Because the damper is always
in series with the linkage, the
damper-brace assembly acts
like a Maxwell model.

Hence, the effectiveness of the 
damper is reduced.  The degree 
of lost effectiveness is a function 
of the structural properties and 
the loading frequency.

Effect of Linkage Flexibility on Damper Effectiveness

θ

θ2
, cos2

L
AEK EffectiveBrace =
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers, Unbonded 
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems
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Steel Plate Dampers
(Added Damping and Stiffness System - ADAS)

L

a

L

t

b

V

V
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Implementation of ADAS System

Wells Fargo Bank,
San Francisco, CA
- Seismic Retrofit of Two-
Story Nonductile Concrete 
Frame; Constructed in 1967

- 7 Dampers Within Chevron 
Bracing Installed in 1992

- Yield Force Per Damper:   
150 kips
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ADAS Device
(Tsai et al. 1993)

Experimental Response (Static)
(Source: Tsai et al. 1993)

Hysteretic Behavior of ADAS Device
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Ideal Hysteretic Behavior of ADAS Damper
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(SAP2000 and ETABS Implementation)
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Parameters of Mathematical Model
of ADAS Damper

L
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L
EIb/a2nk +

=

L4
btnf

F
3

y
y =

=n Number of plates

=yf Yield force of each plate

=bI Second moment of area 
of each plate at b 
(i.e, at top of plate)
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Unbonded Brace Damper

Stiff Shell Prevents
Buckling of Core

Steel Brace (yielding core)
(coated with debonding chemicals)

Concrete
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Implementation of Unbonded Brace Damper

Plant and Environmental 
Sciences Replacement 
Facility

- New Three-Story Building 
on UC Davis Campus

- First Building in USA to Use 
Unbonded Brace Damper

- 132 Unbonded Braced 
Frames with Diagonal or 
Chevron Brace Installation

- Cost of Dampers = 0.5% of 
Building Cost

Source: ASCE Civil Engineering Magazine, March 2000.
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Hysteretic Behavior of 
Unbonded Brace Damper

Passive Energy Dissipation 15 – 6 - 89Instructional Material Complementing FEMA 451, Design Examples

Testing of Unbonded Brace Damper

Testing Performed
at UC Berkeley

Typical Hysteresis 
Loops from

Cyclic Testing
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Advantages of ADAS System
and Unbonded Brace Damper

•Force-Limited

•Easy to construct

•Relatively Inexpensive

•Adds both “Damping” and Stiffness
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Disadvantages of ADAS System
and Unbonded Brace Damper

• Must be Replaced after Major Earthquake

• Highly Nonlinear Behavior

• Adds Stiffness to System 

• Undesirable Residual Deformations Possible
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Friction Dampers: Slotted-Bolted Damper

Pall Friction Damper
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Sumitomo Friction Damper
(Sumitomo Metal Industries, Japan)
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Pall Cross-Bracing Friction Damper

Interior of Webster 
Library at Concordia 
University, Montreal, 

Canada
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Implementation of Pall Friction Damper

McConnel Library at 
Concordia University, 
Montreal, Canada
- Two Interconnected 
Buildings of 6 and 10 Stories

- RC Frames with Flat Slabs
- 143 Cross-Bracing Friction 

Dampers Installed in 1987
- 60 Dampers Exposed for    
Aesthetics
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Hysteretic Behavior of Slotted-Bolted 
Friction Damper
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Advantages of Friction Dampers

• Force-Limited

• Easy to construct

• Relatively Inexpensive
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Disadvantages of Friction Dampers

• May be Difficult to Maintain over Time

• Highly Nonlinear Behavior

• Adds Large Initial Stiffness to System

• Undesirable Residual Deformations Possible   
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers, Unbonded 
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems
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Es based on secant stiffness

FD

Note: Computed damping ratio is displacement-dependent

Equivalent Viscous Damping:
Damping System with Inelastic or Friction Behavior
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Effect of Inelastic System Post-Yielding Stiffness 
on Equivalent Viscous Damping
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uDED

ES

Es and ω are based on Secant Stiffness of Inelastic System

Equivalent Viscous Damping:
“Equivalent” System with Linear Viscous Damper

C

HmC ωξ2=

FD
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• It is not possible, on a device level, to “replace” a
displacement-dependent device (e.g. a Friction Damper)
with a velocity-dependent device (e.g. a Fluid Damper).

• Some simplified procedures allow such replacement on
a structural level, wherein a “smeared” equivalent viscous
damping ratio is found for the whole structure.  This
approach is marginally useful for preliminary design, and
should not be used under any circumstances for final design.  

