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A derivative-free approach based on a hybrid genetic algorithm (HGA) is
proposed to estimate a mixed model–based ground motion prediction equation
(attenuation relationship) with several variance components. First, a simplex
search algorithm (SSA) is used to reduce the search domain to improve the
convergence speed. Then, a genetic algorithm (GA) is employed to obtain the
regression coefficients and the uncertainties of a predictive equation in a
unified framework using one-stage maximum-likelihood estimation. The
proposed HGA results in a predictive equation that best fits a given ground
motion data set. The proposed HGA is able to handle changes in the functional
form of the equation. To demonstrate the solution quality of the proposed
HGA, the regression coefficients and the uncertainties of a test function based
on a simulated ground motion data set are obtained. Then, the proposed HGA
is applied to fit two functional attenuation forms to an actual data set of ground
motion. For illustration, the results of the HGA are compared with those used
by previous conventional methods. The results indicate that the HGA is an
appropriate algorithm to overcome the shortcomings of the previous methods
and to provide reliable and stable solutions. �DOI: 10.1193/1.2755934�

INTRODUCTION

Derivation of ground motion prediction equation and estimation of its coefficients
and uncertainties are significant components of seismic hazard analysis for seismically
active regions. The predictive equations in such regions may be reliably estimated from
statistical calculations based on extensive ground motion data recorded in a region.
There are several nonlinear mathematical functions that relate a given ground motion
parameter (e.g., peak ground acceleration [PGA]) to seismological parameters of a seis-
mic event in a data set, such as earthquake magnitude, source-to-site distance, style of
faulting, and local site conditions.

A statistical regression procedure is performed to estimate the residual error (the dif-
ference between an observation and an estimated value) and the regression coefficients
in a given predictive equation. An extensive verification is required to investigate
whether a proposed predictive equation provides a good description of the ground mo-
tion data. It is common in probabilistic seismic hazard studies to distinguish between
various uncertainties to better understand ground motions at a given site. The discussion
of the partitioning of uncertainty is ambiguous. The probability seismic hazard analysis
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(PSHA) generally distinguishes between epistemic uncertainty (due to lack of data and
knowledge) and aleatory uncertainty (random or apparently random variability)—see
Toro et al. (1997) for more details. The residual error or the sigma ��� term in predictive
equations, which may be made up of several variance components, is treated as aleatory
variability. The decomposition of residual error into two variance components dates back
to Brillinger and Preisler (1984). They partitioned the residual error into two parts,
namely intra- (within) event and inter- (between) event terms. Joyner and Boore (1993)
incorporated three variance components into a ground motion prediction equation,
namely earthquake-to-earthquake component, site-to-site component, and record-to-
record component. The site-to-site component and the record-to-record component are
generally lumped into the intra-event variability term due to the limited number of re-
cordings available from different earthquakes for a given site. The partitioning between
inter-event and intra-event variability is key to the understanding of the nature of the
scatter, but has not been formally incorporated into PSHA yet. In general, a ground mo-
tion prediction equation is defined as a nonlinear mixed model incorporating both re-
gression coefficients (fixed effects) and uncertainties with several variance components
(random effects).

There are four conventional methods to perform a statistical regression analysis to
develop a ground motion prediction equation (attenuation relationship) and to estimate
the associated uncertainties. These four methods are (1) one-stage weighted least-
squares regression (Campbell 1989); (2) two-stage weighted least-squares regression
(Joyner and Boore 1993); (3) one-stage maximum-likelihood regression, which was first
introduced by Brillinger and Preisler (1984, 1985), then improved by Abrahamson and
Youngs (1992), and later re-examined by Joyner and Boore (1993); and (4) Bayesian
expectation-maximization (EM) regression (Chen and Tsai 2002). The aim of all these
regression methods is to provide the most accurate estimates of the regression coeffi-
cients and variance components. These methods provide explicit statistical regression
procedures for estimating the variance components. The one-stage maximum-likelihood
methods (all parameters are determined simultaneously) are used to give a more accu-
rate partitioning of the variance components than the least-squares methods. In the one-
stage methods, an EM algorithm (Brillinger and Preisler 1985, Chen and Tsai 2002) or
a certain search algorithm (Abrahamson and Youngs 1992, Joyner and Boore 1993) is
applied to obtain the maximum likelihood estimates of the variance components. Some
of these methods (e.g., Brillinger and Preisler 1985, Chen and Tsai 2002), which are
based on the EM algorithm, do not necessarily work in the absence of good initial esti-
mates that appear to guarantee convergence of the algorithm employed. Unreasonable
initial estimates might lead to biased estimates of the variance components. Abrahamson
and Youngs (1992) suggested an alternative algorithm to maximize the likelihood of the
set of observations without EM, which is considered to give more stability. Although the
1992 Abrahamson and Youngs algorithm provides an explicit formula for the variance
component estimates, an additional regression procedure is required to estimate the re-
gression coefficients.

