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Structural Dynamics of
Linear Elastic Single-Degree-of-Freedom 

(SDOF) Systems

This set of slides covers the fundamental concepts of structural dynamics of 
linear elastic single-degree-of-freedom (SDOF) structures.   A separate topic 
covers the analysis of linear elastic multiple-degree-of-freedom (MDOF) 
systems.  A separate topic also addresses inelastic behavior of structures.   
Proficiency in earthquake engineering requires a thorough understanding of 
each of these topics.
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Structural Dynamics

• Equations of motion for SDOF structures

• Structural frequency and period of vibration

• Behavior under dynamic load

• Dynamic magnification and resonance

• Effect of damping on behavior

• Linear elastic response spectra

This slide lists the scope of the present topic.  In a sense, the majority of the 
material in the topic provides background on the very important subject of 
response spectra. 
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Importance in Relation to ASCE 7-05
• Ground motion maps provide ground 

accelerations in terms of response spectrum
coordinates.

• Equivalent lateral force procedure gives base 
shear in terms of design spectrum and period 
of vibration.

• Response spectrum is based on 5% critical 
damping in system.

• Modal superposition analysis uses design 
response spectrum as basic ground motion 
input.

The relevance of the current topic to the ASCE 7-05 document is provided 
here.  Detailed referencing to numbered sections in ASCE 7-05 is provided 
in many of the slides.  Note that ASCE 7-05 is directly based on the 2003 
NEHRP Recommended Provisions for Seismic Regulations for New 
Buildings and Other Structures, FEMA 450, which is available at no charge 
from the FEMA Publications Center, 1-800-480-2520 (order by FEMA 
publication number).
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Idealized SDOF Structure
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The simple frame is idealized as a SDOF mass-spring-dashpot model with a 
time-varying applied load.  The function u(t) defines the displacement 
response of the system under the loading F(t).  The properties of the 
structure can be completely defined by the mass, damping, and stiffness as 
shown.  
The idealization assumes that all of the mass of the structure can be lumped 
into a single point and that all of the deformation in the frame occurs in the 
columns with the beam staying rigid.  Represent damping as a simple 
viscous dashpot common as it allows for a linear dynamic analysis.  Other 
types of damping models (e.g., friction damping) are more realistic but 
require nonlinear analysis.
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Equation of Dynamic Equilibrium

Here the equations of motion are shown as a force-balance.  At any point in 
time, the inertial, damping, and elastic resisting forces do not necessarily act 
in the same direction.  However, at each point in time, dynamic equilibrium 
must be maintained.
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This slide (from NONLIN) shows a series of response histories for a SDOF 
system subjected to a saw-tooth loading.  As a result of the loading, the 
mass will undergo displacement, velocity, and acceleration.  Each of these 
quantities are measured with respect to the fixed base of the structure.
Note that although the loading is discontinuous, the response is relatively 
smooth.  Also, the vertical lines show that velocity is zero when displacement 
is maximum and acceleration is zero when velocity is maximum.
NONLIN is an educational program for dynamic analysis of simple linear and 
nonlinear structures.  Version 7 is included on the CD containing these 
instructional materials.
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Observed Response of Linear SDOF
(Development of Equilibrium Equation)
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These X-Y curves are taken from the same analysis that produced the 
response histories of the previous slide.  For a linear system, the resisting 
forces are proportional to the motion.  The slope of the inertial-force vs 
acceleration curve is equal to the mass.  Similar relationships exist for 
damping force vs velocity (slope = damping) and elastic force vs
displacement (slope = stiffness).
The importance of understanding and correct use of units cannot be over 
emphasized.
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Equation of Dynamic Equilibrium
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Here the equations of motion are shown in terms of the displacement, 
velocity, acceleration, and force relationships presented in the previous slide.  
Given the forcing function, F(t), the goal is to determine the response history 
of the system.



FEMA 451B Topic 3 Notes Slide 9

SDOF Dynamics 3 - 9Instructional Material Complementing FEMA 451, Design Examples

Mass

• Includes all dead weight of structure
• May include some live load
• Has units of force/acceleration
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Properties of Structural Mass

Mass is always assumed constant throughout the response.  Section 12.7.2 
of ASCE 7-05 defines this mass in terms of the “effective weight” of the 
structure.  The effective weight includes 25% of the floor live load in areas 
used for storage, 10 psf partition allowance, operating weight of all 
permanent equipment, and 20% of the flat roof snow load when that load 
exceeds 30 psf.
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Damping

• In absence of dampers, is called inherent damping
• Usually represented by linear viscous dashpot
• Has units of force/velocity
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Properties of Structural Damping

Except for the case of added damping, real structures do not have discrete 
dampers as shown.  Real or inherent damping arises from friction in the 
material.  For cracked concrete structures, damping is higher because of the 
rubbing together of jagged surfaces on either side of a crack.
In analysis, we use an equivalent viscous damper primarily because of the 
mathematical convenience.  (Damping force is proportional to velocity.)
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Damping
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Properties of Structural Damping (2)

Damping vs displacement response is
elliptical for linear viscous damper.