Equivalent Viscous Damping:
Caution!
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Outline: Part II
• Velocity-Dependent Damping Systems:

Fluid Dampers and Viscoelastic Dampers
• Models for Velocity-Dependent Dampers
• Effects of Linkage Flexibility
• Displacement-Dependent Damping 

Systems: Steel Plate Dampers, Unbonded 
Brace Dampers, and Friction Dampers

• Concept of Equivalent Viscous Damping
• Modeling Considerations for Structures 

with Passive Damping Systems
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Modeling Considerations for Structures with 
Passive Energy Dissipation Devices

• Damping is almost always nonclassical
(Damping matrix is not proportional to stiffness
and/or mass)

• For seismic applications, system response
is usually partially inelastic

• For seismic applications, viscous damper behavior
is typically nonlinear (velocity exponents in the
range of 0.5 to 0.8)

Conclusion: This is a NONLINEAR analysis problem!
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Outline: Part III

• Seismic Analysis of MDOF Structures with 
Passive Energy Dissipation Systems

• Representations of Damping
• Examples: Application of Modal Strain 

Energy Method and Non-Classical 
Damping Analysis

• Summary of MDOF Analysis Procedures
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Seismic Analysis of Structures with Passive Energy 
Dissipation Systems

Modal Response Spectrum Analysis
or

(Modal) Response-History Analysis

Nonlinear Response-History
Analysis

Complex Modal Response 
Spectrum Analysis

or
(Complex Modal) Response-History

Analysis

Linear
Behavior?

Classical
Damping?

Yes

Yes
(implies viscous
or viscoelastic
behavior)

No

No
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)t(vMR)t(F)t(vC)t(vC)t(vM gSAI &&&&&& −=+++

Seismic Analysis of MDOF Structures
with Passive Energy Dissipation Systems

Inherent Damping:
Linear

Added Viscous Damping:
Linear or Nonlinear

Restoring Force:
(May include Added Devices)
Linear or Nonlinear( )AC f≠ ω
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)t(vMR)t(F)t(vC)t(vC)t(vM gSAI &&&&&& −=+++

MDOF Solution Techniques

Explicit integration of fully coupled equations:

• Treat CI as Rayleigh damping and model CA
explicitly.

• Use Newmark solver (with iteration) to solve full
set of coupled equations.  

System may be linear or nonlinear.
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)t(vMR)t(F)t(vC)t(vC)t(vM gSAI &&&&&& −=+++

MDOF Solution Techniques

Fast Nonlinear Analysis:
Treat CI as modal damping and model CA
explicitly.  Move CA (and any other nonlinear
terms) to right-hand side.  Left-hand side may
be uncoupled by Ritz Vectors. Iterate on
unbalanced right-hand side forces.  

System may be linear or nonlinear.
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Fast Nonlinear Analysis
)t(vMR)t(F)t(vK)t(vC)t(vC)t(vM gHEAI &&&&&& −=++++

)()( tytv Φ=

)t(vC)t(F)t(vMR)t(vK)t(vC)t(vM AHgEI &&&&&& −−−=++

Transform Coordinates:
Orthogonal basis of Ritz vectors:
Number of vectors << N

)t(yC~)t(F)t(vMR)t(yK~)t(yC~)t(yM~ AH
T

g
T

EI &&&&&& −−−=++ ΦΦ

Uncoupled Coupled

Move Added Damper Forces 
and Nonlinear Forces to RHS:

Apply Transformation:

Nonlinear TermsLinear Terms

Nonlinear Restoring Force
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)t(vMR)t(F)t(vC)t(vC)t(vM gSAI &&&&&& −=+++
MDOF Solution Techniques

• Treat CI as modal damping or Rayleigh damping 

• Use Modal Strain Energy method to represent CA
as modal damping ratios.

System must be linear.
Applicable only to viscous (or viscoelastic)
damping systems.

Explicit integration or response spectrum
analysis of first few uncoupled modal equations:
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Outline: Part III

• Seismic Analysis of MDOF Structures with 
Passive Energy Dissipation Systems

• Representations of Damping
• Examples: Application of Modal Strain 

Energy Method and Non-Classical 
Damping Analysis

• Summary of MDOF Analysis Procedures
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Modal Damping Ratios

gvMRKvvCvM &&&&& −=++

yv Φ=

giiiiiii vyyy &&&&& Γ=++ 22 ωωξ

Specify modal damping values directly
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Modal Superposition Damping

Artificial Coupling

Skyhook

Note: There is no need to develop C explicitly.
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φ 2,1

φ 2,2

φ 2,3

φ 2,4

φ 2,1 - φ 2,2

φ 2,2 - φ 2,3

φ 2,3 - φ 2,4

φ 2,4

Floor
Displacement

Damper
DeformationDeformation of Structure

in its Second Mode

Derivation of Modal Strain Energy Method
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Derivation of Modal Strain Energy Method
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Modal Strain Energy Damping Ratio

ii

iA
T
i

i m
C

ω
φφξ *2

=

Note: φ is the Undamped Mode Shape

The Modal Strain Energy Method is approximate if
the structure is non-classically damped since the
undamped and damped mode shapes are different.
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Outline: Part III

