

Performance Approach

- The fundamental reason for the creation of a structure is placed at the forefront.
- Innovation is permitted, even encouraged.
- Characterization, measurement, and prediction of performance are fundamental concepts.

structional Materials Complementing FFMA 451. Design Examples

DDE Danian 15 2 2

Performance-Based Structural Engineering

- Historical review
- Motivation
- Communications
- ICC Performance Code
- Modern trends in earthquake engineering
 - Performance levels
 - Global v local evaluation
 - Primary and secondary
 - Uncertainty

Instructional Materials Complementing FEMA 451, Design Example

BE Design 15-

Performance Requirement

 A qualitative statement of a human need, usually in the form of an attribute that some physical entity, process, or person should possess.

structional Materials Complementing FFMA 451. Design Fyamples

PRF Design 15-2 - a

Early Performance Requirement

 From the Code of Hammurabi (circa 1700 BCE):

"If a builder has built a house for a man and his work is not strong and if the house he has built falls in and kills the householder, the builder shall be slain . . ."

Instructional Materials Complementing FEMA 451, Design Example:

PBE Design 15-2 - 5

Two Opposite Poles

- Performance:
 An acceptable level of protection against structural failure under extreme load shall be provided.
- Prescriptive:
 ½" diameter bolts
 spaced no more than 6
 feet on center shall
 anchor the wood sill of
 an exterior wall to the
 foundation.

tructional Materials Complementing FEMA 451, Design Example

Why Prescriptive?

- · Simple to design and check.
- · Simple can be economical.
- No need to "re-invent the wheel" on every new project.

Instructional Materials Complementing EEMA 451 Design Example

BE Design 15-2 -

What Is Wrong with Prescriptive?

- Loss of rationale leads to loss of ability to change.
- Loss of innovation leads to loss of economy.
- Loss of rationale can lead to loss of compliance.

Instructional Materials Complementing EEMA 451 Design Everyle

What's Wrong with Performance Standards?

- · Quantitative criteria:
 - Sometimes difficult to develop
 - Often difficult to achieve consensus
- · Evaluation procedures:
 - Measurement is the key it is essential to find a way to measure (analytically or experimentally) a meaningful quantity

Instructional Materials Complementing FEMA 451, Design Examples

PBE Design 15-2

Early Performance Standards at NBS (now NIST)

- 1969: Performance concept and its application
- 1970: Criteria for Operation Breakthrough
- 1971: PBS performance criteria for office buildings
- 1975: Interim performance criteria for solar
- 1977: Performance criteria resource document for innovative housing

structional Materials Complementing FEMA 451, Design Examples

PRF Design 15-2 - 10

NBS Format

- R A set of performance requirements
- A set of quantitative performance criteria for each performance requirement
- One evaluation procedure for each performance criterion
 - A commentary if appropriate

Instructional Materials Complementing FEMA 451, Design Examples

PRF Design 15-2 - 11

Performance Requirements Circa 1976

- The structural system shall support all loads expected during its service life without failure.
- The structure shall support the service loads...without impairing function...or appearance...or causing discomfort.
- 3. Floor and wall surfaces shall resist service loadings without damage.

FEMA

Instructional Materials Complementing FEMA 451, Design Examples

Criteria for Requirement 1 (Safety)

- 1.1 Resistance to ultimate load Eight items to evaluate Based on probabilistic reliability
- 1.2 Resistance to progressive collapse No real evaluation; mostly commentary
- 1.3 Resistance to repeated loads Evaluation focused on physical testing

Evaluations for Resistance to Maximum Load

- · Load combinations for additive and counteracting loads
- · Computations of load effects
- · Foundation settlements
- · Factored resistance, mean and variation in resistance
- Ductility

Maximum Loads

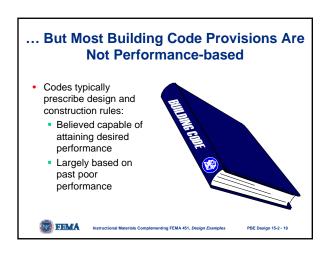
 $U = 1.1 D + 1.45[Q + \Sigma \Psi_i F_i]$

where:

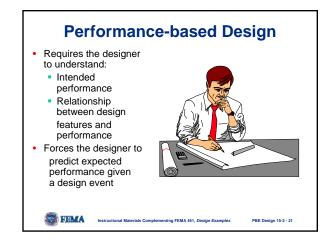
D = dead load

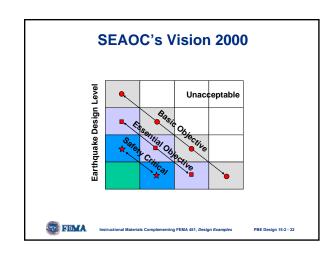
Q mean maximum variable load (= 1.25L, 1.2S, 1.0*H*, 0.85*W*, 1.4*E*, or 1.0*T*)

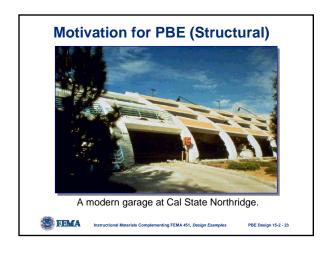
 Ψ_i = factor for arbitrary point in time load $F_i = L$, S, H, W, E, or T

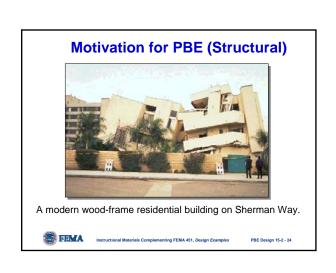

"Partial vs. Pure Performance"

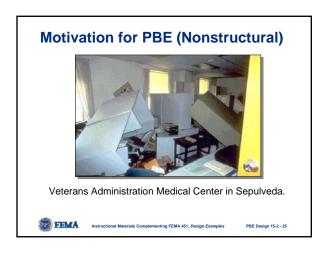

- Specification of the load factors creates a "procedural standard" whereas specification of a reliability level would be more purely "performance"
- Analytical evaluation
- Experimental evaluation (\$\$\$)

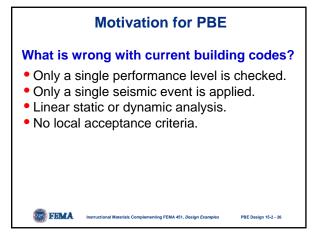


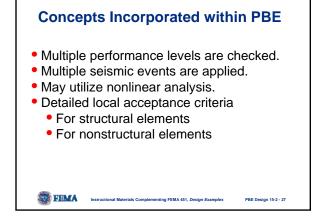

Performance-based Design Design specifically intended to limit the consequences of one or more perils to defined acceptable levels Perils addressed: wind, fire, snow, earthquake, live loads

