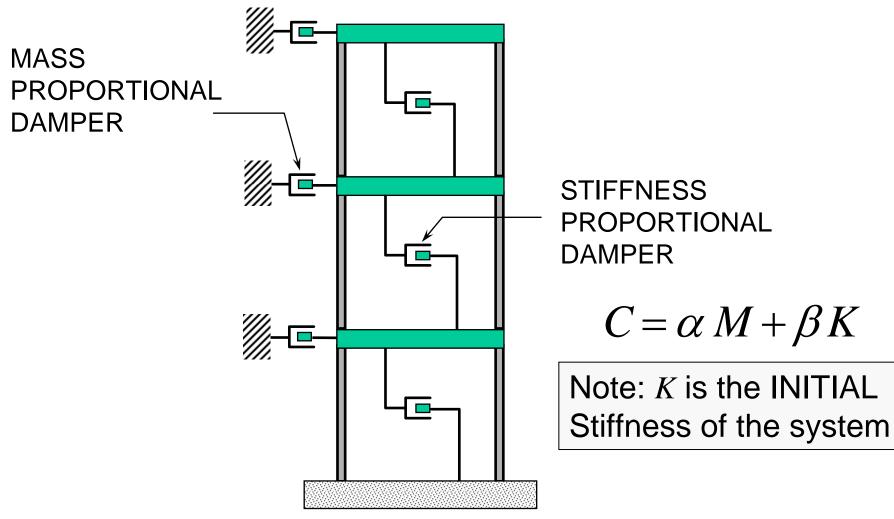
Structural Analysis for Performance-Based Earthquake Engineering

- Basic modeling concepts
- Nonlinear static pushover analysis
- Nonlinear dynamic response history analysis
- Incremental nonlinear dynamic analysis
- Probabilistic approaches

Nonlinear Dynamic Response History Analysis


Principal Advantage: <u>All</u> problems with pushover analysis are eliminated. However, new problems may arise.

Main Concerns in Nonlinear Dynamic Analysis:

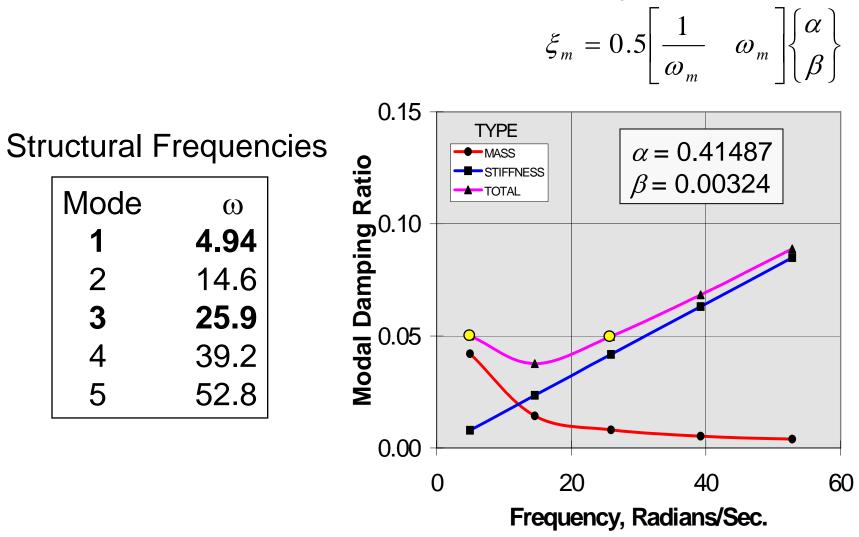
- 1) Modeling of hysteretic behavior
- 2) Modeling inherent damping
- 3) Selection and scaling of ground motions
- 4) Interpretation of results
- 5) Results may be very sensitive to seemingly minor perturbations

Modeling Inherent Damping Using Rayleigh Proportional Damping

Rayleigh Proportional Damping

Select Damping value in two modes, ξ_k and ξ_n Compute Coefficients α and β :

$$\begin{cases} \alpha \\ \beta \end{cases} = 2 \frac{\omega_k \omega_n}{\omega_n^2 - \omega_k^2} \begin{bmatrix} \omega_n & -\omega_k \\ -1/\omega_n & 1/\omega_k \end{bmatrix} \begin{cases} \xi_k \\ \xi_n \end{cases}$$


Form Damping Matrix $C = \alpha M + \beta K$

Topics in Performance-Based Earthquake Engineering

Rayleigh Proportional Damping (Example)

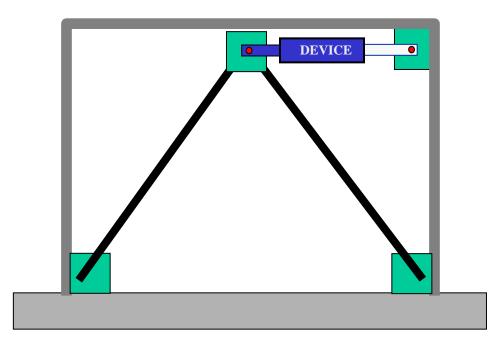
5% Critical in Modes 1 and 3

🎯 FEMA

Topics in Performance-Based Earthquake Engineering

Advanced Analysis 15 – 5c - 5

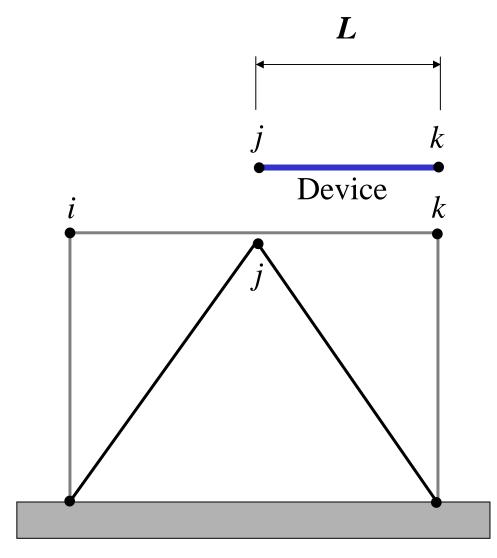
Damping in any other Mode *m*:


Loss of stiffness, frequency shift, and higher mass proportional damping

🛞 FEMA

Topics in Performance-Based Earthquake Engineering

Modeling Linear Viscous Dampers in DRAIN



Note: Nonlinear Damping is NOT Available in DRAIN.

Topics in Performance-Based Earthquake Engineering

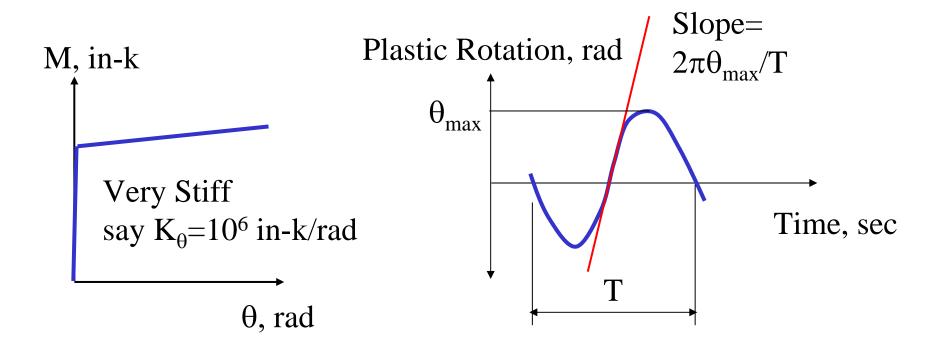
Modeling Linear Viscous Dampers in DRAIN

Use element stiffness proportional damping.

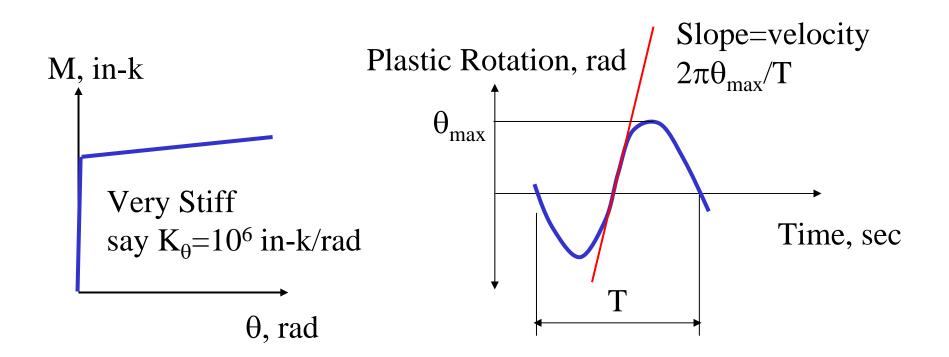
$$K_{Damper} = \frac{AE}{L}$$

$$C_{Damper} = \beta K_{Damper}$$

For low damper stiffness: Set *A*=*L*, *E*=0.01


use
$$\beta = C_{Damper}/0.01$$

Topics in Performance-Based Earthquake Engineering


Caution Regarding Stiffness Proportional Damping

NEVER use stiffness proportional damping in association with ANY elements that have artificially high stiffness and that may yield.

