Capacity-Demand-Diagram Methods
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An improved capacity-demand-diagram method that uses the well-known
constant-ductility design spectrum for the demand diagram is developed and
illustrated by examples. This method estimates the deformation of inelastic SDF
systems consistent with the selected inelastic design spectrum, while retaining the
attraction of graphical implementation of the ATC-40 Nonlinear Static
Procedure. One version of the improved method is graphically similar to ATC-40
Procedure A whereas the second version is graphically similar to ATC-40
Procedure B. However, the improved procedures differ from ATC-40 procedures
in one important sense. The demand diagram used is different: the constant-
ductility demand diagram for inelastic systems in the improved procedure versus
the elastic demand diagram in ATC-40 for equivalent linear systems. The
improved method can be conveniently implemented numerically if its graphical
features are not important to the user. Such a procedure, based on equations
relating the yield strength reduction factor, R,, and ductility factor, y, for

different period, T,, ranges, has been presented, and illustrated by examples
using three different R, — — T, relations.

INTRODUCTION

Simplified analysis procedures are presented in the ATC-40 and FEMA-274 documents
(Applied Technology Council, 1996; FEMA, 1997) to determine the displacement demand
imposed on a building expected to deform inelastically. The Nonlinear Static Procedure
(NSP) in these documents is based on the Capacity Spectrum Method (CSM) originally
developed by Freeman et al. (1975) and Freeman (1978). It consists of the following steps:

1. Develop the relationship between base shear, V;,, and roof (Nth floor) displacement,
uy (Figure 1a), commonly known as the push over curve.
2. Convert the push over curve to a capacity diagram, (Figure 1b), where
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and m;; = lumped mass at the jth floor level, ¢, is the jth-floor element of the

fundamental mode ¢,, N is the number of floors, and Af; is the effective modal
mass for the fundamental vibration mode.

3. Convert the elastic response (or design) spectrum from the standard pseudo-
acceleration, A, versus natural period, 7,, format to the A—D format, where D is

the deformation spectrum ordinate, to obtain the demand diagram (Figure 1c).

4. Plot the demand diagram and capacity diagram together and determine the
displacement demand (Figure 1d). Involved in this step are dynamic analyses of a
sequence of equivalent linear systems with successively updated values of the natural

vibration period, T, , and equivalent viscous damping, &eq .

5. Convert the displacement demand determined in Step 4 to global (roof) displacement
and individual component deformation and compare them to the limiting values for
the specified performance goals.

Approximations are implicit in the various steps of this simplified analysis of an inelastic
MDF system. Implicit in Steps 1 and 2 is a lateral force distribution assumed to be fixed, and
based only on the fundamental vibration mode of the elastic system; however, extensions to
account for higher mode effects have been proposed (Paret et al., 1996; Bracci et al., 1997,
Gupta and Kunnath, 1999). Implicit in Step 4 is the belief that the earthquake-induced
deformation of an inelastic SDF system can be estimated satisfactorily by an iterative method
requiring analysis of a sequence of equivalent linear SDF systems with added equivalent
viscous damping to account for energy dissipated in yielding, thus avoiding the dynamic
analysis of the inelastic SDF system.

The principal objective of this investigation is to develop improved simplified analysis
procedures, based on capacity and demand diagrams, to estimate the peak deformation of
inelastic SDF systems. The need for such procedures is motivated by first evaluating the
above mentioned approximation inherent in Step 4 of the ATC-40 procedure. This brief
presentation is based on a comprehensive evaluation of the Nonlinear Static Procedure
presented in Chopra and Goel (1999, 2000). Thereafter, improved procedures using the well-
established inelastic response (or design) spectrum (e.g., Chopra, 1995; Section 7.10) are
developed. The idea of using the inelastic design spectrum in this context was suggested by
Bertero (1995), and introduced by Reinhorn (1997) and Fajfar (1999); and the capacity
spectrum method has been evaluated previously, e.g., Tsopelas et al. (1997).

EVALUATION OF NONLINEAR STATIC PROCEDURE (NSP)

The accuracy of the NSP in estimating the peak deformation of bilinear hysteretic system
is evaluated first. For this purpose, the excitation is characterized by the elastic design
spectrum of Figure 2 which is the median-plus-one-standard-deviation spectrum constructed
by the procedures of Newmark and Hall (1982), as described in Chopra (1995; Section 6.9).

The well-established concepts of constructing the inelastic design spectrum from an
elastic design spectrum provide a basis for evaluating this approximate procedure to
determine the peak deformations of inelastic systems. This spectrum-based procedure was
implemented for a wide range of system periods and ductility values. The yield strength of
each bilinear hysteretic system analyzed was chosen corresponding to an allowable ductility

e
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Figure 1. Capacity spectrum method: (a) development of pushover curve, (b) conversion of pushover
curve to capacity diagram, (c) conversion of elastic response spectrum from standard format to A-D

format, and (d) determination of displacement demand.
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f,=(4,/8)w )

where w is the weight of the system and 4, is the pseudo-acceleration corresponding to the
allowable ductility and the vibration properties — natural period T, and damping ratio { - of
the system in its linear range of vibration. Given the properties 7,, {, and f and the
elastic design spectrum, the earthquake induced deformation of the system can be determined
as described in Chopra (1995: Section 7.6). Utilized in such a procedure is a T, -dependent
relation between yield strength reduction factor R, and . '
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Figure 2. Newmark-Hall elastic design spectrum.