AREA =
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The force-displacement relationship for a linear viscous damper is an ellipse.  
The area within the ellipse is the energy dissipated by the damper.  The 
greater the energy dissipated by damping, the lower the potential for 
damage in structures.  This is the primary motivation for the use of added 
damping systems.  Energy that is dissipated is irrecoverable.
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• Includes all structural members
• May include some “seismically nonstructural” members
• Requires careful mathematical modelling
• Has units of force/displacement
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In this topic, it is assumed that the force-displacement relationship in the 
spring is linear elastic.  Real structures, especially those designed according 
to current seismic code provisions, will not remain elastic and, hence, the 
force-deformation relationship is not linear.  However, linear analysis is often 
(almost exclusively) used in practice.  This apparent contradiction will be 
explained as this discussion progresses.
The modeling of the structure for stiffness has very significant uncertainties.  
Section 12.7.3 of ASCE 7-05 provides some guidelines for modeling the 
structure for stiffness. 
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• Is almost always nonlinear in real seismic response
• Nonlinearity is implicitly handled by codes
• Explicit modelling of nonlinear effects is possible  
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This is an idealized response of a simple inelastic structure.  The area within 
the curve is the inelastic hysteretic energy dissipated by the yielding 
material.  The larger hysteretic energy in relation to the damping energy, the 
greater the damage.
In this topic, it is assumed that the material does not yield.  Nonlinear 
inelastic response is explicitly included in a separate topic.
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Undamped Free Vibration
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In this unit, we work through a hierarchy of increasingly difficult problems.  
The simplest problem to solve is undamped free vibration.  Usually, this type 
of response is invoked by imposing a static displacement and then releasing 
the structure with zero initial velocity.  The equation of motion is a second 
order differential equation with constant coefficients.  The displacement term 
is treated as the primary unknown.
The assumed response is in terms of a sine wave and a cosine wave.  It is 
easy to see that the cosine wave would be generated by imposing an initial 
displacement on the structure and then releasing.  The sine wave would be 
imposed by initially “shoving” the structure with an initial velocity.  The 
computed solution is a combination of the two effects.
The quantity ω is the circular frequency of free vibration of the structure 
(radians/sec).  The higher the stiffness relative to mass, the higher the 
frequency.  The higher the mass with respect to stiffness, the lower the 
frequency.
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This slide shows a computed response history for a system with an initial 
displacement and velocity.  Note that the slope of the initial response curve 
is equal to the initial velocity (v = du/dt).  If this term is zero, the free vibration 
response is a simple cosine wave. Note also that the undamped motion 
shown will continue forever if uninhibited.  In real structures, damping will 
eventually reduce the free vibration response to zero.
The relationship between circular frequency, cyclic frequency, and period of 
vibration is emphasized.  The period of vibration is probably the easiest to 
visualize and is therefore used in the development of seismic code 
provisions.  The higher the mass relative to stiffness, the longer the period of 
vibration.  The higher the stiffness relative to mass, the lower the period of 
vibration.
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Approximate Periods of Vibration
(ASCE 7-05)

x
nta hCT =

NT
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1.0=

Ct =  0.028, x = 0.8 for steel moment frames
Ct =  0.016, x = 0.9 for concrete moment frames
Ct =  0.030, x = 0.75 for eccentrically braced frames
Ct =  0.020, x = 0.75 for all other systems

Note: This applies ONLY to building structures!

For moment frames < 12 stories in height, minimum
story height of 10 feet.  N = number of stories.

One of the first tasks in any seismic design project is to estimate the period 
of vibration of the structure.  For preliminary design (and often for final 
design), an empirical period of vibration is used.  Section 12.8.2 of ASCE 7-
05 provides equations for estimating the period.  These equations are listed 
here.
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Empirical Data for Determination
of Approximate Period for Steel Moment Frames

8.0028.0 na hT =

Ta is based on curve-fitting of data obtained from measured response of 
California buildings after small earthquakes.  As will be seen later, the 
smaller the period, the larger the earthquake force that must be designed for.  
Hence, a lower bound empirical relationship is used. 
Because the empirical period formula is based on measured response of 
buildings, it should not be used to estimate the period for other types of 
structure (bridges, dams, towers).
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Periods of Vibration of Common Structures

20-story moment resisting frame T = 1.9 sec
10-story moment resisting frame T = 1.1 sec
1-story moment resisting frame T = 0.15 sec

20-story braced frame T = 1.3 sec
10-story braced frame T = 0.8 sec
1-story braced frame T = 0.1 sec

Gravity dam T = 0.2 sec
Suspension bridge T = 20  sec

This slide shows typical periods of vibration for several simple structures.  
Engineers should develop a “feel” for what an appropriate period of vibration 
is for simple building structures.
For building structures, the formula T = 0.1 in is the simplest “reality check.”
The period for a 10-story building should be approximately 1 sec.  If a 
computer analysis gives a period of 0.2 sec or 3.0 sec for a 10-story building, 
something is probably amiss in the analysis. 
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SD1                                       Cu
> 0.40g 1.4

0.30g 1.4
0.20g 1.5
0.15g 1.6
< 0.1g 1.7

computedua TCTT ≤=

Adjustment Factor on Approximate Period
(Table 12.8-1 of ASCE 7-05)

Applicable ONLY if Tcomputed comes from a “properly
substantiated analysis.”

In some cases, it is appropriate to remove the “conservatism” from the 
empirical period formulas.  This is done through use of the Cu coefficient.  
This conservatism arises from two sources:

1. The lower bound period was used in the development of the period
formula.  

2. This lower bound period is about 1/1.4 times the best-fit period.  
The empirical formula was developed on the basis of data from California 

buildings.  Buildings in other parts of the country (e.g., Chicago) where 
seismic forces are not so high will likely be larger than those for the same 
building in California.

It is important to note that the larger period cannot be used without the 
benefit of a “properly substantiated” analysis, which is likely performed on 
a computer.
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If you do not have a “more accurate” period 
(from a computer analysis), you must use T = Ta.

If you have a more accurate period from a computer
analysis (call this Tc), then:  

if  Tc > CuTa use T = CuTa

if  Ta < Tc < TuCa use T = Tc

if  Tc < Ta use T = Ta

Which Period of Vibration to Use
in ELF Analysis?

This slide shows the limitations on the use of CuTa.  ASCE-7-05 will not allow 
the use of a period larger than CuTa regardless of what the computer 
analysis says.  Similarly, the NEHRP Recommended Provisions does not 
require that you use a period less than Ta.
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Damped Free Vibration
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This slide shows the equation of motion and the response in damped free 
vibration.  Note the similarity with the undamped solution.  In particular, note 
the exponential decay term that serves as a multiplier on the whole 
response.
Critical damping (cc) is defined as the amount of damping that will produce 
no oscillation. See next slide.
The damped circular frequency is computed as shown.  Note that in many 
practical cases (x < 0.10), it will be effectively the same as the undamped
frequency.  The exception is very highly damped systems. 
Note that the damping ratio is often given in terms of % critical.
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Damping in Structures

cc is the critical damping constant.