To estimate a general ground motion prediction equation, there is a need for a flex-
ible search algorithm to obtain statistically the best regression coefficients and variance
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of components under a unified framework. The search algorithm must be capable of han-
dling changes in the functional form in the attenuation curves with no additional regres-
sion analyses. This would imply that all model parameters and the uncertainties are es-
timated simultaneously (one-stage method) and there is no need to construct derivatives
of the predictive equation. Genetic algorithm (GA) is a directed stochastic search
method (Holland 1975, Goldberg 1989) based on the principles of natural selection. A
hybrid genetic algorithm (HGA) is a combination of the GA with a simulated stochastic
method to reduce the search domain and find the suitable sequence of initial guesses for
learning and estimating the best regression coefficients and uncertainties in a ground
motion prediction equation.

In this study, we develop an alternative approach based on a hybrid genetic algorithm
(HGA) for one-stage maximum-likelihood estimation of mixed models. To demonstrate
the solution quality of the proposed HGA, the regression coefficients and the uncertain-
ties of a test function, which is based on a simulated ground motion data set, are ob-
tained. Then, the proposed HGA is applied to fit two functional attenuation forms to an
actual data set of ground motion recordings in Taiwan using data provided in Chen and
Tsai (2002). To illustrate the strengths and limitations of the proposed algorithm, the
model parameters and the residual error in the predictive equation are estimated using
the previous conventional algorithms, and then compared with those determined by the
proposed algorithm. Finally, as another example of the HGA application, we define a
complex functional attenuation form and determine the best estimate of the regression
coefficients and the variance components from the actual ground motion data.

GENERAL MIXED MODEL–BASED PREDICTIVE EQUATION

The following nonlinear regression model is used to denote a mixed-based ground
motion prediction equation

Yij = f�xij,�� + �
�=1

c

X�b� + �ij �1�

where Yij is the jth ground motion parameter (e.g., PGA) from the ith event (i
=1, . . . ,n, and j=1, . . . ,ni), n is the number of events, and ni is the number of recording
for the ith event. An event represents a group of recordings (cluster) that are stochasti-
cally dependent, such as the set of strong-motion recordings collected during a single
earthquake. The predictive equation consists of three terms to reflect the clustered nature
of the ground motion data and the involvement of random effects. The first term of
Equation 1, f�xij ,��, is a known nonlinear functional form. The vector xij is a vector of
independent variables including the earthquake magnitude �Mi� and the source-to-site
distance �Rij�, and � is a vector of fixed effects for regression coefficients. The second
term of Equation 1 is used to model the inter-event variations among clusters. The vector
b� denotes a specific vector of random effects for the �-factor, and c is the number of
factors to be included in the analysis, such as earthquake-specific, site-specific, and
path-specific factors. The matrix X� is the incidence matrix for random effects. The last
term, �ij, represents intra-event variations within the clusters, which is the residual error
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for the jth recording from the ith event. The random effects and the random error ��ij�
are normally distributed with zero means and variances ��

2 and �r
2, respectively. The

variance ��
2 is independent of the variance �r

2; therefore, the variance of a ground mo-
tion parameter is estimated to be �Y

2 =��
2 +�r

2. The variance ��
2 may be partitioned into

three types of variance components: �e
2, �s

2, and �p
2. The variance �e

2 represents the
earthquake-specific deviation obtained for each earthquake magnitude, the variance �s

2

represents the site-specific deviation obtained for each site at the different magnitudes,
and the variance �p

2 represents the path-specific deviation obtained for each record at the
different sites.