Topics in Performance-Based Earthquake Engineering

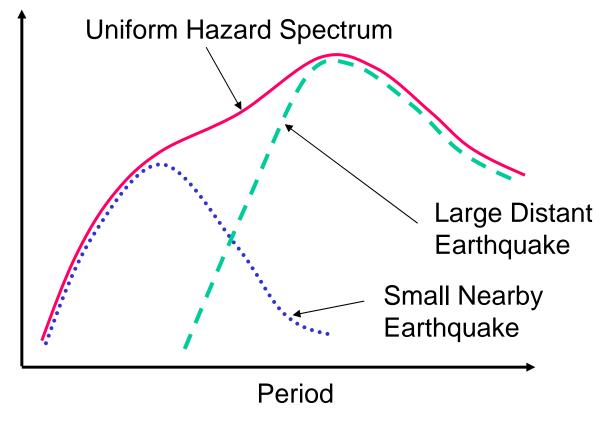
Viscous Moment in Hinge = $K_{\theta}\beta (2\pi\theta_{max}/T)$

Assume $\theta_{max} = .03$ rad, T=1.0 sec, $\beta=0.004$ M=10⁶(0.004)(2 π (.03)/1.0))=7540 in-k

NEHRP Ground Motion Selection

- Ground motions must have magnitude, fault mechanism, and fault distance consistent with the site and must be representative of the maximum considered ground motion
- Where the required number of motions are not available simulated motions (or modified motions) may be used

(Parenthesis by F. Charney)


How many records should be used? Where does one get the records? How can the records be modified to match site conditions?

Use of Simulated Ground Motions

Simulated records should **NOT** be used if they have been created on the basis of spectrum matching where the target spectrum is a uniform hazard spectrum.

Topics in Performance-Based Earthquake Engineering

Use of Simulated Ground Motions

Reference:

"On the use of Design Spectrum Compatible Time Histories", by Farzad Naiem and Marshall Lew, Earthquake Spectra, Volume 11, No.1.

"Frequency domain scaled Design Spectrum Compatible Time Histories (DSCTH) are based on an erroneous understanding of the role of design spectra and can suffer from a multitude of major problems. They may represent velocities, displacements, and high energy content which are very unreliable. The authors urge extreme caution in the use of DSCTH in the design of earthquake resistant structures."

PEER Ground Motion Search Engine

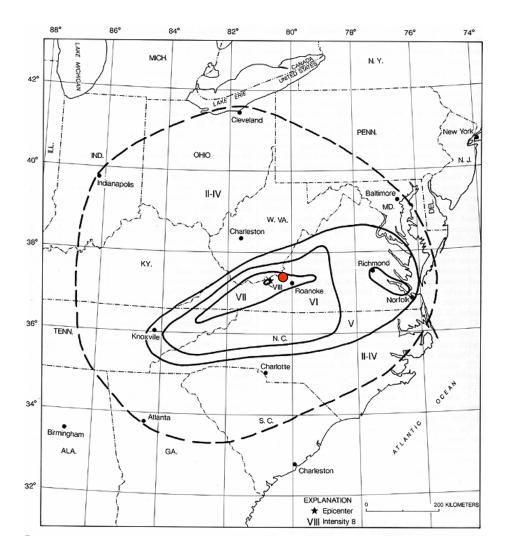
	🕲 Search 🗃 Favorites 🛞 Media 🧭 🛃 + 🎒 🗹 + 📃		
http://peer.berkeley.e	edu/smcat/search.html	<u>▼</u> (∂°G0 Li	inks »
	PEER Strong Motion Database		
STITES .	Introduction Browse Search Documentation Providers Credits		
	1: Search earthquake or station characteristics and peak values		
	Earthquake Any		
	Mechanism Strike slip		
	Magnitude (Range) 6 . 7 CML CM CMS © Any		
	Distance (km) 50 C Closest C Hypocentral C Projection of fault plane (JB distance) © Any		
	Site Classification USOS B 360 - 750 m/s 💌		
	Geomatrix B Shallow (stiff) soil ▼		
	Taiwan CWB Any		
	Mapped Local Geology Any		- 1
	Instrument Housing Any		
	Data Source Any		
			- 1
	PGA (g) _ Range 0.001 2.086		
	PGV(cm/sec) _ Range 0.1 263.1		
	PGD (cm) _ Range 0.01 430.00		
	Search Clear		
	2: Search response spectra		
	Maximum 2 📓 PEER Strong Motion Platter		
	Pseudo Acceleration (g) 2		

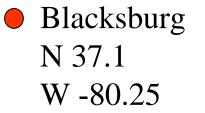
NONLIN Ground Motion Tools (EQTOOLS)

Bit Ste Response Attenuation Iransformation Window Help Stanct LARTHQUAKE RECORDS Easthquake Ope Mendocino 1932/04/25 18:0.6 Component Proteontal (maximum PGA) Mechanism Peverse Normal Mechanism Peverse Normal Magnitude UR Peak Ground Acceleration (PGA) M M M L MS Other PGA (g) 178 Distance (Kilometers) 44.60 Site Classification (US6S) Imagination of Mines and Geology Data Source DMG California Division of Mines and Geology Search Restore Searched Earthquake: PGA: (b) 178 ; Dutation: 43.98 ret Applicated: PGA: (b) 178 ; Dutation: 43.98 ret Cape Mendocino 1930/04/25 1806, 4/25/1932 StoBoomt, 884 Impenial Valey 1937/10/15 23.16, 10/15/1973 111:600 PM, 5051 FP Cape Mendocino 1930/04/25 1806, 4/25/1932 StoBoomt, 884 Impenial Valey 1937/10/15 23.16, 10/15/1973 11:1600 PM, 5051 FP Cape Mendocino 1930/04/25 1806, 4/25/1932 StoBoomt, 885 Impenial Valey 1937/10/15 23.16, 10/15/1973 11:1600 PM, 5051 FP Cape Mendocino 1930/04/25 1806, 4/25/1932 StoBoomt, 885 Impenial Valey 1937/10/15 23.16, 10/15/1973 11:1600 PM, 286 StoI Impenial Valey 1937/10/15 23.16, 10/15/1973 11:1600 PM, 286 StoI Impenial Valey 1937/10/15 23.16, 10/15/1973 11:1600 PM, 286 StoI Impenial Valey 1937/10/15 23.16, 10/15/1	GROUND MOTION TOOLS (Version 1.00)		_ D ×						
Earthquake Cape Mendocino 1932/04/25 18.06 Component Horizontal (maximum PGA) Mechanism Reverse Normal Magnitude OB Peak Ground Acceleration (PGA) Magnitude (Range) 7.1 · · · · · · · · · · · · · · · · · · ·	File Site Response Attenuation Transformatio	ו <u>W</u> indow <u>H</u> elp							
Component Horizontal (maximum PGA) Mechanism Reverse Normal Magnitude OB Peak Ground Acceleration (PGA) @ Magnitude (Range) 21 • M M ML MS Other PGA (g) 0178 • Range (0.001 2.086) Distance (Kilometers) 44.60 • Closest Hypocentral Projection of Fault Plane Site Classification (USGS) 8 Data Source CDMG California Division of Mines and Geology Search Restore Clear I Wiley I Projection of Fault Plane Site Classification (USGS) 8 Data Source CDMG California Division of Mines and Geology Search Restore Clear I Wiley I Wiley 1979/10/15 2316, 10/15/1979 11:16:00 PM, 5051 P Plot all records for study Searched Eathquakes PGA: 0.178g ; Duration: 43.98 sec Cape Mendoceno 1820/04/25 1806, 4/25/1982 606:00 PM, 883 Cape Mendoceno 1820/04/25 1806, 4/25/1982	SEARCH EARTHQUAKE RECORDS		×						
Mechanism Reverse Normal Magnitude UR Peak Ground Acceleration (PGA) Magnitude UR Peak Ground Acceleration (PGA) Magnitude (Range) 71 M M M M M M M M M M M M M M M M M M M	Earthquake	Cape Mendocino 1992/04/25 18:06							
Magnitude OR Peak Ground Acceleration (PGA) Magnitude (Range) 7.1 PGA (g) 0.178 Distance (Kilometers) 44.60 PGA (g) 0.178 Bistance (Kilometers) 44.60 Other Range (0.001 2.086) Distance (Kilometers) 44.60 Site Classification (USGS) B Data Source CDMG California Division of Mines and Geology Search Restore Clear Sort Options Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 883 Pot all records for study Searched Earthquakes PGA: 0.179g ; Duration: 43.98 sec Earthquakes for Study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 883 Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 883 Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 883 Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 883 Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 885 Pot all records for study Cape Mendocine 1932/04/25 18:06.4/25/1932 60:00 PM. 885 Pot all records for study Cape Mendocinen	Component	Horizontal (maximum PGA)							
Image: Additional data products 7.1 Image: Additional data products PGA (g) 0.178 Range (0.001 2.086) Distance (Kilometers) 44.60 Range (0.001 2.086) Distance (Kilometers) 44.60 Image: Closest C Hypocentral C Projection of Fault Plane Site Classification (USGS) Image: Closest C Hypocentral C Projection of Fault Plane Search Restore Clear Searched Earthquakes PGA: 0.178g : Duration: 43.98 sec Plot all records for study Cape Mendocino 1932/04/25 18:06, 4/25/1932 0.600 PM, 835 (Cape Mendocino 1932/04/25 18:06, 4/25/1932 0.600 PM,	Mechanism	Reverse Normal							
Imperial Valley 1973/10/15 2316, 10/15/1979 11:16:00 PM, 286 Su Imperial Valley 1973/10/15 2316, 10/15/1979 11:16:00 PM, 286 Imperial Valley 1973/10/15 2316, 10/15/1979 11:16:00 PM, 286 Imperial Valley 1973/10/15 2316, 10/15/1979 11:16:00 PM, 286	Magnitude	OR Peak Ground Acceleration (PGA)							
Distance (Kilometers) 44.60 • Closest • Hypocentral • Projection of Fault Plane Site Classification (USGS) • • • Closest • Hypocentral • Projection of Fault Plane Site Classification (USGS) • • • Closest • Hypocentral • Projection of Fault Plane Sort Options • • • Clear • </th <th>⊙ Magni</th> <th>ude (Range) 7.1 - OM OMLOMS ODther</th> <th></th>	⊙ Magni	ude (Range) 7.1 - OM OMLOMS ODther							
Distance (kiloinetis) Good of type colspan="2">Hole colspan="2" Col	0	PGA (g) 0.178 - Range (0.001 2.086)							
	Distance (Kilometers) 44.60 • Closest • Hypocentral • Projection of Fault Plane Site Classification (USGS) • • Closest • Hypocentral • Projection of Fault Plane Site Classification (USGS) • • Closest • Hypocentral • Projection of Fault Plane Search Restore Clear • • • • • • • • • • • • • • • • • • •								
		Delete Record Clear List							