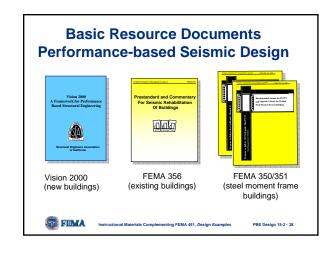


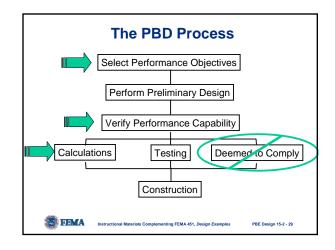


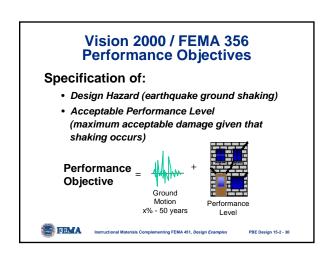


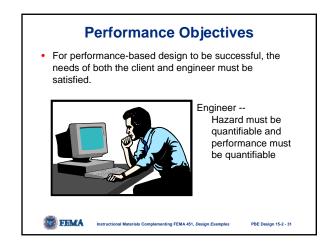


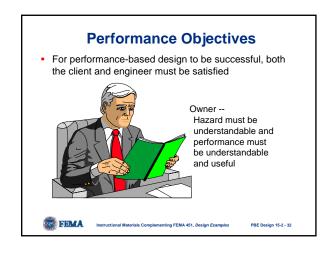


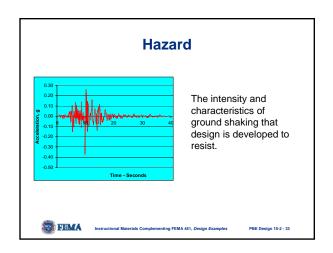


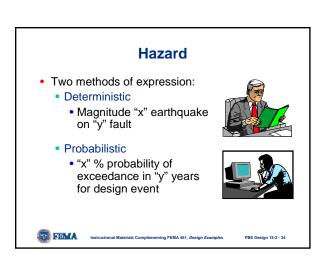


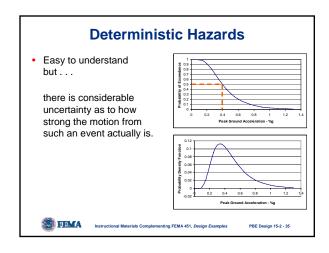


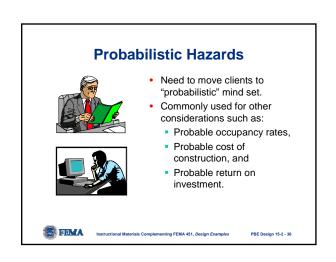


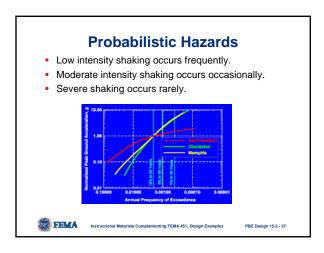


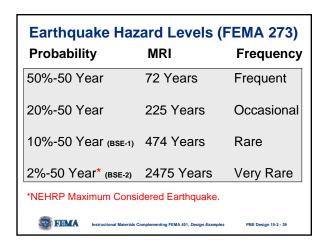


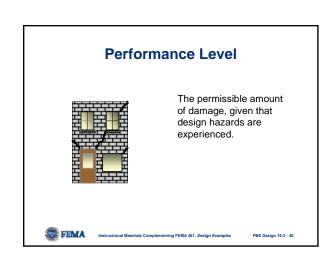


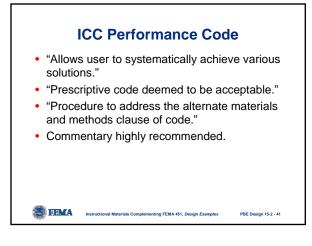


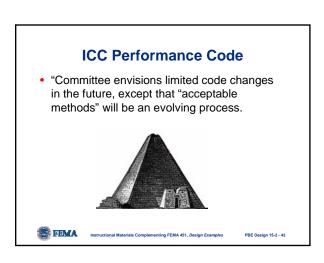












Probabilistic Hazards Probability of exceedance for design event: 10%/50 years (500 year mean return) traditionally taken as hazard for "life safety protection" 2%/50 years (2,500 year mean return) traditionally taken as hazard for collapse avoidance Hazard for economic loss protection can be taken at any level based on cost-benefit considerations.

ICC Performance Code

- "Purpose -- To provide appropriate health, safety, welfare, and social and economic value, while promoting innovative, flexible and responsive solutions."
- "Intent -- A structure that will withstand loads associated with normal use and of the severity associated the location..."

netructional Materiale Complementing EEMA 451 Decign Evernoles

DE Danien 15 2 43

ICC: Administrative Provisions

- · Functional statements:
 - Design professional qualifications
 - Design documents required for review
 - Construction compliance to be verified
 - Maintenance of performance-based design over life of building

etructional Materiale Complementing EEMA 451 Design Everynles

DDE Design 45.2 44

ICC Administrative Provisions

"Performance" requirements

- Building owner responsibilities
- Design professional qualifications
- · Special expert responsibilities
- Documentation
 - Concept report and design reports
 - O & M manual

Instructional Materials Complementing FEMA 451, Design Examples

BE Design 15-2 -

ICC Use Groups

Basis for assignment:

- Function
- Risks to users

- Risk factors:
- Nature of hazard
- Number of people
- Length of time occupied
- Sleep facility
- Familiarity
- Vulnerable groups
- Relationships

structional Materials Complementing FEMA 451, Design Examples

PBE Design 15-2 - 46

ICC Performance Groups

Performance Group	Description		
I	Low hazard to humans		
II	Normal buildings		
III	Hazardous contents		
IV	Essential facilities		

EEMA

Instructional Materials Complementing FEMA 451, Design Example

PBE Design 15-2 - 47

ICC Design Performance (Damage) Levels

"Size" of event	Perf. Group I	Perf. Group II	Perf. Group III	Perf. Group IV
V. Large (v.rare)	Severe	Severe	High	Mod
Large (rare)	Severe	High	Mod	Mild
Medium	High	Mod	Mild	Mild
Small (frequent)	Mod	Mild	Mild	Mild

🕮 FEM

structional Materials Complementing FEMA 451, Design Examples

Mild Damage Level

- · No structural damage; safe to occupy
- · Necessary nonstructural is operational
- · Minimal number of minor injuries
- · Minimal damage to contents