Figures 1a–b show how the vector of deviations about overall ground motion mean
may be partitioned into two components of variance. Suppose that the ground motion
data consist of two earthquakes with the same magnitude, as shown in Figure 1a–b, each
of which represents a group of recordings from a random location in a given seismic
region. When two groups are being compared, the ground motion recordings from all the

Figure 1. Total deviation is partitioned into two type of errors, namely, inter- and intra-event
terms. The inter-event term is a vector of specific random effect such as earthquake-specific
components, and the intra-event term is the residual error. The inter-event (random effect) and
the intra-event (random error) terms are normally distributed with means zero and variances �e

2

and �r
2, respectively.
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groups are involved in computing a total ground motion mean �Y��. The total deviation
��Y� is based on how far each recording in each group differs from this total mean. The
total deviation is decomposed into two error terms. The inter-event term ��e� represents
the deviation of each group mean from the overall mean, while the intra-event term ��r�
represents the deviation of each individual recording from the relevant group mean.

The ground motion data �Yij� is represented as a Gaussian random variable with the
overall mean, E�Yij�, and variance-covariance matrices �V� obtained by the following
equations (Searle 1971):

E�Yij� = f�xij,�� �2�

and

V = var�Yij� = �
�=1

c

��
2X�X�

t + �r
2IN �3�

where N is the total number of ground motion data points, IN denotes the N�N identity
matrix, X� is the incidence matrix for random effects, and the superscript t denotes ma-
trix transposition. Assuming the ground motion data has a multivariate normal distribu-
tion with mean E�Yij� and the variance-covariance matrix V, a multidimensional normal
probability density function can be used as a likelihood-based estimate of the parameter
values. The log-likelihood of �� ,V �Yij� under the Gaussian model is:

log l��,V�Yij� = −
1

2
�N log�2�� + log�V� + �Yij − f�xij,���tV−1�Yij − f�xij,���� �4�

where �V� is the determinant of the variance-covariance matrix and the superscript t de-
notes matrix transposition. Equation 4 is considered as the objective function of HGA
and has to be solved for the elements of � and the variance components inherent in V.
The maximum-likelihood estimates of �� ,V� are obtained by maximizing the right-hand
side of the equation. Maximizing log l�� ,V �Yij� in Equation 4 or equivalently minimiz-
ing −2 log l�� ,V �Yij� is often an expensive and ill-conditioned problem. For instance, it
is more difficult to construct the partial derivatives of Equation 4 to find the maximum-
likelihood estimators for a given nonlinear predictive equation with more random factors
���. The methods based on derivation require calculating the inverse of a matrix with a
size equal to the number of the random effects in each iteration, and the linearization of
a given nonlinear regression function with a Taylor’s-series expansion about the regres-
sion coefficients. Finding the best search defined by the conventional optimization pro-
cedure often involves solving an inflexible large-scale maximization problem, in particu-
lar for a complex nonlinear predictive equation. Thus, the derivative-free methods
provide a flexible alternative to the algorithms used currently for the regression analysis
of strong-motion data.

In this study, we propose an alternative search method based on a hybrid genetic al-
gorithm to find the best value of parameters �� ,V� that minimize the objective function.
The objective function directly sets up the basis for selection of parameters, each of
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which represents a candidate solution to do the best curve fitting. When the total number
of ground motion data points and random effects is large, finding the best estimate ac-
cording to a HGA is more appropriate. The variance estimates of the variance compo-
nents can be obtained directly after finding the variance components (e.g., �e

2, �s
2, and

�r
2) based on the HGA. Details of the variance estimates following Searle (1970) are

given in the Appendix.

OPTIMIZATION USING HGA

The HGA is a directed stochastic search technique (a derivative-free approach) that
is able to provide an optimal solution to compute the vector of the model parameter val-
ues ��� and the variance components �V� defined in Equation 4. The basic idea is to
maintain a population of possible solutions that evolves and improves over time through
a process of competition and controlled variation. The HGA is different from conven-
tional random algorithms since it combines the elements of directed and stochastic
search by using the process of natural selection. The HGA uses first a simplex search
algorithm (Lagarias et al. 1998) to reduce the search domains for each parameter, and
then a genetic algorithm (GA) to randomly generate an initial population within the re-
duced search space. The search domains are estimated for the model parameter values
based on a fixed effects regression (no assumption is made about the random effects).
This assumption involves choosing the model parameters that minimize the sum of
squares of deviations of the observations from their expected values defined in Equation
4. The reduced search domains are only considered to improve the convergence speed of
the HGA. Therefore, unreasonable initial values of variance components do not cause a
problem.