• Seismic Analysis of MDOF Structures with 
Passive Energy Dissipation Systems

• Representations of Damping
• Examples: Application of Modal Strain

Energy Method and Non-Classical 
Damping Analysis

• Summary of MDOF Analysis Procedures
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k = 350
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c = 10.0 k-sec/in.

c = 12.5

c = 15.0

c = 17.5

c = 20.0

Example: Application of Modal Strain Energy Method
Proportional Damping

Passive Energy Dissipation 15 – 6 - 125Instructional Material Complementing FEMA 451, Design Examples

Frequency        Damping
(rad/sec)           Ratio, ξ

4.54 0.113
12.1 0.302
18.5 0.462
23.0 0.575
27.6 0.690     

Modal Damping Ratios from Modal Strain Energy
Method for Proportional Damping Distribution
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Nearly Proportional Damping

Example: Application of Modal Strain Energy Method
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Frequency        Damping
(rad/sec)           Ratio, ξ

4.54 0.123
12.1 0.318
18.5 0.455
23.0 0.557
27.6 0.702     
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Modal Damping Ratios from Modal Strain Energy
Method for Nearly Proportional Damping Distribution
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m = 1.0 k-sec2/in.

m = 1.5

m = 1.5

m = 1.5

m = 1.5

k = 200 k/in.

k = 250

k = 300

k = 350

k = 400

c = 20 k-sec/in

c = 30

Nonproportional Damping

Example: Application of Modal Strain Energy Method
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Frequency        Damping
(rad/sec)           Ratio. ξ

4.54 0.089
12.1 0.144
18.5 0.134
23.0 0.194
27.6 0.514     
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Method for Nonproportional Damping Distribution
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2 φφ
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ωξ

Modal Superposition Damping

Artificial Coupling

Skyhook

Modal Superposition Damping can be used to construct the damping matrix 
from the modal damping ratios obtained via the Modal Strain Energy Method
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c = 10.0 k-sec/in.
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Nearly Proportional Damping
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Nonproportional Damping
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Example: Seismic Analysis of a Structure
with Nonproportional Damping

• Discrete Damping vs Rayleigh Damping
• Discrete Damping: Rigid vs Flexible Braces

Frequency        Damping
(rad/sec)           Ratio, ξ

4.54 0.089
12.1 0.144
18.5 0.134
23.0 0.194
27.6 0.514     

MSE Results

c = 20.0 k-sec/in.

c = 30.0
Damping ratios in modes 1 and 4 used
to construct Rayleigh damping matrix.
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Computing Rayleigh Damping Proportionality Factors (Using NONLIN Pro)
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Example: Discrete (Stiff Braces) vs Rayleigh Damping
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Very Stiff Braces
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Example: Discrete (Stiff Braces) vs Rayleigh Damping

Very Stiff Braces
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(Discrete Damping Model)
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Example: Discrete (Flexible Braces) vs Rayleigh Damping

c 

1.5c

Passive Energy Dissipation 15 – 6 - 141Instructional Material Complementing FEMA 451, Design Examples

0

200

400

600

800

1000

1200

1400

1600

0.0 5.0 10.0 15.0 20.0

First Mode Damping, % Critical

Pe
ak

 In
er

tia
l F

or
ce

r, 
Ki

ps

Discrete Model with Flexible Braces

Rayleigh Damping

P
ea

k 
B

as
e 

S
he

ar
, K

ip
s 

(fr
om

 In
er

tia
l F

or
ce

s)

Example: Discrete (Flexible Braces) vs Rayleigh Damping

c 

1.5c

Passive Energy Dissipation 15 – 6 - 142Instructional Material Complementing FEMA 451, Design Examples

-10 0 0
-8 0 0
-6 0 0
-4 0 0
-2 0 0

0
2 0 0
4 0 0
6 0 0
8 0 0

10 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 20
T im e , S e co n d s

Sh
ea

r, 
K

ip
s

C o lu m n s
B rac e s  (D a m p e r) STIFF BRACES

-1 0 0 0
-8 0 0
-6 0 0
-4 0 0
-2 0 0

0
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
T im e , S e c o n d s

Sh
ea

r, 
K

ip
s

C o lu m n s
B ra c e s  (D a m p e r) FLEX BRACES

Example: Effect of Brace Stiffness on 
Peak Story Shear Forces
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Outline: Part III

• Seismic Analysis of MDOF Structures with 
Passive Energy Dissipation Systems

• Representations of Damping
• Examples: Application of Modal Strain 

Energy Method and Non-Classical 
Damping Analysis

• Summary of MDOF Analysis Procedures
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Summary: MDOF Analysis Procedures
(Linear Systems and Linear Dampers)

• Use discrete damper elements and explicitly include these
dampers in the system damping matrix.  Perform response
history analysis of full system. Preferred.