Moderate Damage Level

- · Structural damage, but repairable; delay in reoccupancy
- · Necessary nonstructural operational
- · Locally significant injuries but low likelihood of death
- · Moderate cost of damage
- · Minimal risk from hazardous materials

High Damage Level

- · Significant structural damage, but no large falling debris; repair possible but long-term
- · Necessary nonstructural damaged significantly
- · Injury and death possible but moderate numbers
- · Hazardous materials release locally

Severe Damage Level

- · Substantial structural damage, but collapse is avoided; repair may be infeasible
- Necessary nonstructural not functional
- · Likely single life loss; moderate probability of multiple lives lost
- Damage may "total" the building
- · Hazardous materials release requires relocation

MRI for Environmental Loads

Event Size	Flood	Wind	Snow	Ice	Earth- quake
Small	20 100	50	25	25	25
Medium	50 500	75	30	50	72
Large	100 SS	100	50	100	475
V. large	500 SS	125	100	200	2475

ICC Performance Code Appendices

- A. Use classification related to main code
- B. Worksheet for assignment to performance groups
- C. Individually substantiated design method
- D. Qualification characteristics
- E. Use of computer models

Performance-Based Structural Engineering

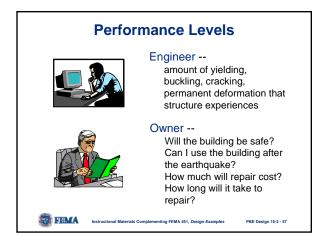
- Historical review
- Motivation
- Communications
- ICC Performance Code
- Modern trends in earthquake engineering
 - Performance levels
 - Global v local evaluation
 - Primary and secondary
 - Uncertainty

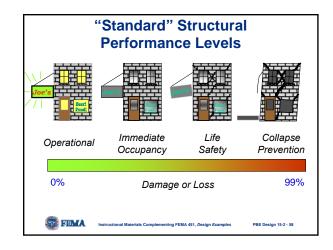
S EEMA

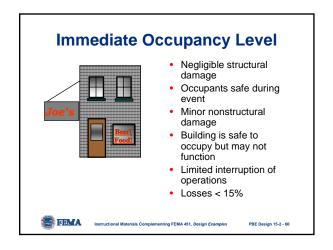
Instructional Materials Complementing EEMA 451 Design Everyold

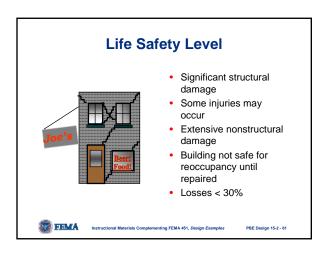
E Danism 45 2 E

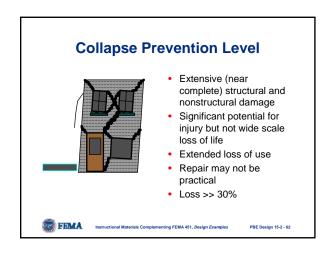
Performance-Based Earthquake Engineering

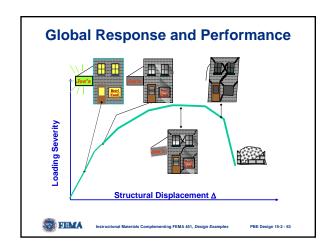

Two driving factors:

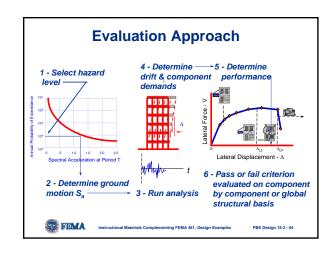

- High cost of upgrading existing structures now considered unsafe
 - Requires more exacting assessment
- High cost of damage and associated impacts from structural performance in earthquakes
 - Higher performance criteria