The HGA is used to estimate simultaneously the new model parameters and the vari-
ance components in Equation 4. A HGA consists of initialization, evaluation, reproduc-
tion, crossover, and mutation. An initial population of possible solutions to Equation 4 is
first constructed in a random way and represented in a vector form. These vectors are of
the same length and are called strings �S� or chromosomes. The length of each string �L�
is determined by the number of model parameters (regression coefficients) and variance
components (uncertainties) used in the ground motion prediction equation. A string vec-
tor form may be expressed as

Si,j = ��,��
2 ,�r

2� i = 1, . . . ,M j = 1, . . . ,L �5�

where M is a population size, and is usually chosen to be more than twice the string
length. Each value of this population array is encoded into a binary string with a known
number of bits �Nb� assigned for the representation of the level of accuracy or range of
each variable. Each row of the population array is a string represented by a binary string
of all encoded solutions.

To examine the practical performance of various aspects of the proposed HGA, we
considered the following test function:
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Y = �1 exp�− �2X� + �3��X − �4�−2 + �5�−1 + � �6�

where �1 through �5 are the regression coefficients and � is the uncertainty. To simulate
a data set, we used � = �107,0.629,20,1.9,0.75�. Then, a random number of the form
8� �rand�n ,1�−0.5� is utilized to the n data points to simulate �. The HGA goal is to
maximize Equation 4 to estimate the vector � and � using the simulated data set. The
error term is assumed to be sampled from a normal distribution with mean zero and
unknown variance, �2. Following the HGA, we obtained the search domain for the re-
gression coefficients �1� �0,110�, �2� �0,1�, �3� �0,110�, �4� �0,10�, and �5

� �0,1�. As a sample for the illustration of string vector, a population array for the first
three regression coefficients �1, �2, and �3 are listed in Table 1. The decoding from a
binary string into a decimal number is calculated by the following relationship:

Dk = 	 �
j=0

Nb−1

�j � 2j
 uk − lk

2Nb − 1
+ lk k = 1, . . . ,N �7�

where Dk is a certain population assigned for the decimal representation of the kth pa-
rameter bounded by �lk ,uk�, and �j is a binary representation of Dk with Nb bits. For
example, if the search domain for the parameter �1 is [0, 110], then the binary string
(01011110) with length of Nb=8 is decoded into a corresponding decimal number
(40.549) as shown in Table 1.

Through three operation rules based on Darwin’s natural selection, the HGA per-
forms a directed search for the best solution by maximizing Equation 4. The first rule is
reproduction/selection. During the reproduction phase, each string is assigned a fitness
value derived from its raw performance measure given by the objective function. This

Table 1. The population array for three regression coefficients of the test
function as a sample to illustrate the process of encoding, decoding, and
crossover (bold numbers) in an iteration of the HGA

Population
Size (i)

String (j) Binary String Length

1 2 3 1 2 3
�1 �2 �3 �1 �2 �3

1 20.274 0.1333 19.843 Decode 00101111 00100010 00101110
2 100.51 0.6667 40.549 11101001 10101010 01011110
3 40.549 0.5294 13.372 → 01011110 10000111 00011111
4 59.961 0.7804 65.137 10001011 11000111 10010111
5 80.235 0.4275 28.039 Encode 10111010 01101101 01000001
6 37.529 0.2314 18.981 01010111 00111011 00101100

←
—
,

… … … … … …
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value is used in the selection to bias toward more fit strings. The strings are descended
according to their fitness values. Highly fit strings, relative to the whole population, have
a high probability of being selected for the next population whereas less fit strings have
a correspondingly low probability. Once the strings have been assigned a fitness value,
they can be chosen from the population, with a probability according to their relative
fitness, and recombined to produce the next generation.