Time, sec

Displacement, in

ξ is expressed as a ratio (0.0 < ξ < 1.0) in computations. 

Sometimes ξ is expressed as a% (0 < ξ < 100%).

Response of Critically Damped System, ξ=1.0 or 100% critical

The concept of critical damping is defined here.  A good example of a 
critically damped response can be found in heavy doors that are fitted with 
dampers to keep the door from slamming when closing.
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True damping in structures is NOT viscous.  However, for low
damping values, viscous damping allows for linear equations 
and vastly simplifies the solution.

Damping in Structures

An earlier slide is repeated here to emphasize that damping in real 
structures is NOT viscous.  It is frictional or hysteretic.  Viscous damping is 
used simply because it linearizes the equations of motion.  Use of viscous 
damping is acceptable for the modeling of inherent damping but should be 
used with extreme caution when representing added damping or energy loss 
associated with yielding in the primary structural system. 
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Damped Free Vibration (2)
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This slide shows some simple damped free vibration responses.  When the 
damping is zero, the vibration goes on forever.  When the damping is 20% 
critical, very few cycles are required for the free vibration to be effectively 
damped out.  For 10% damping, peak is approximately ½ of the amplitude of 
the previous peak.
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Damping in Structures (2)
Welded steel frame ξ = 0.010
Bolted steel frame ξ = 0.020

Uncracked prestressed concrete ξ = 0.015
Uncracked reinforced concrete ξ = 0.020
Cracked reinforced concrete ξ = 0.035

Glued plywood shear wall ξ = 0.100
Nailed plywood shear wall ξ = 0.150

Damaged steel structure ξ = 0.050
Damaged concrete structure ξ = 0.075

Structure with added damping ξ = 0.250

Some realistic damping values are listed for structures comprised of different 
materials.  The values for undamaged steel and concrete (upper five lines of 
table) may be considered as working stress values.
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Inherent damping

Added damping

ξ is a structural (material) property
independent of mass and stiffness

critical%0.7to5.0=Inherentξ

ξ is a structural property dependent on
mass and stiffness and
damping constant C of device

critical%30to10=Addedξ

Damping in Structures (3)

C

The distinction between inherent damping and added damping should be 
clearly understood.  
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Measuring Damping from Free Vibration Test
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One of the simplest methods to measure damping is a free vibration test.  
The structure is subjected to an initial displacement and is suddenly 
released.  Damping is determined from the formulas given.  The second 
formula should be used only when the damping is expect to be less than 
about 10% critical.
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Undamped Harmonic Loading
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The next series of slides covers the response of undamped SDOF systems 
to simple harmonic loading.  Note that the loading frequency is given by the 
omega term with the overbar.  The loading period is designated in a similar 
fashion.  
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Solution:

Particular solution: 
Complimentary solution:
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Undamped Harmonic Loading (2)

m u t k u t p t&&( ) ( ) s in ( )+ = 0 ωEquation of motion:

Assume system is initially at rest:

This slide sets up the equation of motion for undamped harmonic loading 
and gives the solution.  We have assumed the system is initially at rest.  
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Here we break up the response into the steady state response (at the 
frequency of loading) and the transient response (at the structure’s own 
natural frequency).  Note that the term po/k is the “static” displacement.  The 
dynamic magnifier shows how the dynamic effects may increase (or 
decrease) the response.  This magnifier is a function of the frequency ratio 
β.  Note that the magnifier goes to infinity if the frequency ratio β is 1.0.  This 
defines the resonant condition.
In other words, the response is equal to the static response, times a 
multiplier, times the sum of two sine waves, one in phase with the load and 
the other in phase with the structure’s undamped natural frequency.
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This is a time-history response of a structure with a natural frequency of 4 
rad/sec (f = 2 Hz, T = 0.5 sec), and a loading frequency of 2 rad/sec (f = 1 
Hz, T = 1 sec), giving a frequency ratio β of 0.5.  The harmonic load 
amplitude is 100 kips.  The static displacement is 5.0 inches.  Note how the 
steady state response is at the frequency of loading, is in phase with the 
loading, and has an amplitude greater than the static displacement.  The 
transient response is at the structure’s own frequency.  In real structures, 
damping would cause this component to disappear after a few cycles of 
vibration. 
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In this slide, ϖ has been increased to 4π rad/sec, and the structure is almost 
at resonance.  The steady state response is still in phase with the loading,
but note the huge magnification in response.  The transient response is 
practically equal to and opposite the steady state response.  The total 
response increases with time.
If one looks casually at the steady state and transient response curves, it 
appears that they should cancel out.  Note, however, that the two responses 
are not exactly in phase due to the slight difference in the loading and 
natural frequencies.  This can be seen most clearly at the time 1.75 sec into 
the response.  The steady state response crosses the horizontal axis to the 
right of the vertical 1.75 sec line while the transient response crosses exactly 
at 1.75 sec.
In real structures, the observed increased amplitude could occur only to 
some limit and then yielding would occur.  This yielding would introduce 
hysteretic energy dissipation (apparent damping), causing the transient 
response to disappear and leading to a constant, damped, steady state 
response.
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This is an enlarged view of the total response curve from the previous slide.  
Note that the response is bounded within a linear increasing envelope with 
the increase in displacement per cycle being 2π times the static 
displacement.
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In this slide, the loading frequency has been slightly increased, but the 
structure is still nearly at resonance.  Note, however, that the steady state  
response is 180 degrees out of phase with the loading and the transient 
response is in phase.  The resulting total displacement is effectively identical 
to that shown two slides back.
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The loading frequency is now twice the structure’s frequency.  The important 
point here is that the steady state response amplitude is now less than the 
static displacement.
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This plot shows the ratio of the steady state response to the static 
displacement for the structure loaded at different frequencies. At low loading 
frequencies, the ratio is 1.0, indicating a nearly static response (as 
expected).  At very high frequency loading, the structure effectively does not 
have time to respond to the loading so the displacement is small and 
approaches zero at very high frequency.  The resonance phenomena is very 
clearly shown.  The change in sign at resonance is associated with the in-
phase/out-of-phase behavior that occurs through resonance.
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This is the same as the previous slide but absolute values are plotted.  This 
clearly shows the resonance phenomena.
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Damped Harmonic Loading
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We now introduce damping into the behavior.  Note the addition of the 
appropriate term in the equation of motion.
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Solution:

Assume system is initially at rest

Particular solution: 

Complimentary solution:

u t C t D t( ) sin( ) cos( )= +ω ω

[ ]u t e A t B tt
D D( ) sin( ) cos( )= +−ξω ω ω

Damped Harmonic Loading
Equation of motion:

m u t cu t k u t p t&&( ) &( ) ( ) sin( )+ + = 0 ω

ω ω ξD = −1 2

ξ
ω

=
c

m2

[ ]u t e A t B tt
D D( ) sin( ) cos( )= +− ξω ω ω

+ +C t D tsin( ) cos( )ω ω

This slide shows how the solution to the differential equation is obtained.  
The transient response (as indicated by the A and B coefficients) will damp 
out and is excluded from further discussion. 
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This slide shows the C and D coefficients of the steady state response.  
Note that there is a component in phase with the loading (the sine term) and 
a component out of phase with the loading (the cosine term).  The actual 
phase difference between the loading and the response depends on the 
damping and frequency ratios.
Note the exponential decay term causes the transient response to damp out 
in time.
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This plot shows the response of a structure at three different loading 
frequencies.  Of significant interest is the resonant response, which is now 
limited.  (The undamped response increases indefinitely.)
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Damped Harmonic Loading (5% Damping)

For viscously damped structures, the resonance amplitude will always be 
limited as shown.
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Harmonic Loading at Resonance
Effects of Damping
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A comparison of damped and undamped responses is shown here.  The 
undamped response has a linear increasing envelope; the damped curve will 
reach a constant steady state response after a few cycles.



FEMA 451B Topic 3 Notes Slide 44

SDOF Dynamics 3 - 44Instructional Material Complementing FEMA 451, Design Examples

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Frequency Ratio, β

D
yn

am
ic

 R
es

po
ns

e 
A

m
pl

ifi
er

0.0% Damping
5.0 % Damping
10.0% Damping
25.0 % Damping

RD =
− +

1
1 22 2 2( ) ( )β ξβ

Resonance

Slowly
loaded Rapidly

loaded

This plot shows the dynamic magnification for various damping ratios.  For 
increased damping, the resonant response decreases significantly.  Note 
that for slowly loaded structures, the dynamic amplification is 1.0 (effectively 
static).  For high frequency loading, the magnifier is zero.
Note also that damping is most effective at or near resonance (0.5 < β < 
2.0).
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Summary Regarding Viscous Damping
in Harmonically Loaded Systems

• For systems loaded at a frequency near their 
natural frequency, the dynamic response 
exceeds the static response.  This is referred to 
as dynamic amplification.

• An undamped system, loaded at resonance, will 
have an unbounded increase in displacement 
over time.

A summary of some of the previous points is provided.
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Summary Regarding Viscous Damping
in Harmonically Loaded Systems

• Damping is an effective means for dissipating energy in 
the system. Unlike strain energy, which is recoverable, 
dissipated energy is not recoverable.  

• A damped system, loaded at resonance, will have a 
limited displacement over time with the limit being (1/2ξ) 
times the static displacement.

• Damping is most effective for systems loaded at or near 
resonance.

Summary continued.
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It is very important that the distinction between stored energy and dissipated 
energy be made clear.  (Note that some texts use the term “absorbed”
energy in lieu of stored energy.)  
In the first diagram, the system remains elastic and all of the strain energy is 
stored.  If the bar were released, all of the energy would be recovered.
In the second diagram, the applied deformation is greater than the elastic 
deformation and, hence, the system yields.  The energy shown in green is 
stored, but the energy shown in red is dissipated.  If the bar is unloaded, the 
stored energy is recovered, but the dissipated energy is lost.  This is shown 
in Diagrams 3 and 4.
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Time, T

F(t)

General Dynamic Loading

The discussion will now proceed to general dynamic loading.  By general 
loading, it is meant that no simple mathematical function defines the entire 
loading history.
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General Dynamic Loading 
Solution Techniques

• Fourier transform

• Duhamel integration

• Piecewise exact

• Newmark techniques

All techniques are carried out numerically.

There are a variety of ways to solve the general loading problem and all are 
carried out numerically on the computer.  The Fourier transform and 
Duhamel integral approaches are not particularly efficient (or easy to 
explain) and, hence, these are not covered here.  Any text on structural 
dynamics will provide the required details.
The piecewise exact method is used primarily in the analysis of linear 
systems. The Newmark method is useful for both linear and nonlinear 
systems.  Only the basic principles underlying of each of these approaches 
are presented.
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Piecewise Exact Method

Fo

In the piecewise exact method, the loading function is broken into a number 
of straight-line segments.  In a sense, the name of the method is a misnomer
because the method is not exact when the actual loading is smooth (like a 
sine wave) because the straight line load segments are only an 
approximation of the actual load.  When the actual load is smooth, the 
accuracy of the method depends on the level of discretization when defining 
the loading function.
For earthquake loads, the load is almost always represented by a recorded 
accelerogram, which does consist of straight line segments.  (There would 
be little use in trying to interpolate the ground motion with smooth curves.)  
Hence, for the earthquake problem, the piecewise exact method is truly 
exact.  
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Piecewise Exact Method

The basic idea of the piecewise exact method is to develop a solution for a 
straight line loading segment knowing the initial conditions.  Given the initial 
conditions and the load segment, the solution at the end of the load step is 
determined and this is then used as the initial condition for the next step of 
the analysis.  The analysis then proceeds step by step until all load 
segments have been processed.  
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Piecewise Exact Method

Advantages:

• Exact if load increment is linear
• Very computationally efficient

Disadvantages:

• Not generally applicable for inelastic behavior

Note:  NONLIN uses the piecewise exact method for
response spectrum calculations.