• Use discrete damper elements to estimate modal damping
ratios and use these damping ratios in modal response 
history or modal response spectrum analysis. Dangerous.

• Use discrete damper elements to estimate modal damping
ratios and use these damping ratios in a response history
analysis which incorporates Rayleigh proportional
damping. Dangerous.
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Summary: MDOF Analysis Procedures
(Linear Systems with Nonlinear Dampers)

• Use discrete damper elements and explicitly include these
dampers in the system damping matrix.  Perform response
history analysis of full system. Preferred.

• Replace nonlinear dampers with “equivalent energy”
based linear dampers, and then use these equivalent
dampers in the system damping matrix. Perform response
history analysis of full system. Very Dangerous.

• Replace nonlinear dampers with “equivalent energy”
based linear dampers, use modal strain energy approach
to estimate modal damping ratios, and then perform
response spectrum or modal response history analysis.
Very Dangerous.
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Summary: MDOF Analysis Procedures
(Nonlinear Systems with Nonlinear Dampers)

• Use discrete damper elements and explicitly include these
dampers in the system damping matrix.  Explicitly model
inelastic behavior in superstructure. Perform response history
analysis of full system. Preferred.

• Replace nonlinear dampers with “equivalent energy”
based linear dampers and use modal strain energy approach
to estimate modal damping ratios.  Use pushover analysis
to represent inelastic behavior in superstructure.  Use
capacity-demand spectrum approach to estimate system
deformations. Do This at Your Own Risk!
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Outline: Part IV
• MDOF Solution Using Complex Modal 

Analysis
• Example: Damped Mode Shapes and 

Frequencies
• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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)t(vMR)t(F)t(vC)t(vC)t(vM gSAI &&&&&& −=+++

MDOF Solution for Non-Classically Damped 
Structures Using Complex Modal Analysis

Modal Analysis using Damped Mode Shapes:

• Treat CI as modal damping and model CA
explicitly.  

• Solve by modal superposition using damped
(complex) mode shapes and frequencies.

System (dampers and structure) must be linear.
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Damped Eigenproblem

State Vector:

0)t(Kv)t(vC)t(vM A =++ &&&

Linear Structure

EOM for Damped 
Free Vibration
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Assume CI is negligible
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Solution of Damped Eigenproblem

P HPΛ =

*

λ⎡ ⎤
Λ = ⎢ ⎥λ⎣ ⎦

nt
n nZ P eλ=Assume Harmonic Response for n-th mode:

n n nP HPλ =Substitute Response into
State Space Equation:

Damped Eigenproblem 
for n-th Mode

Damped Eigenproblem 
for All Modes

Eigenvalue Matrix:
(* = complex conjugate)

* *

*P
⎡ ⎤Φλ Φ λ

= ⎢ ⎥Φ Φ⎣ ⎦
Eigenvector Matrix:

[ ]ndiagλ = λ
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Complex 
Eigenvalue
for Mode n:

Modal Damping Ratio:

21n n n n niλ = −ξ ω ± ω − ξ

Extracting Modal Damping and Frequency
from Complex Eigenvalues

( )
n

n
n λ

λξ ℜ
−=

nn λω =Modal Frequency:

Analogous to
Roots of Characteristic 
Equation for SDOF
Damped Free Vibration
Problem

1i −=Note:
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Damped Mode Shapes
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Damped Mode Shapes
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Outline: Part IV
• MDOF Solution Using Complex Modal 

Analysis
• Example: Damped Mode Shapes and 

Frequencies
• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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m = 1.0 k-sec2/in.

m = 1.5

m = 1.5

m = 1.5

m = 1.5

k = 200 k/in.
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k = 300

k = 350

k = 400

c = 20 k-sec/in

c = 30

Example: Damped Mode Shapes and Frequencies
Nonproportional Damping
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Frequency
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Ratio

Frequency
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Damping
Ratio

Using UNDAMPED
MODE SHAPES

Using DAMPED
MODE SHAPES*

Example: Damped Mode Shapes and Frequencies
System with Non-Classical Damping

*Table is for model with
VERY STIFF braces.

Obtained from MSE Method Significant Differences in 
Higher Mode Damping Ratios
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Example: Damped Mode Shapes and Frequencies
System with Non-Classical Damping
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Example: Damped Mode Shapes and Frequencies
System with Non-Classical Damping
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Outline: Part IV

• MDOF Solution Using Complex Modal 
Analysis

• Example: Damped Mode Shapes and 
Frequencies

• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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Huntington Tower
- 111 Huntington Ave, Boston, MA
- New 38-story steel-framed building
- 100 Direct-acting and toggle-brace dampers 
- 1300 kN (292 kips), +/- 101 mm (+/- 4 in.)
- Dampers suppress wind vibration

The larger the damping
coefficient C, the smaller

the damping ratio ξ.  