Uniform Hazard Spectrum Coordinates

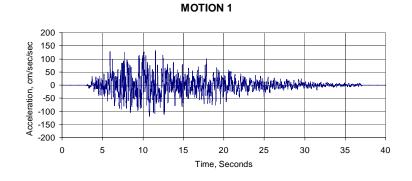
🚰 Lat/Lon Lookup Output! - Microsoft Internet Explorer	- D ×
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	
🗢 Back 🔹 🔿 🖌 🙆 🚰 🥘 Search 🕋 Favorites 🛞 Media 🧭 🛃 🖬 🚽 🗐	
Address 🙆 http://eqint.cr.usgs.gov/eq/cgi-bin/find-ll-1.cgi 🗹 🔗 Go	Links »
	<u> </u>
RUSGS	
Earthquake Hazards Program - National Seismic Hazard Mapping Project	1
	±
The ground motion values for the requested point:	
LOCATION 37.13 Lat80.25 Long.	
DISTANCE TO NEAREST GRID POINT 5.55267024317058 kms	
NEAREST GRID POINT 37.10000 Lat.	
-80.30000 Long.	
Probabilistic ground motion values, in %g, at the Nearest Gild point are:	
10%PE in 50 yr 5%PE in 50 yr 2%PE in 50 yr PGA 5.152937 9.119151 18.00517	
0.2 sec SA 11.61050 18.64848 35.15003	
0.2 sec SA 11.61050 18.64848 35.15003 0.3 sec SA 9.297289 15.16745 26.59287	
1.0 sec SA 3.981873 6.260873 10.83363	
The program has detected a zero latitude and has assumed the end of valid input data.	
PROJECT INFO: Home Page	
SEISMIC HAZARD: Hazard by Lat/Lon	
http://eqint.cr.usgs.gov/eq/html/l	ooku


Topics in Performance-Based Earthquake Engineering

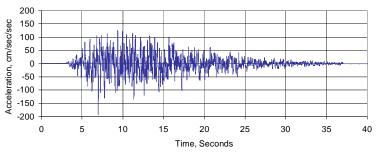

Ground Motion Generator

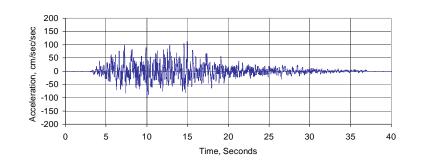
USGS-National Seismic Hazard Mapping Project - Interactive Deaggregations - Micro	soft Internet Explorer	
<u> jile E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp		(B)
= Back 🔹 🔿 🗸 🙆 🚰 🛱 🥘 Search 📾 Favorites 🛞 Media 🥳 🗟 🖬 🗹		
dress 🕘 http://eqint1.cr.usgs.gov/eq/html/deaggint.shtml		▼ 🖓 Go Links ≫
Earthquake Hazards Program - National Submid Hazard Mapping P		<u>*</u>
WEB SITE CONTENTS Gol	RELATED SITES	
	INTERACTIVE DEAGGREGATIONS	
In this page you may select a return time, SA frequency, specify a latitude and longitude a	nd request seismograms. Links to the following information will be returned:	
and <u>What is Epsilon?</u> are articles which discuss the theory behind the seismograms	selected. only - see below). This is in addition to the plot mentioned above. ssted). bout the input parameters to the program. It will increase your likelihood of success w	
no some browsers you have to click on a pre-selected item in a list to deselect it. If y	rou select an item without doing this you will have two items on the list selected and y	you will get a broken icon instead of a plot!
Site name: Used for plot labeling purposes only underscore (), comma (), and alphanumeric characters only, no blanks (they will be replaced with an underscore), name length <= 16 characters. Blacksburg	Select location of interest in latitude/longitude: Specify in decimal degrees, use "." to specify western longitudes. Conterminous US: latitude 25 to 49 degrees, longitude -125 to -65 degrees, only. Alaska: latitude 51 to 71 degrees, longitude -171 to -130 degrees, only. Hawaii: latitude 18 to 23 degrees, longitude -161 to -154 degrees, only. Latitude: 37.13 Longitude: -80.25	
Return time: PE = probability of exceedance Select one! 1% PE in 50 years 2% PE in 50 years 5% PE in 50 years 10% PE in 50 yrs	SA frequency: <u>SA</u> = Spectral Acceleration; <u>PGA</u> = peak ground acceleration. 0.5nz, 2.0hz and 10hz are not available for Hawaii. 0.5 hz 2.0 hz 3.33 hz	
Geographic Deaggregation: This is only available for the following SA frequencies: pga, 1.0 hz, 3.33 hz and 5.0 hz. Not available for Alaska or Hawaii. C Yes No	Seismograms: Do you want seismograms for the <u>Modal or Mean</u> event? O Yes, Modal • Yes, Mean O No	
It may take several minutes to generate !!! BE PATI GENERATE PLOT	ENT III Č	
http://eq	int1.cr.usgs.gov/eq/l	html/deaggint.sh

Isoseismal Map for the Giles County, Virginia, Earthquake of May 31, 1897.

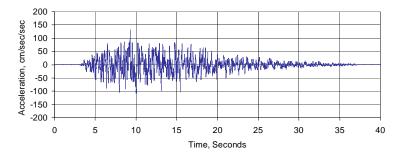


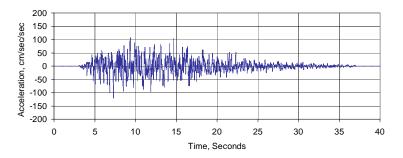
Topics in Performance-Based Earthquake Engineering


Blacksburg 2%-50 Ground Motions from USGS Web Site



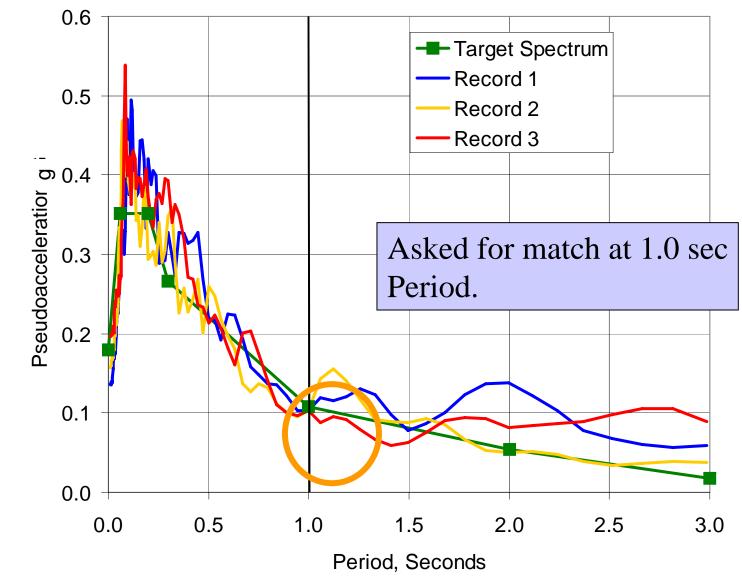
MOTION 2


MOTION 3



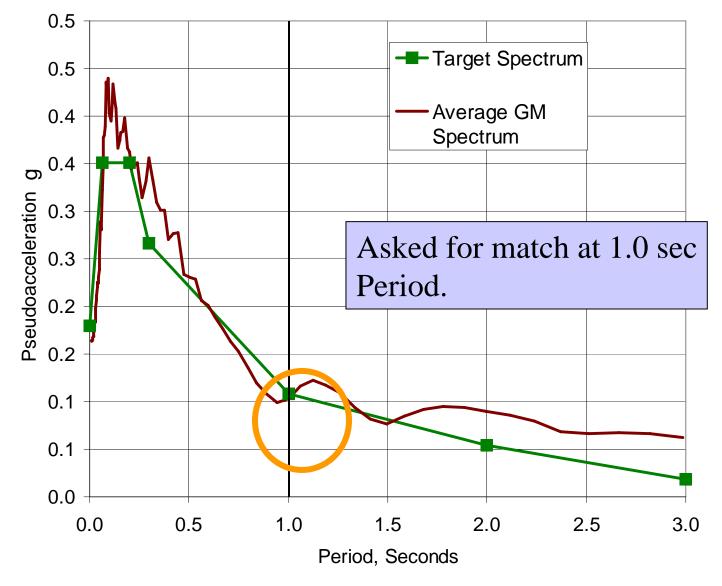
MOTION 4

MOTION 5



MOTION 6

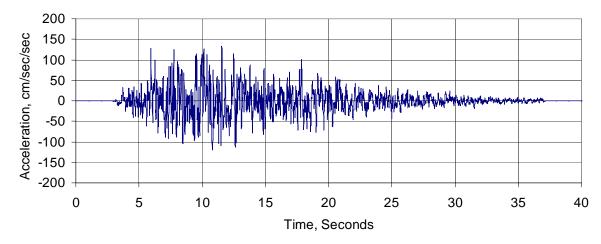
Topics in Performance-Based Earthquake Engineering