The second rule is crossover. Crossover or mating allows pairs of strings from the
population to combine their better features to create improved strings for the next
population. All strings are paired at random in such a way that each string belongs to
only one pair. Each of the pairs in the population undergoes crossover rule with a prob-
ability pc. Any pair not selected for crossover is placed directly into a new population
array. As shown in Table 1, consider S1,1= ��1,1 , . . . ,�1,Nb

�= �00101111� and S2,1

= ��2,1 , . . . ,�2,Nb
�= �11101001� to be two binary strings of �1, with the size of Nb=8

from the current population, that have been selected for crossover. A position k
� �1,2 , . . . ,Nb−1� as a crossover point is randomly chosen and two new strings are pro-
duced. If the crossover point is 5, for example, then the new solutions are:

S1,1� = ��1,1, . . . ,�1,k,�2,k+1, . . . ,�2,Nb
� = �00101001� �8�

S2,1� = ��2,1, . . . ,�2,k,�1,k+1, . . . ,�1,Nb
� = �11101111� , �9�

S1,1� and S2,1� are placed in a new binary string and S1,1 and S2,1 would be removed from
the current population.

The last rule is mutation. Mutation gives the algorithm an opportunity to branch into
previously unexplored regions of the domain space by arbitrarily altering one or more
bits of a selected string. Each bit of every string undergoes mutation with the probability
pm. In the simple case, for each bit in a new population a random number is generated
between [0, 1]. If the random number is greater than the probability pm, the bit is un-
changed. Otherwise, the bit is placed by a reverse random bit of each number repre-
sented by strings to make a new population array.

The population is now relabeled as a new population array and the cycle of opera-
tions is repeated. This process of natural selection continues until some termination cri-
terion (e.g., number of generations) is met, at which time the best string achieved is gen-
erally taken as the optimized solution.

Comparison of the best parameter estimation of test function together with the true
function and the corresponding simulated data are plotted in Figure 2. The bias of each
regression coefficient is listed in Table 2, where the bias is the difference between the
estimated and the true values. The maximum error is 2.92% and is associated with re-
gression coefficient �4. The error can be reduced by increasing the population size or the
number of generations. This would imply that the HGA has a small bias overall, and is
an appropriate method to fit complex nonlinear functions to a given data set.

Figure 3 gives an overview of the proposed HGA to determine the best estimate of
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the model parameters and variance components in a certain ground motion prediction
equation. The proposed HGA used to compute the vectors � and V in a given predictive
equation is summarized as follows:

1. Construct the search domains for the vectors � and V using the SSA to improve
the convergence speed.

2. Generate a random population of M strings within the search domains (candi-
date solutions for the problem).

3. Evaluate the fitness of each string in the population and find an optimum solu-
tion.

4. Generate a new population by repeating the following steps until the new popu-
lation reaches population size M:

Figure 2. Comparison of the true value of the parameters with those values estimated by the
HGA for the test function discussed in this study.

Table 2. Simulation results for the population size of 40 based on 100 generations

HGA

Parameter Values

�1 �2 �3 �4 �5

True 107.0 0.629 20.0 1.90 0.75
Estimated 106.7417 0.612 19.7522 1.9554 0.7646
Bias −0.2583 −0.017 −0.2478 0.0554 0.0146
Error −0.24% −2.72% −1.24% 2.92% 1.95%
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I. Select two strings from the current population, giving preference to
highly fit strings (high fitness values). Automatically copy the fittest
string to the next generation.

II. With a given crossover probability pc, crossover the strings to form two
new strings. If no crossover was performed, a new string is an exact copy
of a string in the current population.

III. With a given mutation probability pm, randomly swap two bits of each
number represented by strings to make a new string.

IV. Copy the new string into a new population.
5. Copy the newly generated population over the existing population.

Figure 3. A flowchart for an alternative search fitting method based on a hybrid genetic algo-
rithm to find the best value of parameters �� ,V�.
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6. If the loop termination condition is satisfied, then stop and return the best solu-
tion in current population.

7. Otherwise, go to Step 3.
The choice of pc and pm depends on the nature of the objective function. Despite this
fact, a value of pc between 0.6 and 0.9 (Herrera et al. 1998) and a value of pm between
1/Nb and 0.5 (Back 1993) are often recommended to promote exploration and popula-
tion diversity.