Why?
Note: 
Occurs for toggle-braced systems only.

An Unexpected Effect of Passive Damping
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Toggle Brace Deployment

Huntington Tower
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Example: Toggle Brace Damping System
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Units: inches
Passive Energy Dissipation 15 – 6 - 164Instructional Material Complementing FEMA 451, Design Examples

Methods of Analysis Used to 
Determine Damping Ratio

•Energy Ratios for Steady-State 
Harmonic Loading: ξ = ED/4πES

•Modal Strain Energy

•Free Vibration Log Decrement 

•Damped Eigenproblem
C =10 to 40 k-sec/in (increments of 10)
A =10 to 100 in2 (increments of 10)
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Computed Damping Ratios for System With A = 10
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Computed Damping Ratios for System With A = 20
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Computed Damping Ratios for System With A = 30
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Computed Damping Ratios for System With A = 50
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Why Does Damping Ratio Reduce for Low
Brace Area/Damping Coefficient Ratios?

U1

U2

U3

UD

Displacement in Damper is Out-of-Phase
with Displacement at DOF 1
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Interim Summary Related to 
Modeling and Analysis (1)

• Viscously damped systems are very effective in
reducing damaging deformations in structures.

• With minor exceptions, viscously damped systems
are non-classical, and must be modeled explicitly
using dynamic time history analysis. 

• Avoid the use of the Modal Strain Energy method
(it may provide unconservative results)
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• Damped mode shapes provide phase angle 
information that is essential in assessing and
improving the efficiency of viscously damped
systems.  This is particularly true for linkage
systems (e.g. toggle-braced systems).  

• If damped eigenproblem analysis procedures are
not available, use overlayed response history plots
of damper displacement and interstory displacement
to assess damper efficiency.  (This would be 
required for nonlinear viscously damped systems.)

Interim Summary Related to 
Modeling and Analysis (2)
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Outline: Part IV

• MDOF Solution Using Complex Modal 
Analysis

• Example: Damped Mode Shapes and 
Frequencies

• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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Computer Software Analysis Capabilities

Linear Viscous Fluid Dampers
Nonlinear Viscous Fluid Dampers
Viscoelastic Dampers
ADAS Type Systems
Unbonded Brace Systems
Friction Systems
General System Yielding

SAP2000;
ETABS DRAIN

RAM
Perform

Yes
Yes
Yes
Yes
Yes

Yes
NO
Yes
Yes
Yes

Yes
Yes*
Yes
Yes
Yes

Yes Yes Yes
Pending Yes Yes

*Piecewise Linear
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Use a Type-1 truss bar element with 
stiffness proportional damping:

L
AEK = KC β=

For dampers with low stiffness:
Set A = L, E = 0.01 and
β = CDamper/0.01

Modeling Linear Viscous Dampers in DRAIN

i
j

k
j k

L
Damper

Result:
01.0K = DamperCC =

uCuKuCF Damper &&& === β
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Modeling Linear Viscous Dampers in DRAIN

i j k
m

Dampers may be 
similarly modeled using
the zero-length “Type-4”
connection element.

Nodes j and m have 
the same coordinates
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CD KD

i k

Modeling Viscous/Viscoelastic Dampers
Using the SAP2000 NLLINK Element

The damper is modeled as a Maxwell Element consisting of a linear or 
nonlinear dashpot in series with a linear spring.

To model a linear viscous dashpot, KD must be set to a large value, but 
not too large or convergence will not be achieved.  To achieve this, it is 
recommended that the relaxation time 
(λ = CD/KD) be an order of magnitude less than the loading time step Δt.  
For example, let KD = 100CD/Δt.  Sensitivity to KD should be checked.

SAP2000 often has difficulty converging when nonlinear dampers
are used and the velocity exponent is less than 0.4.
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Modeling ADAS, Unbonded Brace, and Friction 
Dampers using the SAP2000 NLLINK Element

ZFkDF y)1( ββ −+=

( )
⎪⎩

⎪
⎨
⎧ >−=

otherwiseD
0ZDifZ1D

F
kZ

y &

&&
&

α

For bilinear behavior, use α of approximately 50.  Larger values can
produce strange results.

k

βk

Fy

α=50
α=4
α=2

F

D
Note: Z is an internal hysteretic variable with magnitude less than or equal to 
unity.  The yield surface is associated with a magnitude of unity.
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Outline: Part IV

• MDOF Solution Using Complex Modal 
Analysis

• Example: Damped Mode Shapes and 
Frequencies

• An Unexpected Effect of Passive Damping
• Modeling Dampers in Computer Software
• Guidelines and Code-Related Documents 

for Passive Energy Dissipation Systems
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1993 - Tentative General Requirements for the Design and 
Construction of Structures Incorporating Discrete Passive 