USGS Ground Motion Spectra and Target Spectrum

Topics in Performance-Based Earthquake Engineering

Average USGS Ground Motion Spectrum and Target Spectrum

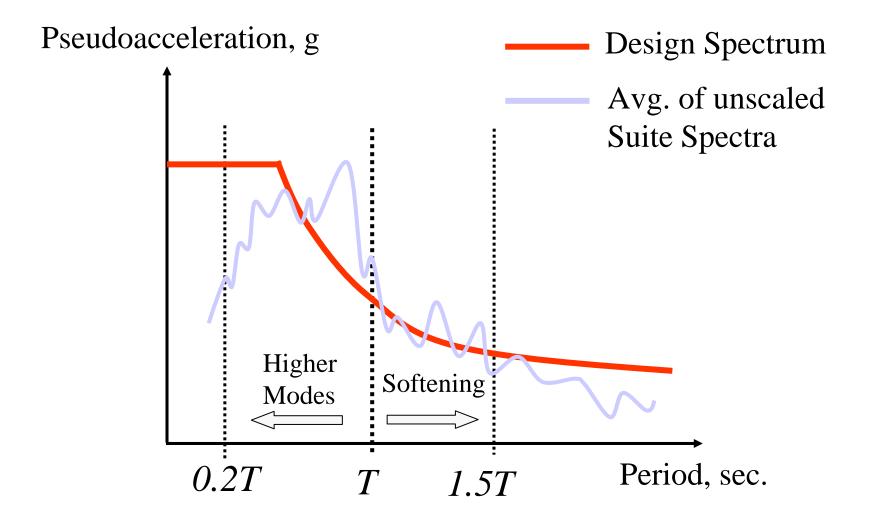


Topics in Performance-Based Earthquake Engineering

Ground Modification Modifications

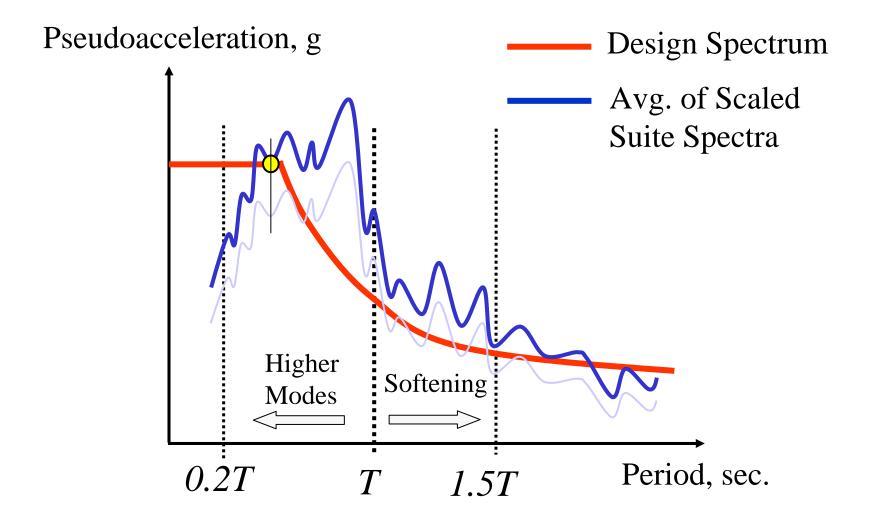
- Scale a given record to a higher or lower acceleration (e.g to produce a record that represents a certain hazard level)
- 2. Modify a record for distance
- 3. Modify a record for site classification (usually from hard rock to softer soil)
- 4. Modify a record for fault orientation

MOTION 1


Topics in Performance-Based Earthquake Engineering

NEHRP Ground Motion Scaling (2-D Analysis)

Ground motions must be scaled such that the average value of the 5% damped response spectra of the suite of motions is not less than the design response spectrum in the period range 0.2T to 1.5T, where T is the fundamental period of the structure.


NEHRP Scaling for 2-D Analysis

Topics in Performance-Based Earthquake Engineering

NEHRP Scaling for 2-D Analysis

Topics in Performance-Based Earthquake Engineering

NEHRP Ground Motion Selection and Scaling (3-D Analysis)

- The Square Root of the Sum of the Squares of the 5% damped spectra of each motion pair (N-S and E-W components) is constructed.
- 2. Each pair of motions should be scaled such that the average of the SRSS spectra of all component pairs is not less than 1.3 times the the 5% damped design spectrum in the period range 0.2 to 1.5 T.

Potential Problems with NEHRP Scaling

- A degree of freedom exists in selection of individual motion scale factors, thus different analysts may scale the same suite differently.
- The scaling approach seems overly weighted towards higher modes.
- The scaling approach seems to be excessively conservative when compared to other recommendations (e.g. Shome and Cornell)

How Many Records to Use?

NEHRP Recommended Provisions:

- 5.6.2 A suite of not less than three motions shall be used
- 5.6.3 If at least seven ground motions are used evaluation may be based on the average responses from the different analyses. If less than seven motions are used the evaluation must be based on the maximum value obtained from all analyses.

Normalization and Scaling Accelerograms For Nonlinear Analysis

Nilesh Shome and Allin Cornell 6th U.S. Conference on Earthquake Engineering Seattle, Washington, September, 1997

Ground Motion Scaling for Nonlinear Analysis

(Shome and Cornell)

Bin:

A suite of ground motions with similar source, distance, and magnitude.

Bin Normalization:

Adjusting individual bin records to the same "intensity"

Bin Scaling:

Adjusting records from one bin (say a lower magnitude) to the intensity of the records from a different (usually higher) intensity bin.

Normalization Procedures

(Shome and Cornell)

- Normalize to PGA (NOT RECOMMENDED)
- Normalize to a Single Frequency at low damping (e.g. 2%)
- Normalize to a Single Frequency at a higher damping (e.g 5% to 20%) (RECOMMENDED)
- Normalize over a Range of Frequencies

How Many Records to Use?

(Shome and Cornell)

For records normalized to first mode spectral acceleration it may typically require about **4 to 6 records** to obtain about a one sigma (plus or minus 10 to 15 percent) confidence band.

Can records from a low intensity bin be scaled to represent higher intensity earthquakes?

(Shome and Cornell)

When the records are scaled from one intensity level to a higher intensity there is a mild dependency of scaling on computed ductility demand. The median ductility demand may vary 10 to 20 percent for one unit change in magnitude. *The effect of scaling on nonlinear hysteretic energy demand is more significant.*

Recommendations (Charney):

- 1) Use a minimum of seven ground motions
- If near-field effects are possible for the site a separate set of analyses should be performed using only near field motions
- 3) Try to use motions that are magnitude compatible with the design earthquake
- 4) Scale the earthquakes such that they match the target spectrum at the structure's initial (undamaged) natural frequency and at a damping of at least 5% critical.

Ground Modification Modifications

- Scale a given record to a higher or lower acceleration (e.g to produce a record that represents a certain hazard level)
- 2. Modify a record for distance (SRL Attenuation Issue)
- 3. Modify a record for site classification, usually from hard rock to softer soil. (WAVES by Hart and Wilson)
- 4. Modify a record for fault orientation (Somerville, et al)

See Also: *Ground Motion Evaluation Procedures for Performance Based Design*, by J.P. Stewart, et al, PEER Report 2001/09

Damage Prediction

Performance based design requires a quantification of the damage that might be incurred in a structure.

The "damage index" must be calibrated such that it may predict and quantify damage at all performance levels.

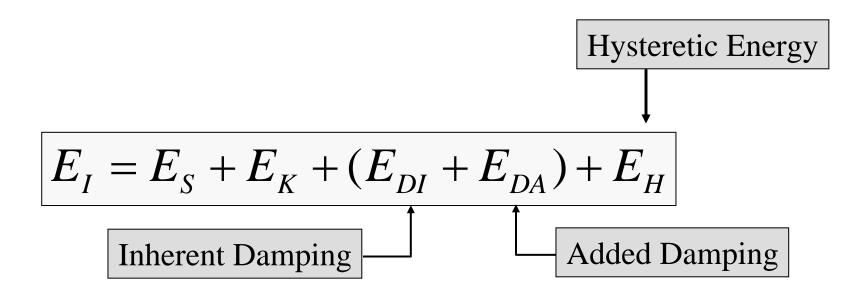
While inter-story drift and inelastic component deformation may be useful measures of damage, a key characteristic of response is missing... the effect of the duration of ground motion on damage.

A number of different damage measures have been proposed which are dependent on duration.

