SEISMIC DESIGN OF REINFORCED CONCRETE STRUCTURES

NEHRP Recommended Provisions Concrete Design Requirements

- Context in the NEHRP Recommended Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category
- Moment resisting frames
- Shear walls
- Other topics
- Summary

Context in NEHRP Recommended Provisions

Design basis: Strength limit state

<u>Using NEHRP Recommended Provisions</u>:

Structural design criteria: Chap. 4

Structural analysis procedures: Chap. 5

Components and attachments: Chap. 6

Design of concrete structures: Chap. 9

and

ACI 318

Seismic-Force-Resisting Systems Reinforced Concrete

Unbraced frames (with

rigid "moment resisting" joints):

Three types

Ordinary

Intermediate

Special

R/C shear walls:

Ordinary

Special

Precast shear walls:

Special

Intermediate

Ordinary

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior

Unconfined Concrete Stress-Strain Behavior

Idealized Stress-Strain Behavior of Unconfined Concrete

Confinement by Spirals or Hoops

Confinement from spiral or circular hoop

Forces acting on 1/2 spiral or circular hoop

Confinement from square hoop

Confinement

Rectangular hoops with cross ties

Confinement by transverse bars

Confinement by longitudinal bars

Opened 90° hook on hoops

Confined Concrete Stress-Strain Behavior

Idealized Stress-Strain Behavior of Confined Concrete

Kent and Park Model

Reinforcing Steel Stress-Strain Behavior

Reinforced Concrete Behavior

Mid-Point Displacement, Δ

Behavior Up to First Yield of Steel

Behavior at Concrete Crushing

$$M_n = A_s f_y jd$$

Typical Moment Curvature Diagram

Influence of Reinforcement Ratio

Influence of Compression Reinforcement

Moment-Curvaturewith Confined Concrete

Moment-Curvature with Confined Concrete

Plastic Hinging

Strategies to Improve Ductility

- Use low flexural reinforcement ratio
- Add compression reinforcement
- Add confining reinforcement

Other Functions of Confining Steel

- Acts as shear reinforcement
- Prevents buckling of longitudinal reinforcement
- Prevents bond splitting failures

Structural Behavior Frames

Story Mechanism

Sway Mechanism

Story Mechanism

Structural Behavior - Walls

Structural Behavior Walls

Influence of Hoops on Axial Strength

Before spalling-
P =
$$A_g f'_c$$

After spalling-

$$P = A_{core}(f'_{c} + 4 f_{lat})$$

After spalling ≥ Before spalling

Column with Inadequate Ties

Well Confined Column

Hysteretic Behavior of Well Confined Column

Structural Behavior Columns

$$V = \frac{M_1 + M_2}{L} = \frac{2M_u}{L}$$

Column Shear Failure

Structural Behavior Joints

Hysteretic Behavior of Joint with Hoops

Hysteretic Behavior of Joint with No Hoops

Joint Failure - No Shear Reinforcing

Anchorage Failure in Column/Footing Joint

Summary of Concrete Behavior

Compressive Ductility

- Strong in compression but brittle
- Confinement improves ductility by
 - Maintaining concrete core integrity
 - Preventing longitudinal bar buckling

Flexural Ductility

- Longitudinal steel provides monotonic ductility at low reinforcement ratios
- Transverse steel needed to maintain ductility through reverse cycles and at very high strains (hinge development)

Summary of Concrete Behavior

Damping

- Well cracked: moderately high damping
- Uncracked (e.g. prestressed): low damping

Potential Problems

- Shear failures are brittle and abrupt and must be avoided
- Degrading strength/stiffness with repeat cycles
 - Limit degradation through adequate hinge development

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards

ACI 318-05 ACI 318R-05 **Building Code Requirements for** Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05) An ACI Standard Reported by ACI Committee 318 American Concrete Institute®

ACI 318-05

Use of Reference Standards

- ACI 318-05
 - Chapter 21, Special Provisions for Seismic Design
- NEHRP Chapter 9, Concrete Structures
 - General design requirements
 - Modifications to ACI 318
 - Seismic Design Category requirements
 - Special precast structural walls
 - Untopped precast diaphragms (Appendix to Ch.9)

Detailed Modifications to ACI 318

- Modified definitions and notations
- Scope and material properties
- Special moment frames
- Special shear walls
- Special and intermediate precast walls
- Foundations
- Anchoring to concrete