It should be noted that the piecewise exact method may be used for 
nonlinear analysis in certain circumstances.   For example, the “fast 
nonlinear analysis” (FNA) method developed by Ed Wilson and used in SAP 
2000 utilizes the piecewise exact method.  In FNA, the nonlinearities are 
“right-hand sided,” leaving only linear terms in the left-hand side of the 
equations of motion.   
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Newmark Techniques

• Proposed by Nathan Newmark
• General method that encompasses a family of different 

integration schemes
• Derived by:

– Development of incremental equations of motion
– Assuming acceleration response over short time step

The Newmark method is one of the most popular methods for solving the 
general dynamic loading problem.  It is applicable to both linear and 
nonlinear systems.  It is equally applicable to both SDOF and MDOF 
systems.
The Newmark method is described in more detail in the topic on inelastic 
behavior of structures.
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Newmark Method
Advantages:

• Works for inelastic response

Disadvantages:

• Potential numerical error

Note:  NONLIN uses the Newmark method for
general response history calculations

The advantages and disadvantages of the Newmark method are listed.   The 
principal advantage is that the method may be applied to inelastic systems.  
The method also may be used (without decoupling) for multiple-degree-of-
freedom systems.
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Development of Effective Earthquake Force

In an earthquake, no actual force is applied to the building.  Instead, the 
ground moves back and forth (and up and down) and this movement induces 
inertial forces that then deform the structure.  It is the displacements in the 
structure, relative to the moving base, that impose deformations on the 
structure.  Through the elastic properties, these deformations cause elastic 
forces to develop in the individual members and connections.
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Earthquake Ground Motion, 1940 El Centro

Many ground motions now 
are available via the 
Internet.
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Earthquake ground motions usually are imposed through the use of the 
ground acceleration record or accelerogram.  Some programs (like Abaqus) 
may require instead that the ground displacement records be used as input.  
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Development of Effective Earthquake Force
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Ground Acceleration Response History

gu&& tu&&
ru&&

In this slide, it is assumed that the ground acceleration record is used as 
input.  The total acceleration at the center of mass is equal to the ground 
acceleration plus the acceleration of the center of mass relative to the 
moving base.  The inertial force developed at the center of mass is equal to 
the mass times the total acceleration.  
The damping force in the system is a function of the velocity of the top of the 
structure relative to the moving base.  Similarly, the spring force is a function 
of the displacement at the top of the structure relative to the moving base.  
The equilibrium equation with the zero on the response history spectrum 
(RHS) represents the state of the system at any point in time.  The zero on 
the RHS reflects the fact that there is no applied load.
If that part of the total inertial force due to the ground acceleration is moved 
to the right-hand side (the lower equation), all of the forces on the left-hand 
side are in terms of the relative acceleration, velocity, and displacement.  
This equation is essentially the same as that for an applied load (see Slide 8) 
but the “effective earthquake force” is simply the negative of the mass times 
the ground acceleration.  The equation is then solved for the response 
history of the relative displacement.
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Divide through by m:

Make substitutions:

“Simplified” form of Equation of Motion:

)()()(2)( 2 tutututu grrr &&&&& −=++ ωξω
Simplified form:

In preparation for the development of response spectra, it is convenient to 
simplify the equation of motion by dividing through by the mass. When the 
substitutions are made as indicated, it may be seen that the response is 
uniquely defined by the damping ratio, the undamped circular frequency of 
vibration, and the ground acceleration record.
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)()()(2)( 2 tutututu grrr &&&&& −=++ ωξω

Ground motion acceleration history

Structural frequency

Damping ratio

For a given ground motion, the response 
history ur(t) is function of the structure’s 
frequency ω and damping ratio ξ.

This restates the point made in the previous slide.  A response spectrum is 
created for a particular ground motion and for a structure with a constant 
level of damping.  The spectrum is obtained by repeatedly solving the 
equilibrium equations for structures with varying frequencies of vibration and 
then plotting the peak displacement obtained for that frequency versus the 
frequency for which the displacement was obtained.  
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Change in ground motion 
or structural parameters ξ
and ω requires re-
calculation of structural 
response

Response to Ground Motion (1940 El Centro)
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Excitation applied to structure 
with given ξ and ω

Peak displacement

Computed response

SOLVER

The next several slides treat the development of the 5% damped response 
spectrum for the 1940 El Centro ground motion record.  The “solver”
indicated in the slide is a routine, such as the Newmark method, that takes 
the ground motion record, the damping ratio, and the system frequency as 
input and reports as output only the maximum absolute value of the relative 
displacement that occurred over the duration of the ground motion.  It is 
important to note that by taking the absolute value, the sign of the peak 
response is lost.  The time at which the peak response occurred is also lost 
(simply because it is not recorded).  
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The Elastic Displacement Response Spectrum
An elastic displacement response spectrum is a plot
of the peak computed relative displacement, ur, for an
elastic structure with a constant damping ξ, a varying
fundamental frequency ω (or period T = 2π/ ω), responding
to a given ground motion.

5% damped response spectrum for structure
responding to 1940 El Centro ground motion

This slide is a restatement of the previous point.
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Computation of Response Spectrum for 
El Centro Ground Motion

Elastic response spectrum

Computed response

Here, the first point in the response spectrum is computed.  For this and all 
subsequent steps, the ground motion record is the same and the damping 
ratio is set as 5% critical.  Only the frequency of vibration, represented by 
period T, is changed.
When T = 0.10 sec (circular frequency = 62.8 radians/sec), the peak 
computed relative displacement was 0.0543 inches.  The response history 
from which the peak was obtained is shown at the top of the slide.  This 
peak occurred at about 5 sec into the response, but this time is not recorded.  
Note the high frequency content of the response.  
The first point on the displacement response spectrum is simply the 
displacement (0.0543 inches) plotted against the structural period (0.1 sec) 
for which the displacement was obtained. 
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ξ = 0.05
T = 0.20 sec
Umax = 0.254 in.