Damage Prediction

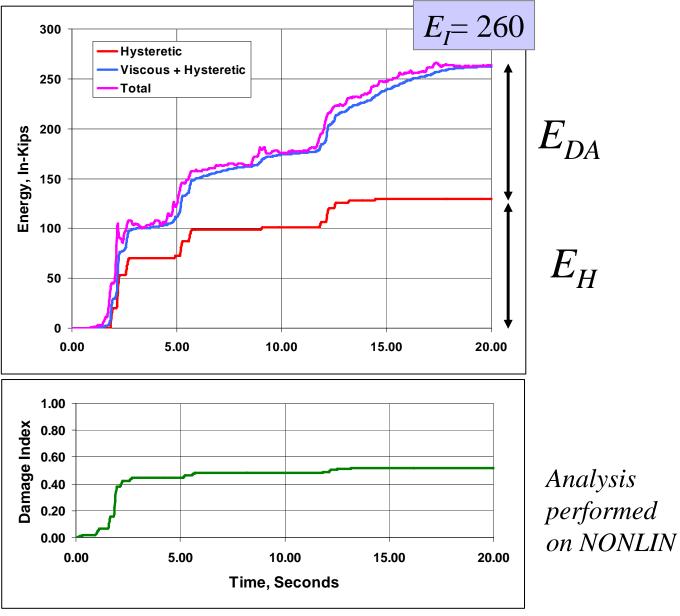
Park and Ang (1985)

$$DI_{PA} = \frac{u_{max}}{u_{cap}} + \lambda \frac{E_H}{u_{cap}}F_y$$

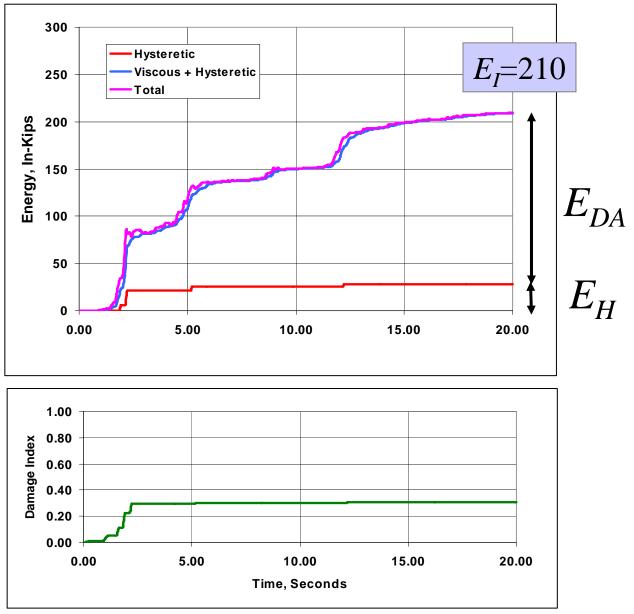

 u_{max} = maximum attained deformation

- u_{cap} = monotonic deformation capacity
- E_H = hysteretic energy dissipated
- F_{y} = monotonic yield strength
- λ = calibration factor

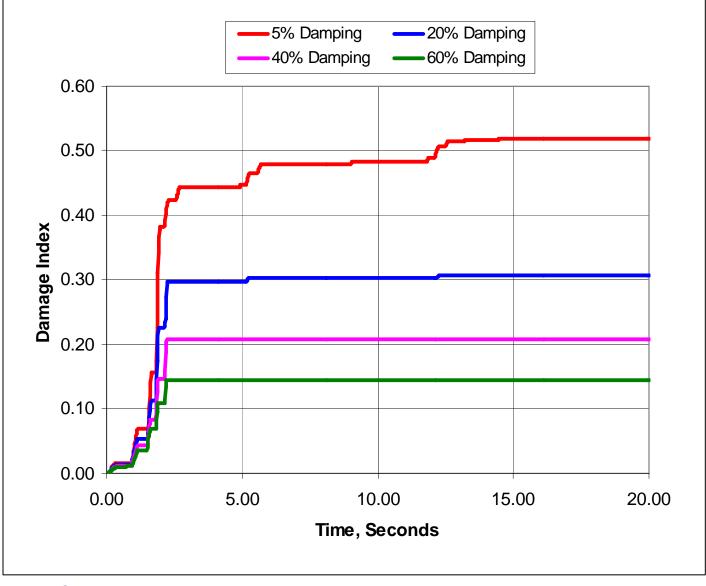
See Reference List for Additional Info on Damage Measures



Energy Balance

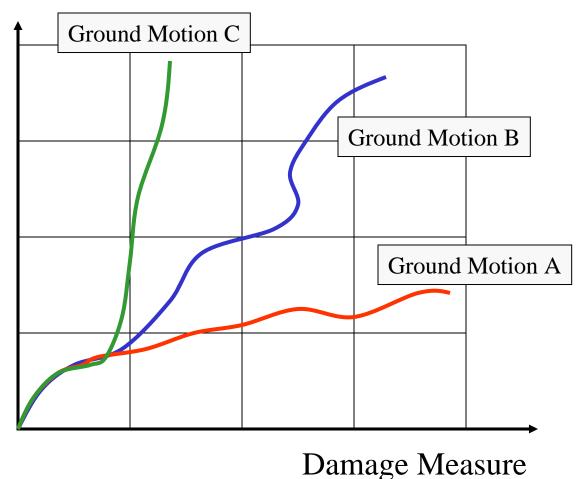


Energy and Damage Histories, 5% Damping



Energy and Damage Histories, 20% Damping

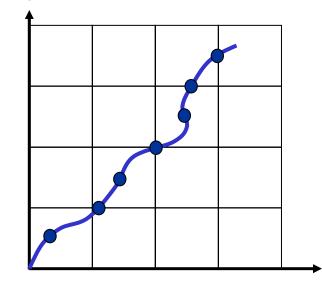
Reduction in Damage with Increased Damping



Seismic Performance, Capacity, and Reliability of Structures as Seen Through Incremental Dynamic Analysis

Ph.D. Dissertation of Dimitros Vamvatsikos, Department of Civil and Environmental Engineering Stanford University July 2002.

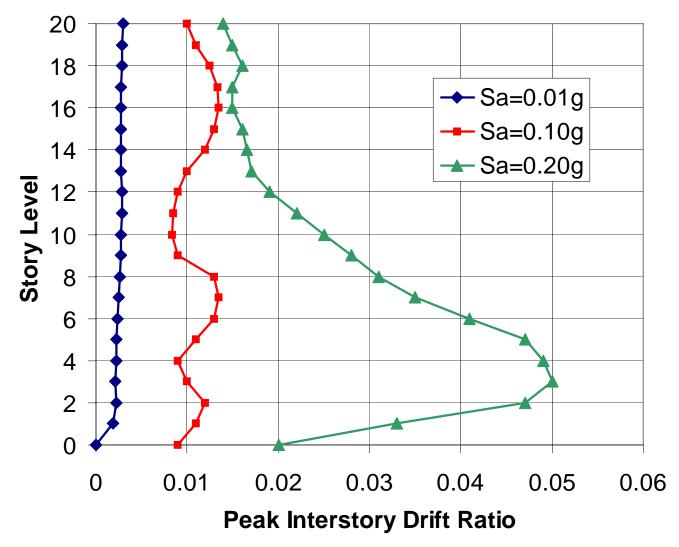
Ground Motion Intensity Measure



Topics in Performance-Based Earthquake Engineering

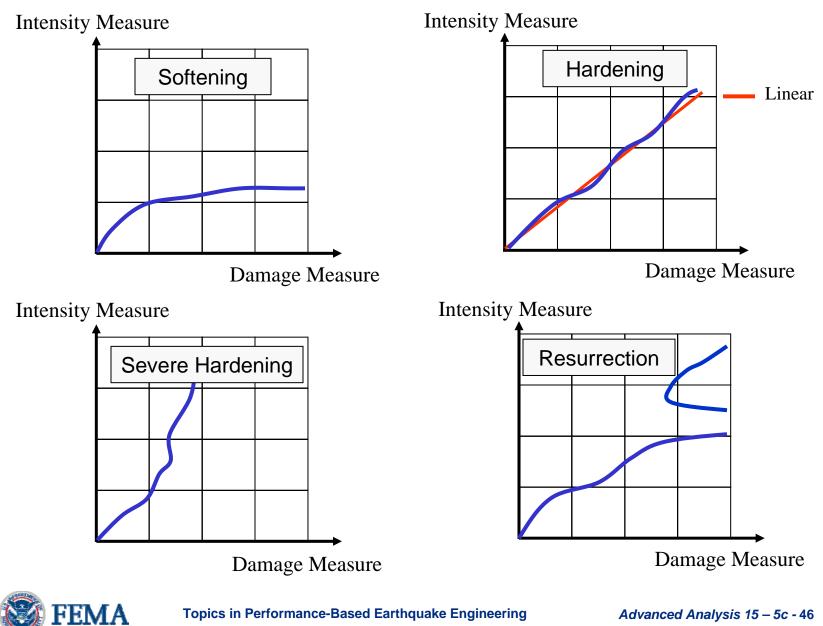
An *IDA study* is produced by I subjecting a single structure to a series of time history analyses, where each subsequent analysis uses a higher ground motion intensity.