Energy Dissipation Devices (1 of 3)

- Draft version developed by Energy Dissipation Working Group (EDWG) of 
Base Isolation Subcommittee of Seismology Committee of SEAONC 
(Not reviewed/approved by SEAOC; used as basis for 1994 NEHRP Provisions)

- Philosophy: For Design Basis Earthquake (10/50), confine inelastic behavior to 
energy dissipation devices (EDD); gravity load resisting system to remain elastic

- Established terminology and nomenclature for energy dissipation systems (EDS)

- Classified systems as rate-independent or rate-dependent 
(included metallic, friction, viscoelastic, and viscous dampers)

- Required at least two vertical lines of dampers in each principal direction of     
building; dampers to be continuous from the base of the building

- Prescribed analysis and testing procedures
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Energy
Dissipation
Device (EDD)

Energy Dissipation Nomenclature

Energy
Dissipation
Assembly (EDA)

1993 - Tentative General Requirements for the Design and 
Construction of Structures Incorporating Discrete Passive 

Energy Dissipation Devices (2 of 3)
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- Elastic structures with rate-dependent devices: Linear dynamic procedures 
(response spectrum or response history analysis)

- Inelastic structures or structures with rate-independent devices: 
Nonlinear dynamic response history analysis

- Prototype tests on full-size specimens (not required if previous tests      
performed and documented by ICBO)

- General acceptability criteria for energy dissipation systems:
- Remain stable at design displacements
- Provide non-decreasing resistance with increasing displacement 

(for rate-independent systems)
- Exhibit no degradation under repeated cyclic load at design displ.
- Have quantifiable engineering parameters

- Independent engineering review panel required to oversee design and testing

1993 - Tentative General Requirements for the Design and 
Construction of Structures Incorporating Discrete Passive 

Energy Dissipation Devices (3 of 3)
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- Includes Appendix to Chapter 2 entitled: Passive Energy Dissipation Systems

- Material is based on:
- 1993 draft SEAONC EDWG document
- Proceedings of ATC 17-1 Seminar on Seismic Isolation, Passive

Energy Dissipation, and Active Control (March 1993)
- Special issue of Earthquake Spectra (August 1993)

- Applicable to wide range of EDD’s; therefore requires EDD performance verification
via prototype testing

- Performance objective identical to conventional structural system 
(i.e., life-safety for design EQ)

- At least two EDD per story in each principal direction, distributed continuously
from base to top of building unless adequate performance (drift limits satisfied 
and member curvature capacities not exceeded) with incomplete vertical
distribution can be demonstrated

- Members that transmit damper forces to foundation designed to remain elastic

1994 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures (1 of 4)

Part 1 – Provisions & Part 2 – Commentary (FEMA 222A & 223A)
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WBCBVV Smin ==

V = Minimum base shear for design of structure without EDS
B = Reduction factor to account for energy dissipation provided by EDS
(based on combined, inherent plus added damping, damping ratio)

Vmin = Minimum base shear for design of structure with EDS 
[Use for linear static (ELF) or linear dynamic (Modal) analysis]

Analysis/Design Procedure for Linear Viscous Energy Dissipation Systems

Note: After publication, it was 
recognized that this procedure may 
not be appropriate since it allows 
reduction in forces due to both
inelastic structural  response 
(R-factor) and added damping
(B-factor).  For yielding structures, 
added damping will not reduce forces.0
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1994 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures (2 of 4)

Part 1 – Provisions & Part 2 – Commentary (FEMA 222A & 223A)
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Analysis/Design Procedure for EDD’s other than Linear Viscous Dampers

−+

−+

+

+
=

ΔΔ
DDD FF

k eff

22
D

S

Dn
eqneq 2

TW
W4

Wm2m2c
Δππ

ωξω ===

Eq. (C2A.3.2.1a)
Effective Device Stiffness at Design Displacement

Eq. (2A.3.2.1)
Equivalent Device Damping Coefficient
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e

Deformation

+Δ

−Δ
+

DF
−

DF

Slope = effDk

2) Performance Verification: Nonlinear response history analysis

EDD Behavior

1) Preliminary Design: Linear dynamic modal analysis using effective stiffness 
and damping coefficient of energy dissipation devices.  Use B-factor to
reduce modal base shears.