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 1 2 3 4 5 6 7 8 9 10 11 12

Time, Seconds

D
is

pl
ac

em
en

t, 
In

ch
es

0.00

2.00

4.00

6.00

8.00

10.00

0.00 0.50 1.00 1.50 2.00

Period, Seconds

D
is

pl
ac

em
en

t, 
In

ch
es

Computation of Response Spectrum
for El Centro Ground Motion

Elastic response spectrum

Computed response

Here the whole procedure is repeated, but the system period is changed to 
0.2 sec.  The computed displacement history is shown at the top of the slide, 
which shows that the peak displacement was 0.254 inches.  This peak 
occurred at about 2.5 sec into the response but, as before, this time is not 
recorded.  Note that the response history is somewhat smoother than that in 
the previous slide.
The second point on the response spectrum is the peak displacement (0.254 
inch) plotted against the system period, which was 0.2 sec.
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ξ = 0.05
T = 0.30 sec
Umax = 0.622 in.
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Computation of Response Spectrum
for El Centro Ground Motion

Elastic response spectrum

Computed response

The third point on the response spectrum is the peak displacement (0.622 
inch) plotted against the system period, which was 0.3 sec.  Again, the 
response is somewhat “smoother” than before.
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ξ = 0.05
T = 0.40 sec
Umax = 0.956 in.
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Computation of Response Spectrum
for El Centro Ground Motion

Elastic response spectrum

Computed response

The fourth point on the response spectrum is the peak displacement (0.956 
inch) plotted against the system period, which was 0.40 sec.  
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ξ = 0.05
T = 0.50 sec
Umax = 2.02 in.
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Computation of Response Spectrum
for El Centro Ground Motion

Elastic response spectrum

Computed response

The next point on the response spectrum is the peak displacement (2.02 
inches) plotted against the system period, which was 0.50 sec.
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ξ = 0.05
T = 0.60 sec
Umax= -3.00 in.

Computation of Response Spectrum
for El Centro Ground Motion
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Elastic response spectrum

Computed response

The next point on the response spectrum is the peak displacement (3.03 
inches) plotted against the system period, which was 0.60 sec.  Note that 
only the absolute value of the displacement is recorded.  
The complete spectrum is obtained by repeating the process for all 
remaining periods in the range of 0.7 through 2.0 sec.  For this response 
spectrum, 2/0.1 or 20 individual points are calculated, requiring 20 full 
response history analyses.  A real response spectrum would likely be run at 
a period resolution of about 0.01 sec, requiring 200 response history 
analyses. 
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Complete 5% Damped Elastic Displacement
Response Spectrum for El Centro

Ground Motion
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This is the full 5% damped elastic displacement response spectrum for the 
1940 El Centro ground motion.  Note that the spectrum was run for periods 
up to 4.0 sec.  This spectrum was generated using NONLIN.
Note also that the displacement is nearly zero when T is near zero.  This is 
expected because the relative displacement of a very stiff structure (with T
near zero) should be very small.  The displacement then generally increases 
with period, although this trend is not consistent.  The reductions in 
displacement at certain periods indicate that the ground motion has little 
energy at these periods.  As shown later, a different earthquake will have an 
entirely different response spectrum.
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Development of Pseudovelocity
Response Spectrum
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5% damping

If desired, an elastic (relative) velocity response spectrum could be obtained 
in the same way as the displacement spectrum.  The only difference in the 
procedure would be that the peak velocity computed at each period would be 
recorded and plotted.
Instead of doing this, the velocity spectrum is obtained in an approximate 
manner by assuming that the displacement response is harmonic and, 
hence, that the velocity at each (circular) frequency is equal to the frequency 
times the displacement.  This comes from the rules for differentiating a 
harmonic function.
Because the velocity spectrum so obtained is not exact, it is called the 
pseudovelocity response spectrum.  
Note that it appears that the pseudovelocity at low (near zero) periods is also 
near zero (but not exactly zero).
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Development of Pseudoacceleration
Response Spectrum

5% damping

The pseudoacceleration spectrum is obtained from the displacement 
spectrum by multiplying by the circular frequencies squared.  Note that the 
acceleration at a near zero period is not near zero (as was the case for 
velocity and displacement).  In fact, the pseudoacceleration represents the 
total acceleration in the system while the pseudovelocity and the 
displacement are relative quantities.
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The pseudoacceleration response spectrum represents the total 
acceleration of the system, not the relative acceleration. It is nearly 
identical to the true total acceleration response spectrum for lightly 
damped structures.

Note About the Pseudoacceleration Response Spectrum
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Peak ground
acceleration

For very rigid systems (with near zero periods of vibration), the relative 
acceleration will be nearly zero and, hence, the pseudoacceleration, which is 
the total acceleration, will be equal to the peak ground acceleration.
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This slide explains why the pseudoacceleration is equal to the total 
acceleration.  The relative displacement is multiplied by omega to get 
pseudovelocity.  The pseudovelocity then is multiplied by omega to get the 
total acceleration.
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Difference Between Pseudo-Acceleration
and Total Acceleration

(System with 5% Damping)
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This plot shows total acceleration and pseudoacceleration for a 5% damped 
system subject to the El Centro ground motion.  Note the similarity in the two 
quantities.  The difference in the two quantities is only apparent at low 
periods.
The difference can be much greater when the damping is set to 10%, 20%, 
or 30% critical, and the differences can appear in a wider range of periods.  
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Difference Between Pseudovelocity
and Relative Velocity