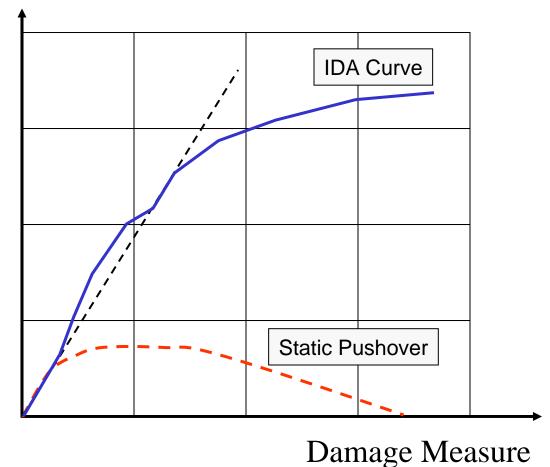
An *IDA Curve* is a plot of a damage measure (DM) versus the ground motion intensity (IM) at which it occurred.



Damage Measure

IDA Results for a Particular Ground Motion

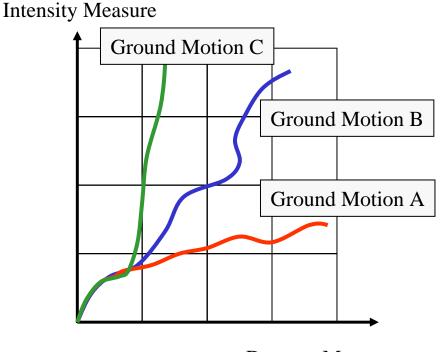

(after Vamvatsikos and Cornell)


Topics in Performance-Based Earthquake Engineering

Typical IDA Curve Characteristics

Typical IDA Curve Characteristics

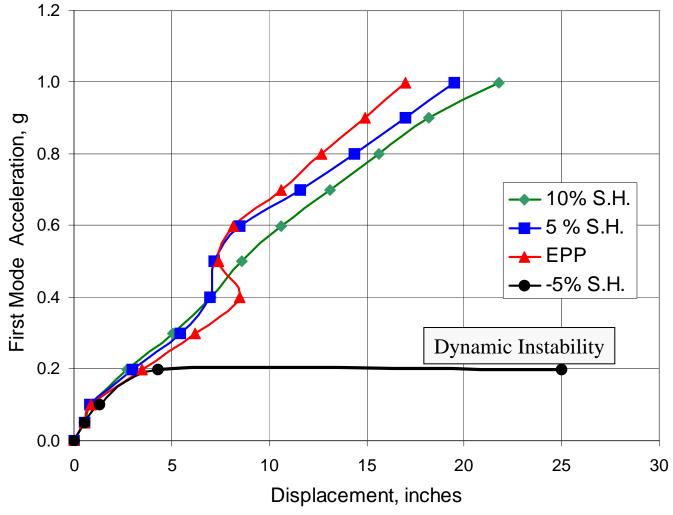
Intensity Measure



Incremental Nonlinear Dynamic Analysis (using Multiple Ground Motions)

Usually, a study compares the response of the structure to a suite of ground motions.

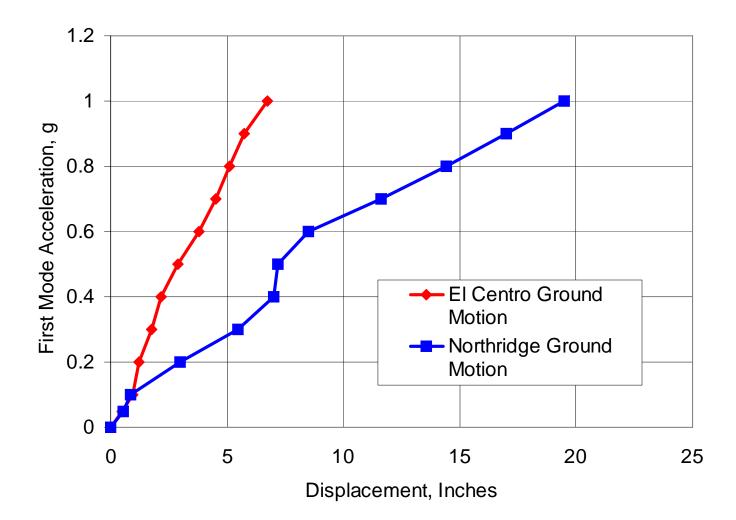
An IDA study may also be used to assess the effect of a design change (or uncertainty) on the response of a structure to a particular ground motion.



Damage Measure

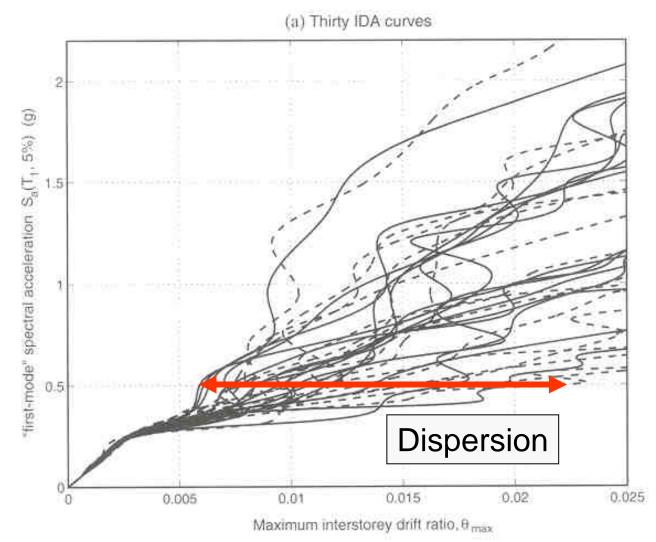
IDA Curves to Investigate Sensitivity of SDOF System Response to Strain Hardening Ratio

Analyzed on NONLIN Using Northridge (Slymar) Ground Motion.

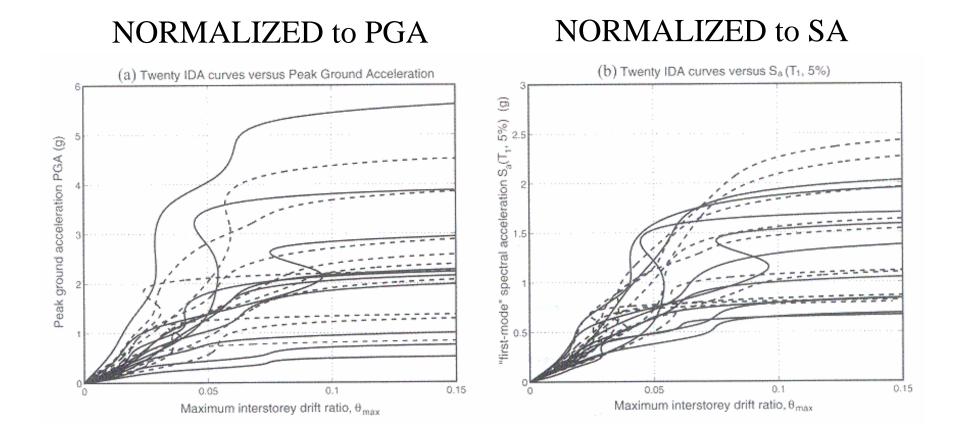


Topics in Performance-Based Earthquake Engineering

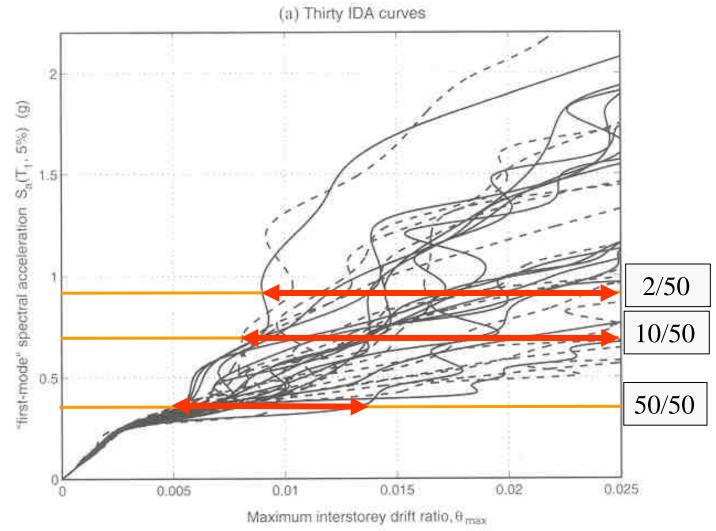
IDA Curves to Investigate Sensitivity of SDOF System Response to Choice of Ground Motion