TWO EXAMPLES OF THE HGA APPLICATION

As the first example, we employed the proposed HGA to fit a typical strong ground
motion data set to the following general predictive equation:

log10 yij = �1 + �2Mi + �3Mi
2 + �4Rij + �5 log10�Rij + �610�7Mi� + �ij �10�

where the yij value is the geometric mean of two horizontal peak ground accelerations
for the jth recording from the ith event in cm/sec2, Mi is the local magnitude, Rij is the
hypocentral distance (km), �ij is a total residual (random effects and random error), and
�1 through �7 are the regression coefficients to be determined. In this study, we used the
same ground motion data set and the general ground motion perdition equation consid-
ered by Chen and Tsai (2002).

Figure 4 shows the distributions of 48 earthquakes used in this study in terms of
magnitude and distance. There are 424 recordings from 48 earthquakes with magnitudes
greater than 4.0 in the ground motion data set. As shown in Figure 4, large earthquakes
are recorded at greater distances than small earthquakes.

Figure 4. The distribution of 424 recordings in the PGA data set of Chen and Tsai (2002) plot-
ted as a function of magnitude and hypocentral distance.
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The HGA parameters used in this study are listed in Table 3. The proposed HGA is
performed to obtain the optimal values of vectors � and V given in Equation 10. The
evolution of the objective function is plotted in Figure 5. There are some ups and downs
in the convergence of the objective function since the best solution is not retained at
each generation and the algorithm is allowed to explore the entire search domain.

The optimum solution with minimizing the objective function is obtained in 25 gen-
erations. However, the proposed algorithm continued to iterate pending the termination
criterion in order to search for a better solution.

Table 3. The HGA parameters used to estimate the best-fitting attenuation
relationship

HGA Parameters Values Used

Population size �M� 200
Maximum number of generations 100
Probability of crossover �pc� 0.6
Probability of mutation �pm� 0.04-0.1
Length of strings 25 bits for each parameter
Search domain for the vector of � †−5 5‡
Search domain for the vector of V [0.1 0.5]
Termination criterion 100

Figure 5. Maximum number of generations used to estimate the best result of parameters and
uncertainties in the ground motion prediction equation for a data set of ground motion record-

ings in Taiwan.
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The final HGA results obtained in this study for the best-fit shape of the predictive
equation are provided in Table 4. The attenuation shape for local magnitude 5.5 is illus-
trated in Figure 6, which plots the observed PGA for a subset of the data with magni-
tudes 5.0–6.0, in comparison to the predictive equation. The regression analysis for the

Table 4. Results of the example application to param-
eter estimates and standards errors

Parameters HGAa B&Pb J&Bc C&Td

�1 −3.4712 −3.507 −3.767 −4.366
�2 2.2639 2.221 2.507 2.540
�3 −0.1546 −0.144 −0.177 −0.172
�4 0.0021 0.0017 0.0019 0.0017
�5 −1.8011 −1.833 −2.025 −1.845
�6 0.0490 0.0875 0.016 0.0746
�7 0.2295 0.203 0.386 0.221
�r 0.2203 0.2349 0.2358 0.2358
�e 0.2028 0.2057 0.2075 0.2128

a HGA = The algorithm used in this study.
b B&P = Billinger and Preisler algorithm (1985).
c J&B = Joyner and Boore algorithm (1993).
d C&T = Chen and Tsai algorithm (2002).

Figure 6. The geometric mean of two horizontal peak ground accelerations in cm/sec2 for
events of M5.0–6.0 (circles) compared to the predictive model (Model #1) developed from the

HGA (line) and the previous search algorithms.
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fit of the data to the predictive equation is also performed by using the algorithms of
Brillinger and Preisler (1985), Joyner and Boore (1993), and Chen and Tsai (2002). The
results are listed in Table 4 for comparison. The proposed HGA produces a solution that
is in good agreement with the previous studies, with a slightly better fit (smaller error
term).

The log residual is defined as the difference between the log of the observed ground
motion amplitude and the log of the predicted ground motion amplitude according to
Equation 10. Figure 7 illustrates the total residuals (random effects and random error) as
a function of hypocentral distance and magnitude. There are no apparent trends in the
residuals. The total residuals have been partitioned into two variance components
��e

2 ,�r
2�. When we mix the vector of fixed effects ��� with the vector of random effect,

for the earthquake-specific component ��e
2�, the residual error can be plotted against the

hypocentral distance as shown in Figure 8. Comparison of the total residuals with the
residual error shows that the prediction errors can be reduced when the random effects
are corrected.