Area = DW
SE4
WD

strcombined π
ξξ ∑+=

Eq. (C2A.3.2.1c)
Combined Equivalent Damping Ratio

1994 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures (3 of 4)

Part 1 – Provisions & Part 2 – Commentary (FEMA 222A & 223A)
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- For nonlinear response-history analysis, mathematical modeling should account for:
- Plan and vertical spatial distribution of EDD’s
- Dependence of EDD’s on loading frequency, temperature, sustained loads,

nonlinearities, and bilateral loads

- Prototype Tests on at least two full-size EDD’s
(unless prior testing has been documented)

- 200 fully reversed cycles corresponding to wind forces
- 50 fully reversed cycles corresponding to design earthquake
- 10 fully reversed cycles corresponding to maximum capable earthquake

- Acceptability criteria from prototype testing of EDD’s:
- Hysteresis loops have non-negative incremental force-carrying capacities

(for rate-independent systems only)
- Exhibit limited effective stiffness degradation under repeated cyclic load
- Exhibit limited degradation in energy loss per cycle under repeated cyclic load
- Have quantifiable engineering parameters
- Remain stable at design displacements

1994 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures (4 of 4)

Part 1 – Provisions & Part 2 – Commentary (FEMA 222A & 223A)
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- Includes an appendix to Chapter 13 entitled:
Passive Energy Dissipation

- The appendix in the 1994 NEHRP Provisions was 
deleted since it was deemed to be insufficient for design
and regulation.  It was replaced with 3 paragraphs that
provide very general guidance on passive energy
dissipation systems.

1997 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures

Part 1 – Provisions & Part 2 – Commentary (FEMA 302 & 303)
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- Chapter 9 entitled: Seismic Isolation and Energy Dissipation
(Developed by New Technologies Team under ATC Project 33)

- Performance-based document
- Rehabilitation objectives based on desired performance levels for selected hazard levels

- Global Structural Performance Levels
- Operational (OP)
- Immediate Occupancy (IO)
- Life-Safety (LS)
- Collapse Prevention (CP)

- Hazard levels
- Basic Safety Earthquake 1 (BSE-1): 10/50 event
- Basic Safety Earthquake 2 (BSE-2): 2/50 event (Maximum Considered EQ - MCE)

- Rehabilitation Objectives
- Limited Objectives (less than BSO) 
- Basic Safety Objective (BSO):  LS for BSE-1 and CP for BSE-2
- Enhanced Objectives (more than BSO)

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (1 of 9)

Most Applicable
Performance Levels

Applicable
Rehabilitation
Objectives
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-Simplified vs. Systematic Rehabilitation
- Simplified: For simple structures in areas of low to moderate seismicity
- Systematic: Considers all elements needed to attain rehabilitation objective

- Systematic Rehabilitation methods of analysis:
- Linear static procedure (LSP)
- Linear dynamic procedure (LDP)
- Nonlinear static procedure (NSP)
- Nonlinear dynamic procedure (NDP)

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (2 of 9)

Coefficient Method

Capacity Spectrum Method
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1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (3 of 9)
• Basic Principles:

– Dampers should be spatially distributed (at each story and on each side of 
building)

– Redundancy (at least two dampers along the same line of action; design 
forces for

dampers and damper framing system are reduced as damper redundancy 
is increased)

– For BSE-2, dampers and their connections designed to avoid failure (i.e, 
not weak link)

– Members that transmit damper forces to foundation designed to remain 
elastic

• Classification of EDD’s
– Displacement-dependent
– Velocity-dependent
– Other (e.g., shape memory alloys and fluid restoring force/damping 

dampers)

Manufacturing quality control program should be established along with 
prototype testing programs and independent panel review of system design and 
testing program
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Mathematical Modeling of Displacement-Dependent Devices

Eq. (9-20)
Force in Device

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (4 of 9)
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Mathematical Modeling of Solid Viscoelastic Devices

Eq. (9-22)
Force in Device

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (5 of 9)

DCDkF eff
&+=

K
DD

FF
keff ′=

+

+
=

−+

−+
Eq. (9-23)
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EDD Behavior

Area = DW

Storage Stiffness
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Eq. (9-24)
Damping Coefficient
of Device

Loss Stiffness

Average Peak Displ. Circular frequency of mode 1
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Mathematical Modeling of Fluid Viscoelastic and Fluid Viscous Devices

Maxwell Model

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (6 of 9)

DCFF && =+ λ

Fluid Viscoelastic Devices:

Eq. (9-25)
Linear or Nonlinear Dashpot Model( )DsgnDCF 0

&& α
=

Fluid Viscous Devices:

Caution: Only use fluid viscous device model if      = 0 for frequencies
between 0.5 f1 and 2.0 f1; Otherwise, use fluid viscoelastic device model.

K ′
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Pushover Analysis for Structures with EDD’s (Part of NSP)

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (7 of 9)
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Performance point without dampers
Performance point with dampers

Reduced Displacement Reduced Damage
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Design Process for Velocity-Dependent Dampers using NSP
Steps
1) Estimate Target Displacement (performance point)
2) Calculate Effective Damping Ratio and Secant Stiffness of building with dampers

at Target Displacement
3) Use Effective Damping and Secant Stiffness to calculate revised Target Displacement
4) Compare Target Displacement from Steps 1 and 4.  