(System with 5% Damping)
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This plot shows relative velocity and pseudovelocity for a 5% damped 
system subject to the El Centro ground motion. Here, the differences are 
much more apparent than for pseudoacceleration, and the larger differences 
occur at the higher periods.  The differences will be greater for systems with 
larger amounts of damping.
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Displacement Response Spectra
for Different Damping Values
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The higher the damping, the lower the relative displacement.  At a period of 
2 sec, for example, going from zero to 5% damping reduces the 
displacement amplitude by a factor of two.  While higher damping produces 
further decreases in displacement, there is a diminishing return.  The % 
reduction in displacement by going from 5 to 10% damping is much less that 
that for 0 to 5% damping.  
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Pseudoacceleration Response Spectra
for Different Damping Values
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Damping has a similar effect on pseudoacceleration.  Note, however, that 
the pseudoacceleration at a (near) zero period is the same for all damping 
values.  This value is always equal to the peak ground acceleration for the 
ground motion in question.
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Damping Is Effective in Reducing the 
Response for (Almost) Any Given Period 

of Vibration 

• An earthquake record can be considered to be the 
combination of a large number of harmonic components.

• Any SDOF structure will be in near resonance with one
of these harmonic components.

• Damping is most effective at or near resonance.

• Hence, a response spectrum will show reductions due to
damping at all period ranges (except T = 0).

Damping is generally effective at all periods (except at T = 0).  The reason 
for this is that ground motions consist of a large number of harmonics, each 
at a different frequency.   When a response spectrum analysis is run for a 
particular period, there will be a near resonant response at that period.  
Damping is most effective at resonance and, hence, damping will be 
effective over the full range of periods for which the response spectrum is 
generated.
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Damping Is Effective in Reducing the 
Response for Any Given Period of 

Vibration 
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• Example of an artificially generated wave to 
resemble a real time ground motion 
accelerogram.

• Generated wave obtained by combining five 
different harmonic signals, each having equal 
amplitude of 1.0.
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To demonstrate the point made in the previous slide, an “artificial” ground 
motion is made up from the sum of five simple harmonics.



FEMA 451B Topic 3 Notes Slide 79

SDOF Dynamics 3 - 79Instructional Material Complementing FEMA 451, Design Examples

The Artificial Wave Is the Sum of Five Harmonics
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Each of the harmonics has an amplitude of 1.0.  The first three of the 
harmonics with T = 5, 4, and 3 sec are shown. 
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The Artificial Wave Is the Sum of Five Harmonics

The remaining two harmonics (at T = 2 and 1 sec) and the sum are shown.
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FFT curve for the combined wave 
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Damping Reduces the Response
at Each Resonant Frequency

The Fourier amplitude spectrum of the artificial ground motion is shown at 
the left.  This spectrum shows the five discrete harmonics that are in the 
artificial motion.  If the response spectrum is run at intervals of 0.2 sec, there 
will be resonant response at each of these frequencies.  Damping will be 
very effective in reducing the response at each of the frequencies.
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Use of an Elastic Response Spectrum
Example Structure
K = 500 k/in
W = 2,000 k
M = 2000/386.4 = 5.18 k-sec2/in
ω = (K/M)0.5 =9.82 rad/sec
T = 2π/ω = 0.64 sec
5% critical damping
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At T = 0.64 sec, displacement = 3.03 in.

This is a simple example of the use of an elastic displacement response 
spectrum.  If the system is assumed to have 5% damping (matching the 
spectrum) and the system period is known, the peak displacement may be 
easily computed.   Note that the sign of the displacement (positive or 
negative) and the time that the displacement occurred is not known as this 
information was discarded when the spectrum was generated.



FEMA 451B Topic 3 Notes Slide 83

SDOF Dynamics 3 - 83Instructional Material Complementing FEMA 451, Design Examples

Use of an Elastic Response Spectrum
Example Structure
K = 500 k/in
W = 2,000 k
M = 2000/386.4 = 5.18 k-sec2/in
ω = (K/M)0.5 =9.82 rad/sec
T = 2π/ω = 0.64 sec
5% critical damping

At T = 0.64 sec, pseudoacceleration = 301 in./sec2
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Base shear = M x PSA = 5.18(301) = 1559 kips

This is a simple example of the use of an elastic pseudoacceleration
response spectrum.  If the system is assumed to have 5% damping 
(matching the spectrum) and the system period and mass are known, the 
peak base shear may be easily computed.   Note that the sign of the shear 
(positive or negative) and the time that the shear occurred is not known as 
this information (related to pseudoacceleration) was discarded when the 
spectrum was generated.
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Response Spectrum, ADRS Space
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Another type of spectrum plot is the acceleration-displacement response 
spectrum (ADRS), which is also called a demand spectrum.  Here, 
displacement is plotted on the x-axis and pseudoacceleration is plotted on 
the y-axis.  Periods of vibration are represented as radial lines.
This kind of spectrum is most commonly used in association with “capacity 
spectra” developed from nonlinear static pushover analysis.  A demand 
spectrum is also useful in assessing stiffness and damping requirements of 
base-isolated systems.
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Response spectra often are plotted on four-way log paper.  This type of 
spectrum is often called a “tripartite spectrum” because the displacement, 
pseudovelocity, and pseudoacceleration are all shown on the same plot. 
On the plot, pseudovelocity is plotted on the vertical axis.  Lines of constant 
and logarithmically increasing displacement are generated as shown.  The 
use of circular frequency on the horizontal axis is rarely used in practice but 
is convenient for illustrating the development of the plot. 
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Lines of constant and logarithmically increasing pseudoacceleration are 
obtained in a similar manner.