The total standard deviation of log10 yij in the regression is estimated to be 0.299. In
Table 4, the variances of the two variance components represented by ��e

2 ,�r
2� can be

estimated by the variance-covariance matrix defined in the Appendix. In this case, we
ignore the effect of site-specific deviation ��s�; hence the variance-covariance matrix re-
duces to the following inverse matrix:

Figure 7. Log residuals (=log observed-log predicted PGA) for the regression of the ground
motion data versus hypocentral distance and magnitude.
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	 v��e
2� cov��e

2,�r
2�

cov��e
2,�r

2� v��r
2�


 = 2		ee 	er

	er 	rr

−1

. �11�

In this study, the variance estimates are evaluated based on the estimated variance com-
ponents and the number of recordings from an earthquake. Following the equations pro-
vided in the Appendix and the ground motion catalog used in this study, the Equation 11
is determined to be:

	 v��e
2� cov��e

2,�r
2�

cov��e
2,�r

2� v��r
2�


 = 	 9.77E − 05 − 1.82E − 06

− 1.82E − 06 1.25E − 05

 . �12�

The log residuals demonstrate that the attenuation model of Equation 10 provides a
satisfactory description of the ground motion data at distances of up to 100 km. The
geometric spreading of body waves does not have a spherical shape beyond 100 km,
since the direct shear waves are superimposed by waves reflected from the Moho dis-
continuity at distances of the order of 100 km (typically of the order of twice the Moho
depth). As shown in Figure 6, the trend of PGA versus distance changes beyond 100 km
because of the effect of geometric spreading.

The variation of focal depth would affect the shape of the attenuation curves at near-
source distances. Thus, the effect of amplitude saturation (a constant amplitude value as
distance is decreased) should be considered in the plot of a given ground motion pre-
diction equation. In this case, a complex predictive equation is required to explain both
the geometric attenuation of seismic waves at distances of beyond 100 km, and the satu-
ration effect at near-source distances. One approach involves fitting several attenuation
curves to the data and restricting the use of each curve to specified intervals of distance.
This approach is particularly appropriate when no well-defined simple curve can be
found to summarize the ground motion data. Piecewise fitted curves are rarely used in
ground motion prediction equations based on empirical data, where near-source satura-
tion effects and the change in attenuation rate at large distances are usually handled by
the inclusion of a pseudo-depth coefficient and a combination of logarithmic and linear

Figure 8. Corrected ground motion residuals for the regression of the ground motion data ver-
sus hypocentral distance.
distance terms.
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As the second example of the HGA application, the following complex functional
form (Tavakoli and Pezeshk 2005) is utilized to fit the ground motion equation to the
data set:

ln�Yij� = �1 + �2Mi + �3�8.5 − Mi�2.5 + �9 ln�rrup + 4.5� + ��4 + �13Mi�ln Rij

+ ��8 + �12Mi�Rij + �ij rrup 
 70km �13a�

ln�Yij� = �1 + �2Mi + �3�8.5 − Mi�2.5 + �9 ln�rrup + 4.5� + �10 ln	 rrup

70

 + ��4 + �13Mi�ln Rij

+ ��8 + �12Mi�Rij + �ij 70 � rrup 
 130km �13b�

ln�Yij� = �1 + �2Mi + �3�8.5 − Mi�2.5 + �9 ln�rrup + 4.5� + �10 ln	 rrup

70

 + �11 ln	 rrup

130



+ ��4 + �13Mi�ln Rij + ��8 + �12Mi�Rij + �ij rrup � 130km . �13c�

In these terms, rrup (km) is a rupture distance and defined as the closest distance to the
fault rupture, and Mi is moment magnitude for ith event. The finite-fault geometry
causes the average distance from the observation point to the fault to introduce
extended-source effects, since at any point we cannot be close to the entire fault plane.
This implies that there is a pseudo-depth (effective focal depth), which will appear to be
the source of radiation if it is treated as a point-source model. Thus, the distance mea-
sure Rij includes a magnitude dependence to illustrate the effect of the extended source
on the shape of the attenuation curve based on a pseudo-depth, which is given by Camp-
bell and Bozorgnia (2003):