If within tolerance, stop.  Otherwise, return to Step 1.

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  8 of 9)

k

j
j

eff W4

W

π
ββ

∑
+=

Effective damping ratio of building with dampers at Target Displ.;
j = index over devices

∑=
i

iik F
2
1W δ Maximum strain energy in building with dampers at Target Displ.;

i = index over floor levels
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Design Process for Velocity-Dependent Dampers using NSP (2)

1997 - NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA 273)
1997 - NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of 

Buildings (FEMA 274)  (9 of 9)
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Work done by j-th damper with building
subjected to Target Displacement
(assumes harmonic motion with amplitude equal to
Target Displacement and frequency corresponding
to Secant Stiffness at Target Displacement)
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cosCT

φπ

φθ
ββ

Alternate expression for Effective Damping Ratio
that uses modal amplitudes of first mode shape

Checking Building Component Behavior (Forces and Deformations)

For velocity-dependent dampers, must check component behavior at three stages:
1) Maximum Displacement
2) Maximum Velocity
3) Maximum Acceleration
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2000 – Prestandard and Commentary for the Seismic 
Rehabilitation of Buildings (FEMA 356)

• Prestandard version of 1997 NEHRP Guidelines and 
Commentary for the Seismic Rehabilitation of Buildings 
(FEMA 273 & 274)

• Prepared by ASCE for FEMA

• Prestandard = Document has been accepted for use as the 
start of the formal standard development process 
(i.e., it is an initial draft for a consensus standard)
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- Appendix to Chapter 13 entitled Structures with Damping Systems
(completely revised/updated version of 1994 and 1997 Provisions; Brief commentary provided)

- Intention:
- Apply to all energy dissipation systems (EDS)
- Provide design criteria compatible with conventional

and enhanced seismic performance
- Distinguish between design of members that are part 
of EDS and members that are independent of EDS.

-The seismic force resisting system must comply with the requirements 
for the system’s Seismic Design Category, except that the damping 
system may be used to meet drift limits. 

No reduction in detailing is thereby allowed,
even if analysis shows that the damping system
is capable of producing significant reductions in
ductility demand or damage.

2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (1 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)
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- Members that transmit damper forces to foundation designed to  
remain elastic

- Prototype tests on at least two full-size EDD’s
(reduced-scale tests permitted for velocity-dependent dampers)

- Production testing of dampers prior to installation.

- Independent engineering panel for review of design and testing 
programs

- Residual mode concept introduced for linear static analysis.   
This mode, which is in addition to the fundamental mode, is 
used to account for the combined effects of higher modes.  
Higher mode interstory-velocities can be significant and thus     
are important for velocity-dependent dampers.

2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (2 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)
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Methods of Analysis:

• Linear Static (Equivalent Lateral Force*) 
- OK for Preliminary Design

• Linear Dynamic (Modal Response Spectrum*)
- OK for Preliminary Design

• Nonlinear Static (Pushover*)
- May Produce Significant Errors

• Nonlinear Dynamic (Response History)
- Required if S1 > 0.6 g and may be used in all other cases

*The Provisions allow final design using these procedures, but
only under restricted circumstances.

2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (3 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)
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Effective Damping Ratio 
(used to determine factors, B, that reduce structure response)

2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (4 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)

HVmIm βμβββ ++=

Hysteretic Damping Due to 
Post-Yield Behavior in Structure

Equivalent Viscous Damping of
EDS in the m-th Mode

Inherent Damping Due to Pre-Yield Energy
Dissipation of Structure 
(βI = 5% or less unless higher values can be justified)

Effective Damping Ratio in m-th mode of vibration
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Equivalent Viscous Damping from EDS

2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (5 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)

m

j
mj

Vm W4

W

π
β

∑
= Equivalent Viscous Damping in m-th mode

(due to EDS)

Maximum Elastic Strain Energy of structure
in m-th mode∑=

i
imimm F

2
1W δ

HVmIm βμβββ ++=

μ Adjustment factor that accounts for dominance of
post-yielding inelastic hysteretic energy dissipation 
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2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (6 of 8)

Part 1 – Provisions & Part 2 – Commentary (FEMA 368 & 369)

Base Shear Force

Minimum base shear for
design of seismic force
resisting system

To protect against damper system malfunction, maximum reduction
in base shear over a conventional structure is 25%

Minimum base shear for design
of structure without EDS

Spectral reduction factor 
based on the sum of
viscous and inherent damping
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2000 - NEHRP Recommended Provisions for Seismic Regulations 
for New Buildings and Other Structures   (7 of 8)
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Passive Energy Dissipation 15 – 6 - 206Instructional Material Complementing FEMA 451, Design Examples
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