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category

Design Coefficients - Moment Resisting Frames

Seismic Force	Response Modification	Deflection
Resisting	wiodification	Amplification
System	Coefficient, R	Factor, C _d
Special R/C Moment Frame	8	5.5
Intermediate R/C Moment Frame	5	4.5
Ordinary R/C Moment Frame	3	2.5

Design Coefficients Shear Walls (Bearing Systems)

Seismic Force	Response	Deflection
Resisting	Modification	Amplification
System	Coefficient, R	Factor, C _d
Special R/C Shear Walls	5	5
Ordinary R/C Shear Walls	4	4
Intermediate Precast Shear Walls	4	4
Ordinary Precast Walls	3	3

Design Coefficients Shear Walls (Frame Systems)

Seismic Force Resisting System	Response Modification Coefficient, R	Deflection Amplification Factor, C _d
Special R/C Shear Walls	6	5
Ordinary R/C Shear Walls	5	4.5
Intermediate Precast Shear Walls	5	4.5
Ordinary Precast Walls	4	4

Design Coefficients Dual Systems with Special Frames

Seismic Force	Response	Deflection
Resisting	Modification	Amplification
System	Coefficient, R	Factor, C _d
Dual System w/ Special Walls	8 (7)	6.5 (5.5)
Dual System w/ Ordinary Walls	6	5

(ASCE 7-05 values where different)

Frames

Seismic	Minimum	ACI 318
Design	Frame Type	Requirements
Category		
A and B	Ordinary	Chapters 1 thru 18 and 22
C	Intermediate	ACI 21.2.1.3 and ACI 21.12
D, E and F	Special	ACI 21.2.1.4 and ACI 21.2, 21.3, 21.4, and 21.5

Reinforced Concrete Shear Walls

Seismic Design Category	Minimum Wall Type	ACI 318 Requirements
A, B and C	Ordinary	Chapters 1 thru 18 and 22
D, E and F	Special	ACI 21.2.1.4 and ACI 21.2 and 21.7

Precast Concrete Shear Walls

Seismic	Minimum	ACI 318
Design	Wall Type	Requirements
Category		
A and B	Ordinary	Chapters 1 thru 18 and 22
С	Intermediate	ACI 21.2.1.3 and ACI 21.13
D, E and F	Special	ACI 21.2.1.4 and ACI 21.2, 21.8

Additional *Provisions* Requirements

- Category C
 - Discontinuous members
 - Plain concrete
 - Walls
 - Footings
 - Pedestals (not allowed)

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category
- Moment resisting frames

Performance Objectives

- Strong column
 - Avoid story mechanism
- Hinge development
 - Confined concrete core
 - Prevent rebar buckling
 - Prevent shear failure
- Member shear strength
- Joint shear strength
- Rebar development

Frame Mechanisms "strong column – weak beam"

Story mechanism

Sway mechanism

Required Column Strength

Hinge Development

Tightly Spaced Hoops

- Provide confinement to increase concrete strength and usable compressive strain
- Provide lateral support to compression bars to prevent buckling
- Act as shear reinforcement and preclude shear failures
- Control splitting cracks from high bar bond stresses

Hinge Development

Hinge Development

ACI 318-05, Overview of Frames: Beam Longitudinal Reinforcement

$$200/f_y \leq \rho \leq 0.025$$

At least 2 bars continuous top & bottom

Joint face M_n^+ not less than 50% M_n^- Min. M_n^+ or M_n^- not less than 25% max. M_n at joint face

Splice away from hinges and enclose within hoops or spirals

ACI 318-05, Overview of Frames:Beam Transverse Reinforcement

Closed hoops at hinging regions with "seismic" hook

135° hook, $6d_h \ge 3$ " extension

Maximum spacing of hoops:

Longitudinal bars on perimeter tied as if column bars

Stirrups elsewhere, $s \le d/2$

ACI 318-05, Overview of Frames: Beam Shear Strength

$$V_e = \frac{M_{pr1} + M_{pr2}}{\ell_n} \pm \frac{w_u \ell_n}{2} \ge V_e$$
 by analysis

If earthquake-induced
$$> \frac{1}{2}V_e$$
 shear force $> \frac{1}{2}V_e$ then $V_c = 0$ and $P_u < \frac{A_g f_c'}{20}$