2% Damping, 5% Strain Hardening

Topics in Performance-Based Earthquake Engineering

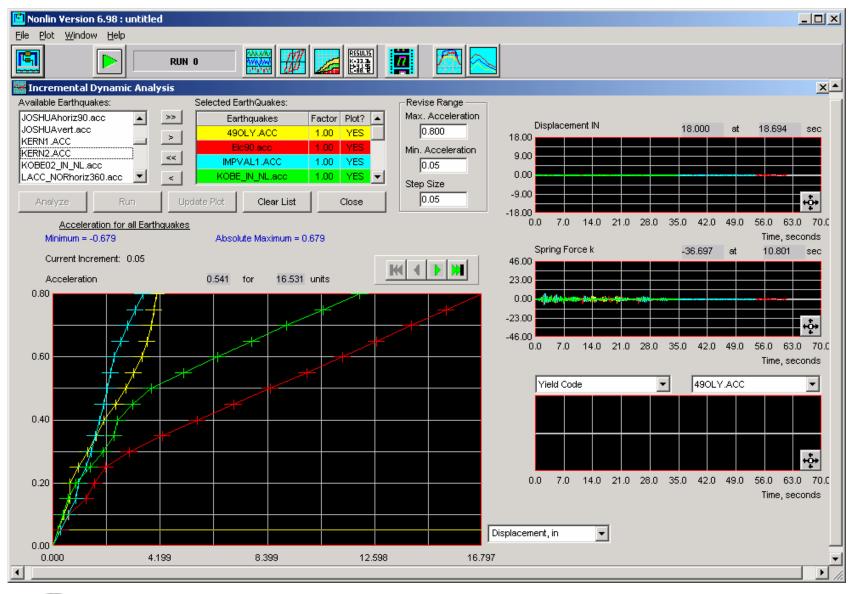

A Family of IDA Curves of the Same Building Subjected to Thirty Earthquakes

Topics in Performance-Based Earthquake Engineering


IDA Curves of the Same Building Subjected to Suite of Earthquakes

Topics in Performance-Based Earthquake Engineering

A Family of IDA Curves of the Same Building Subjected to Thirty Earthquakes



Topics in Performance-Based Earthquake Engineering

- Use of IDA shows the EXTREME sensitivity of damage to ground motion intensity, as well as the EXTREME sensitivity of damage to the chosen ground motion.
- Dispersion in multiple ground motion IDA may be reduced by scaling each base ground motion to a target spectral intensity computed at the structure's fundamental frequency of vibration.
- Even with such scaling, it is clear that PBE assessments based on response history analysis is problematic if carried out in a purely deterministic framework. Probabilistic methods must be employed to adequately handle the randomness of the input and the apparent "chaos" in the results.

NONLIN Version 7 IDA Tool

Topics in Performance-Based Earthquake Engineering

Probabilistic Approaches to Performance-Based Engineering The Most Daunting Task: Identifying and Quantifying Uncertainties

Demand Side (Ground Motion)

- 1) Magnitude
- 2) Source Mechanism
- 3) Wave Propagation Direction
- 4) Attenuation
- 5) Site Amplification
- 6) Frequency Content
- 7) Duration
- 8) Sequence (foreshocks, aftershocks)

. . .

Probabilistic Approaches The Most Daunting Task: Identifying and Quantifying Uncertainties

Capacity Side (Soil/Foundation/Structure Behavior)

- 1) Strength
- 2) Stiffness
- 3) Inherent Damping
- 4) Hysteretic Behavior
- 5) Gravity Load
- 6) Built-in Imperfections

Analysis Uncertainties

. . .

PEER's Probabilistic Framing Equation

$\lambda(DV) = \iint G(DV | DM) | dG(DV | IM) | | d\lambda(IM) |$

 $\lambda(DV)$ Likelihood of exceeding a certain limit state

- IM Intensity Measure
- DM Damage Measure
- DV Decision Variable

Probabilistic Approaches: FEMA 350 $P(D > PL) = \int P_{D > PL}(x)h(x)dx$

- P(D > PL) Probability of damage exceeding a performance level in a period of *t* years
- $P_{D>PL}(x)$ Probability of damage exceeding a performance level given that the ground motion intensity is level x, as a function of x.
- h(x)dx Probability of experiencing a ground motion intensity of level (x) to (x+dx) in a period of t years

$$P(D > PL) = \int P_{D > PL}(x)h(x)dx$$

Simplified Method

Detailed Method

Topics in Performance-Based Earthquake Engineering

$$\lambda = \frac{\gamma \gamma_a D}{\phi C}$$

- λ Capacity to Demand Ratio
- *γ* Demand Variability Factor
- γ_a Analysis Uncertainty Factor
- C Tabulated Capacity for the Component
- ϕ Capacity Resistance Factor
- *D* Calculated Demand for the Component

β_{UT} Total Coefficient of Variation

Table 4-7Recommended Minimum Confidence Levels

	Performance Level					
Behavior	Immediate Occupancy	Collapse Prevention				
Global Interstory Drift	50%	90%				
Local Interstory Drift	50%	50%				
Column Compression	50%	90%				
Splice Tension	50%	50%				

Table 4-8

Interstory Drift Angle Analysis Uncertainty Factor γ_a

Analysis Procedure	L	SP	L	OP	NSP		NDP	
System Characteristic	1.0	C.P.	I.O	C.P.	I.O	C.P.	I.O	C.P.

Special	Low Rise (<4 stories)	0.94	0.70	1.03	0.83	1.13	0.89	1.02	1.03
Special	Mid Rise (4-12 stories)	1.15	0.97	1.14	1.25	1.45	0.99	1.02	1.06
Special	High Rise (> 12 stories)	1.12	1.21	1.21	1.14	1.36	0.95	1.04	1.10

Ordinary Low Rise (<4 stories)	0.79	0.98	1.04	1.32	0.95	1.31	1.02	1.03
Ordinary Mid Rise (4-12 stories)	0.85	1.14	1.10	1.53	1.11	1.42	1.02	1.06
Ordinary High Rise (> 12 stories)	0.80	0.85	1.39	1.38	1.36	1.53	1.04	1.10

Table 4-9 Interstory Drift Angle Demand Variability Factor γ

Building	γ	
Height	I.O.	C.P.

Special	Low Rise (< 4 stories)	1.5	1.3
Special	Mid Rise (4-12 stories)	1.4	1.2
Special	High rise (>12 stories)	1.4	1.5

Ordinary	Low Rise (< 4 stories)	1.4	1.4
Ordinary	Mid Rise (4-12 stories)	1.3	1.5
Ordinary	High rise (>12 stories)	1.6	1.8

Table 4-10Global Interstory Drift Angle Capacity Factors (C)and Resistance Factors (\$)

Building Height	I.O.		C.P.	
	С	φ	С	¢

Special	Low Rise (<4 stories)	0.02	1.00	0.10	0.90
Special	Mid Rise (4-12 stories)	0.02	1.00	0.10	0.85
Special	High Rise (> 12 stories)	0.02	1.00	0.09	0.75

Ordinary Low Rise (<4 stories)	0.01	1.00	0.10	0.85
Ordinary Mid Rise (4-12 stories)	0.01	0.90	0.08	0.70
Ordinary High Rise (> 12 stories)	0.01	0.85	0.06	0.60

Table 4-11Uncertainty Coefficient β_{UT} for Global Interstory DriftEvaluation

Building	Perf. Level			
Height	I.O.	C.P.		

Special	Low Rise (< 4 stories)	0.20	0.30
Special	Mid Rise (4-12 stories)	0.20	0.40
Special	High rise (>12 stories)	0.20	0.50

Ordinary	Low Rise (< 4 stories)	0.20	0.35
Ordinary	Mid Rise (4-12 stories)	0.20	0.45
Ordinary	High rise (>12 stories)	0.20	0.55

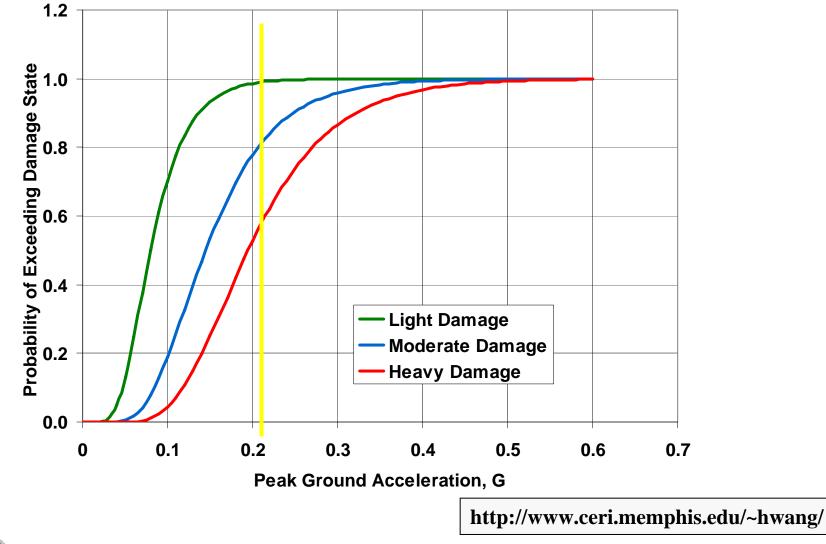
Table 4-6 Confidence Levels for Various Values of λ and β_{UT}

Confidence Level	10	20	30	40	50	60	70	80	90	95	99
λ for $\beta_{\text{UT}} = 0.2$	1.37	1.26	1.18	1.12	1.06	1.01	0.96	0.90	0.82	0.76	0.67
λ for β _{UT} = 0.3	1.68	1.48	1.34	1.24	1.14	1.06	0.98	0.89	0.78	0.70	0.57
$λ$ for $β_{UT} = 0.4$	2.12	1.79	1.57	1.40	1.27	1.15	1.03	0.90	0.76	0.66	0.51
λ for $\beta_{\text{UT}} = 0.5$	2.76	2.23	1.90	1.65	1.45	1.28	1.12	0.95	0.77	0.64	0.46
λ for β _{UT} = 0.6	3.70	2.86	2.36	1.99	1.72	1.48	1.25	1.03	0.80	0.64	0.43