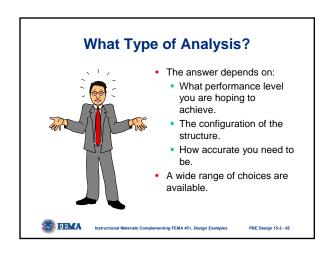

structional Materials Complementing FEMA 451, Design Examples

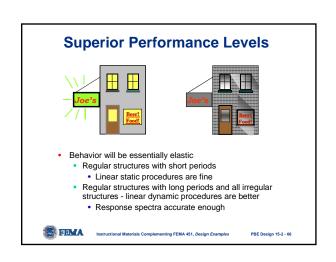

DDE Decien 15 2 50

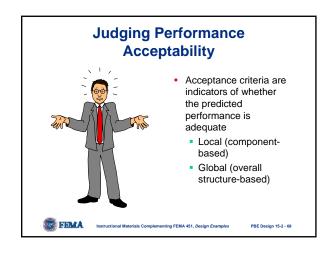


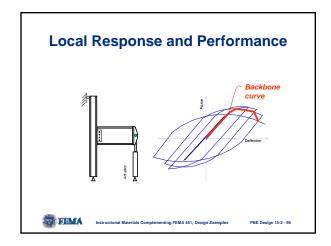


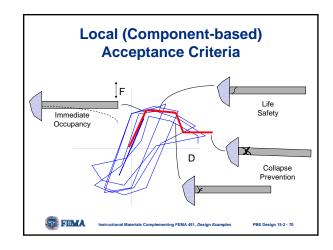


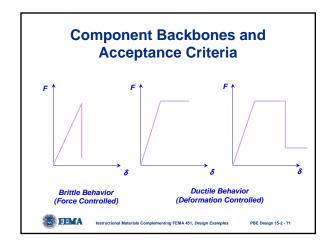


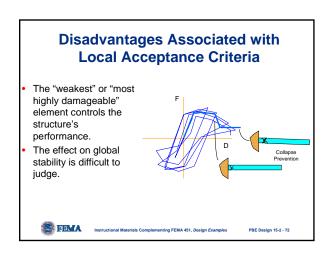


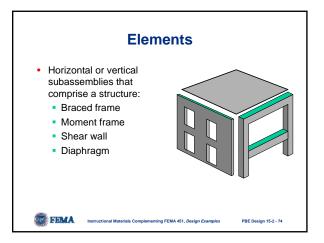


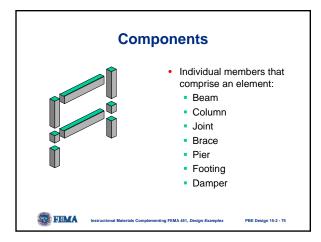


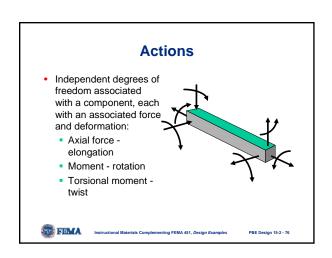







Building Configuration


- · Hierarchy of "parts" that comprise a building:
 - Elements
 - Components
 - Actions



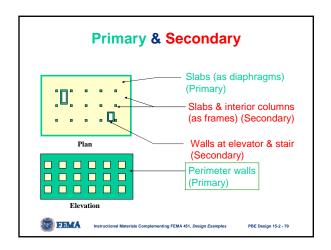
Instructional Materials Complementing EEMA 451 Design Example

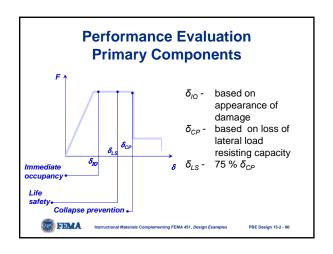
DDE Design 45.2. 7

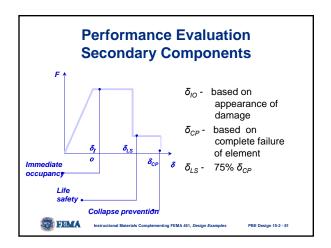
Primary and Secondary Parts

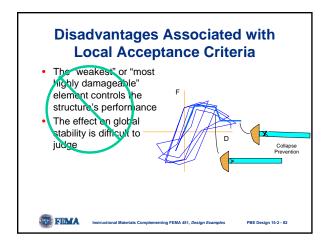
- Primary Elements:
 - Any element (component) {action} required to provide the building's basic lateral resistance.
 - Similar to the concept of a "participating" element in the building code.
- Secondary:
 - Any element (component) {action} that is not required to provide the building's basic lateral resistance.
 - May "participate" but is not required to do so.