ACI 318-05, Overview of Frames: Beam-Column Joint

$$V_{j} = T + C - V_{col}$$

$$T=1.25f_yA_{s,top}$$

$$C=1.25f_{y}A_{\text{s,bottom}}$$

ACI 318-05, Overview of Frames:Beam-column Joint

$$V_{n} = \begin{cases} 20 \\ 15 \\ 12 \end{cases} \sqrt{f'_{c}} A_{j}$$

- V_n controls size of columns
- Coefficient depends on joint confinement
- To reduce shear demand, increase beam depth
- Keep column stronger than beam

ACI 318-05: Overview of Frames: Column Longitudinal Reinforcement

M_{nc} based on factored axial force, consistent with direction of lateral forces

ACI 318-05, Overview of Frames: Column Transverse Reinforcement at Potential Hinging Region

Spirals

$$\rho_s = 0.45 \left(\frac{A_g}{A_{ch}} - 1 \right) \frac{f'_c}{f_{yt}}$$

and

$$\rho_s \ge 0.12 \frac{f'_c}{f_{yt}}$$

Hoops

$$A_{sh} \ge 0.3 \left(sb_c \frac{f'_c}{f_{yt}} \right) \left(\frac{A_g}{A_{ch}} - 1 \right)$$

and

$$A_{sh} \ge 0.09 sb_c \frac{f'_c}{f_{yt}}$$

ACI 318-05, Overview of Frames: Column Transverse Reinforcement at Potential Hinging Region

$$s_{o} = 4 + \left(\frac{14 - h_{x}}{3}\right)$$

Spacing shall not exceed the smallest of: b/4 or 6 d_b or s_o (4" to 6")

Distance between legs of hoops or crossties, h_x ≤ 14"

ACI 318-05, Overview of Frames:Potential Hinge Region

 For columns supporting stiff members such as walls, hoops are required over full height of column if

$$P_e > \frac{f'_c A_g}{10}$$

- For shear strength- same rules as beams (concrete shear strength is neglected if axial load is low and earthquake shear is high)
- Lap splices are not allowed in potential plastic hinge regions

Splice in Hinge Region

Terminating bars

ACI 318-05, Overview of Frames:Potential Hinge Region

$$\ell_{o} \geq \begin{cases} \frac{d}{clear\ height} \\ 6 \end{cases}$$
18"

Moment Frame Example

Frame Elevations

18

Column Lines 2 and 7

Column Lines 3 to 6

Story Shears: Seismic vs Wind

Story Shears: E-W Loading

Story Shears: 25% rule

Layout of Reinforcement

Bending Moment Envelopes: Frame 1 Beams

Beam Reinforcement: Longitudinal

Max negative $M_u = 5834$ in-kips

$$b = 22.5$$
" $d = 29.6$ " $f'_c = 4 \text{ ksi}$ $f_y = 60 \text{ ksi}$

$$A_{\text{s req'd}} = \frac{M_u}{f_y(0.875\text{d})} = \frac{5834}{60 \cdot 0.875 \cdot 29.6} = 4.17 \text{in}^2$$

Choose: 2 #9 and 3 #8
$$A_s = 4.37 \text{ in}^2$$

 $\rho = 0.0066 < 0.025 \quad \underline{OK}$
 $\phi M_n = 6580 \text{ in-kips} \quad \underline{OK}$

Beam Reinforcement: Longitudinal (continued)

Positive M_u at face of column = 4222 in-kips (greater than $\frac{1}{2}(5834) = 2917$)

b for negative moment is the sum of the beam width (22.5 in.) plus 1/12 the span length (20 ft x 12 in./ft)/12, b = 42.5 in.

$$A_{s \text{ req'd}} = \frac{M_u}{f_v(0.9d)} = \frac{4222}{60 \cdot 0.9 \cdot 29.6} = 2.94 \text{in}^2$$

Beam Reinforcement: Longitudinal (continued)

Choose 2 #7 and 3 #8 $A_s = 3.57 \text{ in}^2$ $\phi M_n = 5564 \text{ in-kips}$ OK

Run 3 #8s continuous top and bottom

 $\phi M_n = 3669 \text{ in-kips}$

This moment is greater than:

25% of max negative $M_n = 1459$ in-kips Max required $M_{II} = 834$ in-kips

Beam Reinforcement: Preliminary Layout

Moments for Computing Shear

Hinging mechanism

Plastic moments (in-kips)

Girder and column shears (kips)

Joint Shear Force

Beam Shear Force

Beam Reinforcement: Transverse

 $V_{\text{seismic}} > 50\% V_{\text{u}}$ therefore take $V_{\text{c}} = 0$ 82.7 kips = 73%(112.2)

Use 4 legged #3 stirrups

$$V_s = \frac{A_v f_y d}{s}$$

At ends of beam s = 5.5 in. Near midspan s = 7.0 in.