FEMA 451B Topic 3 Notes Slide 87

SDOF Dynamics 3 - 87Instructional Material Complementing FEMA 451, Design Examples

0.1

1

10

100

0.1 1 10 100 1000

Circular Frequency ω, Radiand per Second

PS
EU

D
O

VE
LO

C
IT

Y,
 in

/s
ec

Four-Way Log Plot of Response Spectrum

10000

1000

100

10

10.1

ACCELE
RATIO

N, in
/se

c2

10
0

10

1.0

0.1

0.0
1

0.0
01

DISPLACEMENT, in

Circular Frequency ω
(radians/sec)

This is a completed spectrum for the 5% damped 1940 El Centro earthquake 
with maximum acceleration = 0.35g.
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Four-Way Log Plot of Response Spectrum
Plotted vs Period

Response spectra usually are plotted versus structural period or structural 
cyclic frequency.  This is the same spectrum as shown in the previous slide, 
but it is plotted versus period.
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Development of an Elastic
Response Spectrum
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Problems with Current Spectrum:

It is for a single earthquake; other
earthquakes will have different
Characteristics.

For a given earthquake,
small variations in structural 
frequency (period) can produce
significantly different results.

The use of a single earthquake spectrum in structural design is not 
recommended for the reasons shown on this slide.  The same site 
experiencing different earthquakes (or different components of the same 
earthquake) often will have dissimilar spectra. 
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For a given earthquake,
small variations in structural 
frequency (period) can produce
significantly different results.

1940 El Centro, 0.35 g, N-S

Note the significant changes (for any given damping value) in the 1.5 sec 
period range.
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5% Damped Spectra for Four California Earthquakes
Scaled to 0.40 g (PGA)

Different earthquakes
will have different spectra.

The spectra are scaled to 0.4 g with 5% damping.  Note the differences.
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Smoothed Elastic Response Spectra
(Elastic DESIGN Response Spectra)

• Newmark-Hall spectrum

• ASCE 7 spectrum

Because real ground motion spectra are difficult to work with in a design 
office, a variety of empirical spectra have been generated.  One of the 
earliest of these empirical spectra was developed by Nathan Newmark.  The 
next several slides describe this in detail.  
The spectrum used by ASCE 7-05 is simpler than the Newmark spectrum, 
but explanation of the background of the ASCE 7 spectrum is more difficult.   
Certain key aspects of the ASCE 7 spectrum are presented in the topic on 
seismic load analysis.
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The Newmark spectrum is based on the following observations:
• The pseudoacceleration at very low periods is exactly equal to the peak 

ground acceleration.
• The relative displacement at very long periods is exactly equal to the 

peak ground displacement.
• At intermediate periods, the displacement, pseudovelocity, and 

pseudoacceleration are equal to the ground values times some empirical 
constant.
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Very Stiff Structure (T < 0.01 sec)

Total acceleration
Zero 

Ground acceleration
Relative displacement 

For very low period (high frequency) buildings, the maximum relative 
displacement will be zero.  The maximum acceleration will approach the 
ground acceleration. 
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Very Flexible Structure (T > 10 sec)

Relative displacement 
Total acceleration

Ground displacement 
Zero 

For very high period (low frequency) buildings, the maximum relative 
displacement will be equal to the maximum ground displacement.  The 
maximum total acceleration will approach zero. 
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1940 El Centro, 0.35 g, N-S

0.35g

12.7 in/s

4.25 in.

Ground Maxima

The yellow line shows the maximum recorded ground displacement, velocity, 
and acceleration from the 1940 El Centro earthquake.  These lines clearly 
form a lower bound to the elastic response spectra.  Note how the building 
response displacements, velocities, and accelerations are amplifications of 
the ground values.  Note also how the amplifications decrease with 
increased damping.
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Damping           One Sigma (84.1%)                 Median (50%)
% Critical aa av ad aa av ad

.05 5.10 3.84 3.04 3.68 2.59 2.01
1 4.38 3.38 2.73 3.21 2.31 1.82
2 3.66 2.92 2.42 2.74 2.03 1.63
3 3.24 2.64 2.24 2.46 1.86 1.52
5 2.71 2.30 2.01 2.12 1.65 1.39
7 2.36 2.08 1.85 1.89 1.51 1.29
10 1.99 1.84 1.69 1.64 1.37 1.20
20 1.26 1.37 1.38 1.17 1.08 1.01

Newmark’s Spectrum Amplification Factors
for Horizontal Elastic Response

Newmark has developed a series of amplification factors to be used in the 
development of design spectra.  These are based on the average of dozens 
of spectra recorded on firm soil sites for the western United States.  Values 
are shown for the median and median plus one standard deviation.
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Newmark-Hall Elastic Spectrum

1
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2 4

65

1) Draw the lines 
corresponding to max ggg

vvv ,, &&&

2) Draw line 
from Tb to Tc

Ta Tb Tc Td Te Tf

gA
v&&maxα

3) Draw line 
from Tc to Td

gV
v&maxα

4) Draw line 
from Td to Te

gD
vmaxα

5) Draw connecting line 
from Ta to Tb

6) Draw connecting line 
from Te to Tf

These are the steps in the development of the Newmark spectrum.  Note 
that actual values are not present.
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ASCE 7
Uses a Smoothed Design Acceleration Spectrum
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This plot shows the basic relationships used for the ASCE 7 spectrum.  Note 
that the vertical axis is pseudoacceleration.  The spectrum is derived from a 
series of maps giving spectral acceleration values for “short period” (T = 0.2 
sec) or “long period” (T = 1 sec) buildings.  Note that the part of the spectrum 
to the right of TL (Curve 4) was introduced in the 2003 NEHRP 
Recommended Provisions and in ASCE 7-05.
The maps are based on very stiff soils.  For design purposes, the 
acceleration spectra is not reduced to the ground acceleration at low periods 
(Line 1 on the plot).  Damping is assumed to be 5% critical.
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The ASCE 7 Response Spectrum

is a uniform hazard spectrum based on
probabilistic and deterministic seismic
hazard analysis. 

This slide notes that the ASCE 7 spectrum is a “uniform hazard spectrum.”
This concept is covered in detail in the topic on seismic hazard analysis.  
The main purpose of this side is a transition into the hazards topic.