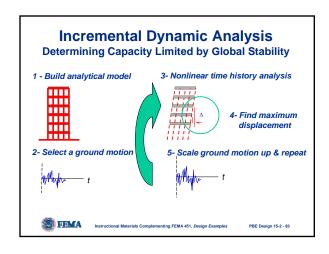
Instructional Materials Complementing FEMA 451, Design Examples

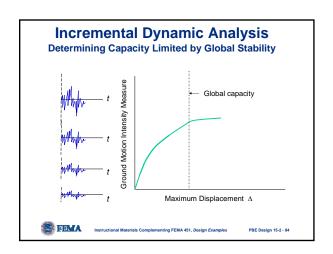

PBE Design 15-2 - 77

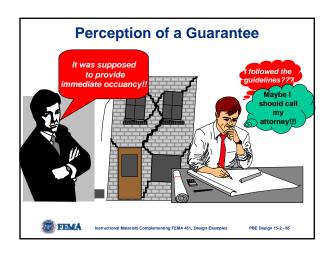

Primary and Secondary

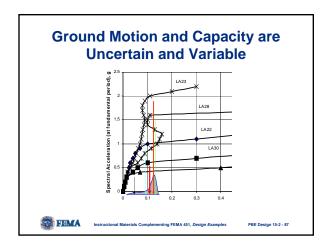

- Permits engineer to utilize judgment in determining whether a building meets the intended performance levels.
 - Secondary elements are permitted to experience more damage than primary elements.
 - Acceptance criteria for secondary elements are more permissive than for primary

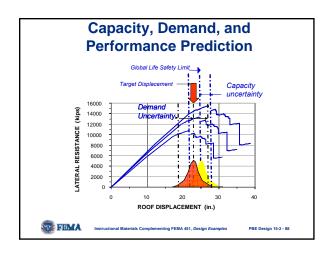



Instructional Materials Complementing FEMA 451, Design Examples






How Could This Happen?

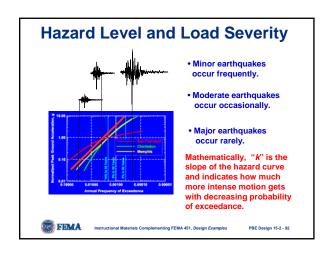

- Loading that will occur in the future is uncertain.
- Actual strength of materials and quality of construction is variable.
- Neither the real demands nor the capacity of the structure to resist these demands can be perfectly defined.

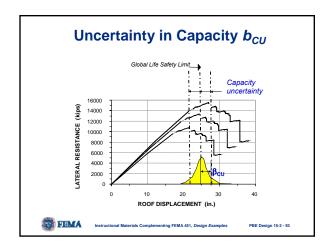
ructional Materials Complementing FEMA 451, Design Examples

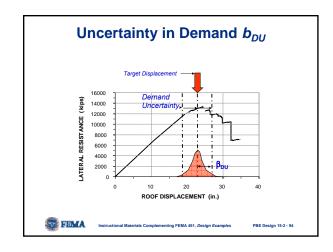
DDE Design 45 2 96

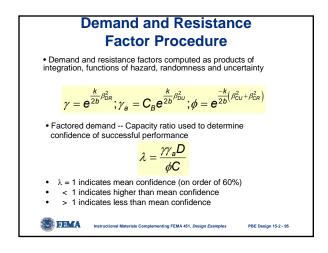
Performance Objective Redefined

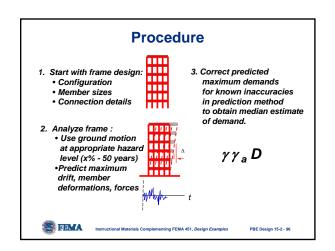
- Vision 2000 / FEMA 273/356:
 - Damage will not exceed desired level, given that ground motion of specified probability is experienced.
- SAC Approach:
 - Total probability of damage exceeding a desired level, will not exceed a specified amount, given our understanding of site hazards.
 - Confidence level associated with achieving this performance is defined.




Instructional Materials Complementing FEMA 451, Design Examples


PBE Design 15-2 - 89


Performance Objectives Redefined highly I am moderately confident not very that there is less than x% chance in 50 years that damage will be worse than Immediate occupancy Collapse prevention PED Design 15-2-90


Total Probability of Damage Exceeding Specified Level $P(Damage > PerLev) = \int P |D > C |GM| P(GM)$ $D = demand (drift, or force) = b (GM) - random variable <math>\beta_D$ $C = capacity (function of drift or force) - random variable <math>\beta_C$ ln(GM) = kln(PE) $\beta_D, \beta_C \ defined in terms of random and uncertain components$ $Load \ and \ resistance \ factors \ derived \ as \ products \ of \ integration$ $PBE \ Design 15-2-91$