Beam Reinforcement: Transverse

- Check maximum spacing of hoops within plastic hinge length (2d)
 - -d/4 = 7.4 in.
 - $-8d_b = 7.0$ in.
 - $-24d_h = 9.0$ in.

Column Design Moments

Column Design Moments

$$if \quad P_u > \frac{f'_c A_g}{10}$$

$$\sum M_{nc} > 1.2 \sum M_{nb}$$

Distribute relative to stiffness of columns above and below:

$$M_{nc}$$
 = 8095 in-kips (above)
 M_{nc} = 8095 in-kips (below)

Design Strengths

Design Aspect	Strength Used	
Beam rebar cutoffs	Design strength	
Beam shear reinforcement	Maximum probable strength	
Beam-column joint strength	Maximum probable strength	
Column flexural strength	1.2 times nominal strength	
Column shear strength	Maximum probable strength	

Column Transverse Reinforcement

$$A_{sh} = 0.3 \left[sb_c \frac{f'_c}{f_{yt}} \right] \left[\left(\frac{A_g}{A_{ch}} \right) - 1 \right]$$

and

$$A_{sh} = 0.09sb_c \frac{f'_c}{f_{yt}}$$

 A_q = gross area of column

 A_{ch} = area confined within the hoops

b_c = transverse dimension of column core
 measured center to center of outer legs

Second equation typically governs for larger columns

Column Transverse Reinforcement

Maximum spacing is smallest of:

- One quarter of minimum member dimension
- Six times the diameter of the longitudinal bars
- •s_o calculated as follows:

$$s_0 = 4 + \frac{14 - h_x}{3}$$

 h_x = maximum horizontal center to center spacing of cross-ties or hoop legs on all faces of the column, not allowed to be greater the 14 in.

Column Transverse Reinforcement

For max s = 4 in.

$$A_{sh} = 0.3 \left(sb_c \frac{f'_c}{f_{yt}} \right) \left[\left(\frac{A_g}{A_{ch}} \right) - 1 \right] = 0.3 \left(4 \cdot 26.5 \cdot \frac{4}{60} \right) \left(\frac{900}{702} - 1 \right)$$

$$A_{sh} = 0.60 \text{ in}^2$$

and

$$A_{sh} = 0.09 sb_c \frac{f'_c}{f_{yt}} = 0.09 \cdot 4 \cdot 26.5 \cdot \frac{4}{60} = 0.64 in^2$$

Use 4 legs of #4 bar $-A_{sh} = 0.80 \text{ in}^2$

Determine Seismic Shear

Column Transverse Reinforcement Shear Demand from M_{pr} of Beams

$$M_{pr, 1} = 9000 \text{ in-k } (2 \# 9 \text{ and } 3 \# 8)$$

 $M_{pr, 2} = 7460 \text{ in-k } (2 \# 7 \text{ and } 3 \# 8)$

Assume moments are distributed equally above and below joint

$$V_{\text{seismic}} = \frac{8230 \cdot 2}{(12.5 \cdot 12) - 32} = 139 \text{ kips}$$

Note V_{seismic}~100%V_u

$$V_c = 0$$
, if $P_{min} < \frac{f'_c A_g}{20} = 180$ kips

For 30 in. square column

$$P_{min} = 266 \text{ kips}$$
 OK

Column Transverse Reinforcement Shear Demand from M_{pr} of Beams

$$\begin{split} & \varphi V_c = \varphi 2 \lambda \sqrt{f'_c} bd = 0.75 \cdot 2 \cdot 0.85 \sqrt{4000} \cdot 30 \cdot 27.5 = 66.5 \text{ kips} \\ & \varphi V_{s,required} = 139 - 66.5 = 72.5 \text{ kips} \end{split}$$

$$\phi V_{s,provided} = \phi \frac{A_v f_y d}{s} = 0.75 \frac{4 \cdot 0.2 \cdot 60 \cdot 29.6}{4} = 266.4 \text{ kips}$$