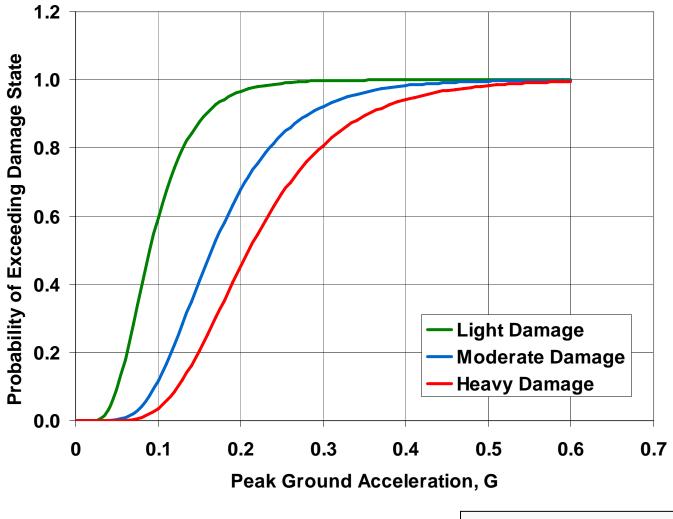
Example Calculations for 4-12 Story Frame (DL is "Allowable" Interstory Drift Limit)

Туре	PERF	Analysis	Confidence	γ	γa	φ	С	βυт	λ	DL
SPECIAL	10	NSP	50%	1.4	1.45	1	0.02	0.2	1.06	0.0104
SPECIAL	10	NDP	50%	1.4	1.02	1	0.02	0.2	1.06	0.0148
SPECIAL	СР	NSP	90%	1.2	0.99	0.85	0.1	0.4	0.76	0.0544
SPECIAL	СР	NDP	90%	1.2	1.06	0.85	0.1	0.4	0.76	0.0508
						-	-	-		
ORDINARY	10	NSP	50%	1.3	1.11	0.9	0.01	0.2	1.06	0.0066
ORDINARY	10	NDP	90%	1.3	1.02	0.9	0.01	0.2	1.06	0.0072
ORDINARY	СР	NSP	50%	1.5	1.42	0.7	0.08	0.45	0.765	0.0201
ORDINARY	СР	NDP	90%	1.5	1.06	0.7	0.08	0.45	0.765	0.0269

Problem with FEMA 350 Approach?

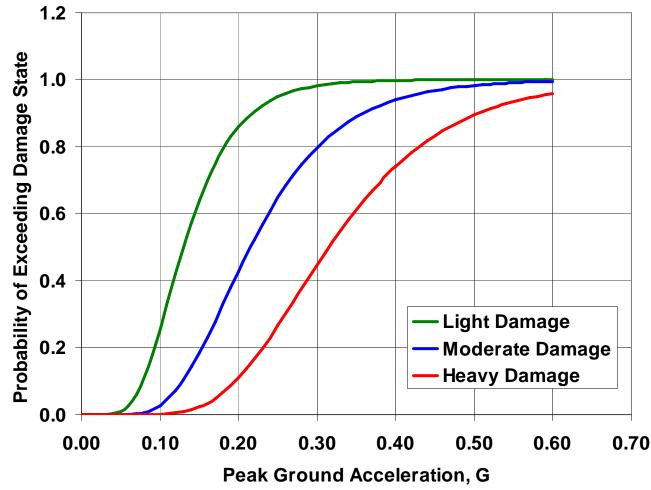

Even though the method provides the owner a "Level of Confidence" that a certain performance criteria will be met, the engineer is likely to be bewildered by the arrays of coefficients. Hence, it is difficult for the engineer to obtain a feel for the validity of the results.

Given this, how confident is the engineer with the value of confidence provided?


Probabilistic Approaches: Fragility Curves Unreinforced Masonry

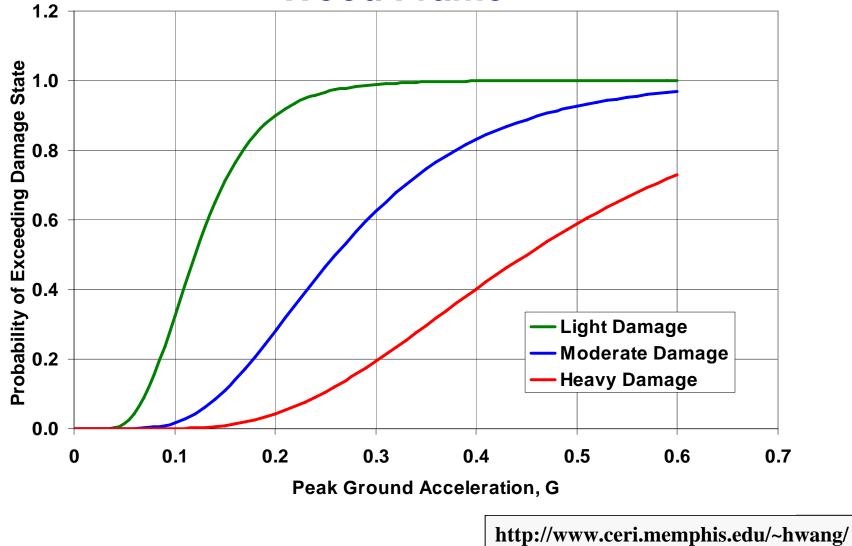
Probabilistic Approaches: Fragility Curves

Reinforced Masonry

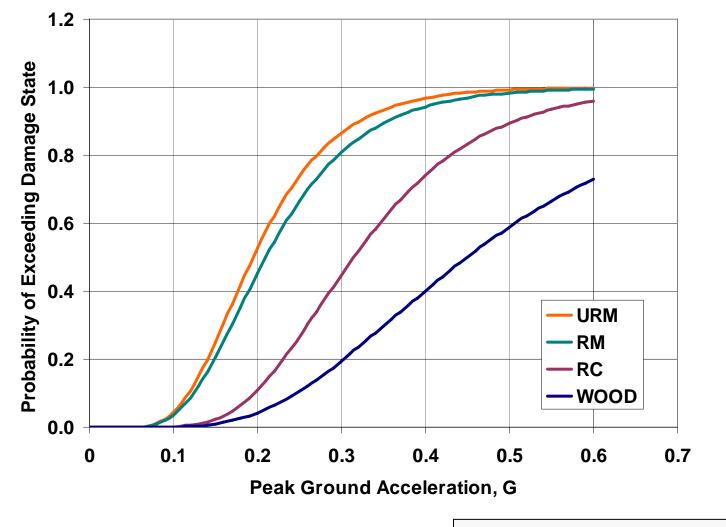


Topics in Performance-Based Earthquake Engineering

Probabilistic Approaches: Fragility Curves Reinforced Concrete

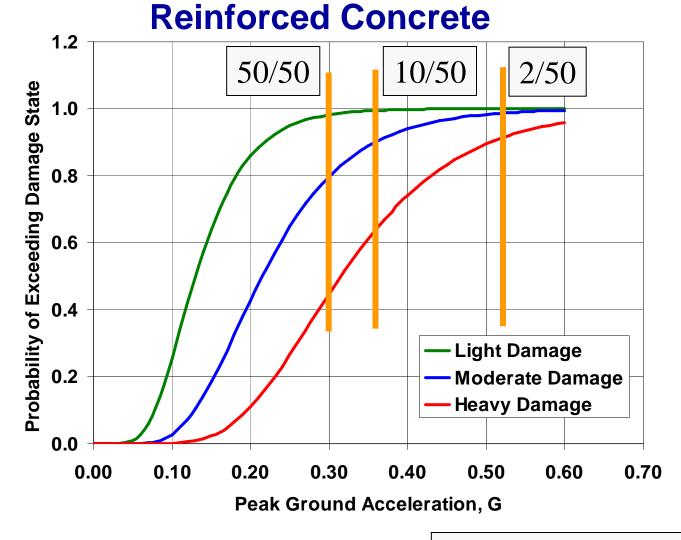


http://www.ceri.memphis.edu/~hwang/


Topics in Performance-Based Earthquake Engineering

Probabilistic Approaches: Fragility Curves Wood Frame

Probabilistic Approaches: Fragility Curves (Heavy Damage)



http://www.ceri.memphis.edu/~hwang/

Topics in Performance-Based Earthquake Engineering

Probabilistic Approaches: Fragility Curves

http://www.ceri.memphis.edu/~hwang/

Where are We Headed with Performance Based Engineering?

Performance Basis: Minimize Life Cycle Costs

- Realistic Damage Measures
- Realistic Forecasting of Cost of Repairing Damage
- Realistic Forecasting of Cost of Loss of Use

• Analysis Procedures

- Incremental Nonlinear Dynamic Response History Analysis
- Sensitivity Analysis (Deterministic)
- Probabilistic Assessment of Performance
- Deaggregation of Probabilistic Results (Deterministic)

What We Need

- Ground motion search, scaling, and modification tools for development of suites for nonlinear dynamic analysis
- Reliable damage measures which (hopefully) minimize dispersion in results
- Rapid but reliable methods of analysis, including
 - Multiple Ground Motions [7 motions]
 - Incremental Nonlinear Dynamic Analysis [20 increments]
 - Systematic Sensitivity Analysis [10 uncert. X 8 values]
 - Deterministic/Probabilistic Assessment Tools
- Big, Fast (Parallel Processing) Computers