Rij = �rrup
2 + ��5 exp��6Mi + �7�8.5 − Mi�2.5��2. �14�

Seismogenic depth of 3 km is also used to measure rupture distance from hypocen-
tral distance. Finding the best-fitting curve with changing regression functional forms by
using the previous algorithms (e.g., Joyner and Boore 1993, Chen and Tsai 2002) often
involves solving a complicated and large-scale minimization problem. Constructing de-
rivatives of Equation 13 with respect to regression coefficients and using more random
factors are the main problems in these algorithms. The HGA is used directly to deter-
mine the unknown regression coefficients in Equation 13. In this way transition points
are incorporated in a fitted curve simply as the boundary points between adjacent pre-
dictive equations. The HGA parameters are the same as those used in the first example
(Table 3). The final result is the best estimate of the coefficients that fits the predicted
model to the ground motion data set. The regression coefficients are estimated as
4.2298, 0.7699, −0.0252, −1.501, −0.5571, 0.3495, −0.0069, −0.0032, 0.0094, 1.2125,
−0.7826, 0.0003, and 0.0001 for �1 through �13, respectively. The standard deviations
are estimated to be �e=0.1995 and �r=0.1875. The result of the ground motion values
for an earthquake of magnitude 5.5 is compared with the previously mentioned methods
as shown in Figure 9. The average focal depth of 10 km is used to convert various dis-
tances to the horizontal distance. The discrepancy in ground motions between Equations
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13 and 10 is significant at short distances and at distances above 100 km. Therefore, the
selection of predictive equation is a crucial factor in the magnitude-distance ranges that
are significant to seismic hazard analysis.

DISCUSSION AND CONCLUSIONS

We have proposed a search algorithm for the estimation of ground motion prediction
equations and the associated components of variance. The algorithm combines the ele-
ments of directed and stochastic search to reduce the search domain of parameters, and
in turn the time of process. The HGA can be applied to complex predictive equations
with several variance components. The proposed algorithm can easily cope with a larger
number of variance components compared with existing algorithms, although it takes
more time to reach an optimized result.

The HGA process starts with a population of solutions to find a theoretical attenua-
tion curve, then continues by optimizing and fitting the theoretical curve to the ground
motion data. The HGA focuses on a population of attenuation coefficients and variance
components, each of which is generated randomly within a certain search domain ob-
tained using SSA. Coefficients and variance components are grouped in variable sets,
each of which is composed of a series of strings to define a possible solution for the
problem. The performance of the variables, as described by the objective function and
the constraints, is represented by the fitness of each variable. A mathematical expression
calculates a fitness value for each solution of the objective function.

Comparison of the numerical results with those obtained in the previous studies cited

Figure 9. Comparison of peak ground accelerations (Model #2) for an event of M5.5 developed
in this study (thick solid lines) with the predictive equation (Model #1) developed from the
HGA (line) and the previous search algorithms.
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herein shows that the HGA performs successfully in estimating the parameters in mixed
model–based ground motion prediction equation with several variance components. The
algorithm maintains a population of potential solutions, whereas all other methods pro-
cess a single point of the search space. The HGA, unlike most existing models, is inde-
pendent of some supplementary information, such as derivatives, to solve a complex
problem. The algorithm only uses an objective function and several quite simple genetic
operations for the potential solution to the problem. The flexibility of the algorithm al-
lows solving problems with a series of changing regression functional forms that parti-
tion the attenuation function’s domain. The transition points can be incorporated in a fit-
ted attenuation curve simply as the boundary points between adjacent curves.
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APPENDIX: VARIANCES OF LARGE SAMPLE MAXIMUM-LIKELIHOOD
ESTIMATORS

Suppose that the ground motion data consist of N records coming from M earth-
quakes and S sites. Using the results of Searle (1970), the estimated variance-covariance
matrix of (�e

2, �s
2 and �r

2) is given by the following relationship:

� v��e
2� cov��e

2,�s
2� cov��e

2,�r
2�

cov��e
2,�s

2� v��s
2� cov��s

2,�r
2�
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in which M is the number of events, and nij is the number of recording for the ith event
and the jth site. Thus, the total number of records can be obtained by N=�i=1

M �j=1
Si nij.
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