Hoops

Column Reinforcement

Levels of Seismic Detailing for Frames

Issue	Ordinary	Intermediate	Special
Hinge development and confinement		minor	full
Bar buckling		lesser	full
Member shear		lesser	full
Joint shear	minor	minor	full
Strong column			full
Rebar development	lesser	lesser	full
Load reversal	minor	lesser	full

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category
- Moment resisting frames
- Shear walls

Performance Objectives

- Resist axial forces, flexure and shear
- Boundary members
 - Where compression strains are large, maintain capacity
- Development of rebar in panel
- Discontinuous walls: supporting columns have full confinement

Design Philosophy

- Flexural yielding will occur in predetermined flexural hinging regions
- Brittle failure mechanisms will be precluded
 - Diagonal tension
 - Sliding hinges
 - Local buckling

• ρ_{ℓ} and ρ_{t} not less than 0.0025

$$\text{unless}_{V_u} < A_{cv} \sqrt{f'_c}$$

then as allowed in 14.3

- Spacing not to exceed 18 in.
- Reinforcement contributing to V_n shall be continuous and distributed across the shear plane

• Two curtains of reinforcing required if:

$$V_u > 2A_{cv} \sqrt{f'_c}$$

 Design shear force determined from lateral load analysis

Shear strength:

$$V_{n} = A_{cv} \left(\alpha_{c} \sqrt{f'_{c}} + \rho_{t} f_{y} \right)$$

$$\alpha_c$$
 = 3.0 for $h_w/\ell_w \le 1.5$
 α_c = 2.0 for $h_w/\ell_w \ge 2.0$
Linear interpolation between

Walls must have reinforcement in two orthogonal directions

 For axial load and flexure, design like a column to determine axial load – moment

interaction

ACI 318-05, Overview of Walls: Boundary Elements

For walls with a high compression demand at the edges – Boundary Elements are required

Widened end with confinement

Extra confinement and/or longitudinal bars at end

ACI 318-05, Overview of Walls: Boundary Elements

Boundary elements are required if:

$$c \ge \frac{\ell_{w}}{600 \left(\frac{\delta_{u}}{h_{w}}\right)}$$

 δ_u = Design displacement

c = Depth to neutral axis from strain compatibility analysis with loads causing $\delta_{\rm u}$

ACI 318-05, Overview of Walls: Boundary Elements

 Where required, boundary elements must extend up the wall from the critical section a distance not less than the larger of:

 $\ell_{\rm w}$ or $M_{\rm u}/4V_{\rm u}$

ACI 318-05: Overview of Walls Boundary Elements

- Boundary elements are required where the maximum extreme fiber compressive stress calculated based on factored load effects, linear elastic concrete behavior and gross section properties, exceeds 0.2 f'_c
- Boundary element can be discontinued where the compressive stress is less than 0.15f'_c

ACI 318-05: Overview of Walls Boundary Elements

- Boundary elements must extend horizontally not less than the larger of c/2 or c-0.1 ℓ_w
- In flanged walls, boundary element must include all of the effective flange width and at least 12 in. of the web
- Transverse reinforcement must extend into the foundation

Wall Example

Wall Cross-Section

Story Shears E-W Loading

Boundary Element Check

Required if: $f_c > 0.2 f_c$ based on gross concrete section

Axial load and moment are determined based on factored forces, including earthquake effects

At ground $P_{II} = 5550$ kip

M_{II} from analysis is 268,187 in-kip

The wall has the following gross section properties:

$$A = 4320 \text{ in}^2$$

$$A = 4320 \text{ in}^2$$
 $S = 261,600 \text{ in}^3$

$$f_c = 2.3 \text{ ksi} = 38\% \text{ of } f'_c = 6 \text{ ksi}$$

:. Need boundary element

Boundary Element Design

Determine preliminary reinforcing ratio in boundary elements by assuming only boundary elements take compression

$$M = 268,187 \text{ in-k}$$

$$P = 5550 \text{ k}$$

$$B_1 = \frac{P}{2} + \frac{M}{240} = 3892 \text{ kip}$$

$$B_2 = \frac{P}{2} - \frac{M}{240} = 1658 \text{ kip}$$

Need
$$0.8P_o = 0.8(0.7)A_g[0.85f_c(1-\rho)+\rho f_y]>3892$$
 kip

For
$$A_g = 30(30) = 900 \text{ in}^2$$

For
$$f_c = 4 \text{ ksi} \Rightarrow \rho = 7.06\%$$
 Too large

For
$$f_c' = 6$$
 ksi $\Rightarrow \rho = 4.18\%$ Reasonable; 24 #11

Boundary Element Confinement

Transverse reinforcement in boundary elements is to be designed essentially like column transverse reinforcement

$$A_{sh} = 0.09 \text{ sb}_c \frac{f_c'}{f_y} = 1.08 \text{ in}^2 \text{ at } s = 4"$$

Shear Panel Reinforcement

$$V_{n} \,=\, A_{\,cv} \bigg(2\,\lambda\, \sqrt{f_{c}^{'}} \,+\, \rho_{\,t} f_{y} \, \bigg) \label{eq:Vn}$$

 $V_u = 539$ kips (below level 2)

 $\phi = 0.6 \text{ (per ACI } 9.3.4(a))$

 $\rho_{t} = 0.0036 \text{ for } f_{y} = 40 \text{ ksi}$

Min ρ_{ℓ} (and ρ_{t}) = 0.0025

2 curtains if

$$V_u > 2\sqrt{f_c} A_{cv}$$

Shear Panel Reinforcement

Select transverse and longitudinal reinforcement:

longitudinal:

#4 @ 12"
$$\Rightarrow \frac{0.2 \cdot 2}{12 \cdot 12} = 0.0028 > 0.0025$$

transverse:

#4@9"
$$\Rightarrow \frac{0.2 \cdot 2}{12 \cdot 9} = 0.0037 > 0.0036$$

Check Wall Design

Shear Wall Reinforcement

NEHRP Recommended Provisions Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category
- Moment resisting frames
- Shear walls
- Other topics

Members Not Part of SRS

- In frame members not designated as part of the lateral-force-resisting system in regions of high seismic risk:
 - Must be able to support gravity loads while subjected to the design displacement
 - Transverse reinforcement increases depending on:

Forces induced by drift Axial force in member

Diaphragms

Check:

- Shear strength and reinforcement (min. slab reinf.)
- Chords (boundary members)
 - Force = M/d Reinforced for tension(Usually don't require boundary members)

Struts and Trusses performance objectives

 All members have axial load (not flexure), so ductility is more difficult to achieve

Full length confinement

Precast performance objectives

Strong connections

 Configure system so that hinges occur in factory cast members away from field splices

Ductile connections

Inelastic action at field splice

Quality Assurance Rebar Inspection

Continuous

Welding of rebar

Periodic

 During and upon completion of placement for special moment frames, intermediate moment frames and shear walls

Shear panel reinforcement cage

Quality Assurance: Reinforcing Inspection - Prestressed

Periodic

 Placing of prestressing tendons (inspection required upon completion)

Continuous

- Stressing of tendons
- Grouting of tendons

Quality Assurance: Concrete Placement Inspection

Continuous

- Prestressed elements
- Drilled piers
- Caissons

Periodic

- Frames
- Shear walls

Quality Assurance: Precast Concrete (plant cast)

- Manufacturer may serve as special inspector if plant's quality control program is approved by regulatory agency
- If no approved quality control program, independent special inspector is required

Quality Assurance: PCI Certification Program

Review of plant operations

- Scheduled and surprise visits
- Qualified independent inspectors
- Observed work of in-plant quality control
- Check results of quality control procedures
- Periodic specific approvals requiring renewal

Quality Assurance: ACI Inspector Certification

- Specialized training available for:
 - Laboratory and in situ testing
 - Inspection of welding
 - Handling and placement of concrete
 - Others

Quality Assurance: Reinforcement Testing

Rebar

- Special and intermediate moment frames
- Boundary elements
- Prestressing steel
- Tests include
 - Weldability
 - Elongation
 - Actual to specified yield strength
 - Actual to specified ultimate strength

Quality Assurance: Concrete Testing

- Sample and test according to ACI 318-05
 - Slump
 - Air content
 - -7 and 28 day strengths
 - Unit weight
- Rate
 - Once per day per class

NEHRP Recommended Provisions: Concrete Design

- Context in the Provisions
- Concrete behavior
- Reference standards
- Requirements by Seismic Design Category
- Moment resisting frames
- Shear walls
- Other topics
- Summary