Presented in Figure 3 are the deformations determined by using three different
R,—W-T, equations: Newmark and Hall (1982); Krawinkler and Nassar (1992) for

elastoplastic systems; and Vidic, Fajfar and Fischinger (1994) for bilinear systems. The
equations describing these relationships are presented later in this paper. Observe that the
first two recommendations lead to similar results except for 7, < 0.3 sec, indicating that the
inelastic design spectrum is a reliable approach to estimate the earthquake-induced
deformation of yielding systems, reliable in the sense that different researchers have
produced similar results.

The deformation estimates by the ATC-40 method, as determined by Chopra and Goel
(1999), are compared in Figure 4 with those in Figure 3 from inelastic design spectra.
Relative to these “reference” values, the percentage discrepancy in the approximate result is
plotted in Figure 5. The results of Figures 4 and 5 permit the following observations. The
approximate procedure leads to significant discrepancy, except for very long periods
(T.>T, in Figure 2). The magnitude of this discrepancy depends on the design ductility and
the period region. In the acceleration-sensitive (T,<T.) and displacement-sensitive
(T.<T,<T,) regions (Figure 2), the approximate procedure significantly underestimates the

deformation; the discrepancy increases with increasing p. In the velocity-sensitive
(T.<T,<T,) region, the ATC-40 procedure significantly underestimates the deformation for

u = 2 and 4, but overestimates it for i = 8 and is coincidentally accurate for p = 6.
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In passing, note that the ATC-40 procedure is deficient relative to even the elastic design
spectrum in the velocity-sensitive and displacement-sensitive regions (T, >T.). For T,in
these regions, the peak deformation of an inelastic system may be taken equal to that of the
corresponding elastic system (Veletsos and Newmark, 1960; Chopra, 1995: Section 7.10),
and the latter is given by the elastic design spectrum. However, the ATC-40 procedure
requires analyses of several equivalent linear systems and still produces worse results.
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Figure 3. Deformation of inelastic systems (U= 4) determined from inelastic design spectra using

three R, —W—T, equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and Vidic-Fajfar-
Fischinger (VFF).

IMPROVED PROCEDURES

Presented next are two improved procedures that eliminate the errors (or discrepancies) in
the ATC-40 procedures, but retain their graphical appeal. Procedures A and B that are
presented are akin to ATC-40 Procedures A and B, respectively. The improved procedures
use the well-known constant-ductility design spectrum for the demand diagram, instead of
the elastic design spectrum for equivalent linear systems in ATC-40 procedures.

INELASTIC DESIGN SPECTRUM

A constant-ductility spectrum for a bilinear hysteretic system is a plot of A, versus T,
for selected values of u. The pseudo-acceleration 4, is related to the yield strength f, by
Equation 2. The yield strength reduction factor is given by

f, A 3)

Ry=7"=—
) fy Ay

where
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Figure 4. Comparison of deformations
computed by ATC-40 procedure with those
from three different inelastic design spectra (|
= 4). (a) Newmark and Hall (1982), (b)
Krawinkler and Nassar (1992), and (c¢) Vidic,
Fajfar and Fischinger (1994).
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Figure 5. Discrepancy in deformations
computed by ATC-40 procedure relative to
three different inelastic design spectra: (a)
Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and
Fischinger (1994).



CAPACITY-DEMAND-DIAGRAM METHODS BASED ON INELASTIC DESIGN SPECTRUM 643

o4
g

is the minimum yield strength required for the structure to remain elastic during the
earthquake; A is the pseudo-acceleration ordinate of the elastic design spectrum at (T,,{).

A constant-ductility design spectrum is established by dividing the elastic design
spectrum by appropriate ductility-dependent reduction factors that depend on T,. The
earliest recommendation for the reduction factor, R, (Equation 3), goes back to the work of
Veletsos and Newmark (1960), which is the basis for the inelastic design spectra developed
by Newmark and Hall (1982). Starting with the elastic design spectrum of Figure 2 and these
R, —M relations for acceleration-, velocity-, and displacement-sensitive spectral regions, the

inelastic design spectrum constructed by the procedure described in Chopra (1995, Section
7.10), is shown in Figure 6a.

In recent years, several recommendations for the reduction factor have been developed
(Krawinkler and Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994; Riddell, Hidalgo, and
Cruz, 1989; Tso and Naumoski, 1991; Miranda and Bertero, 1994). Based on two of these
recommendations, the inelastic design spectrum is shown in Figures 6b and 6c¢. For a fixed p
= 2, the inelastic spectra from Figure 6 are compared in Figure 7. The three spectra are
similar in the velocity-sensitive region of the spectrum, but differ in the acceleration-sensitive
region.

INELASTIC DEMAND DIAGRAM

The inelastic design spectra of Figure 6 will be plotted in the A-D format to obtain the
corresponding demand diagrams. The peak deformation D of the inelastic system is
determined as follows:

D=up, (5)
with the yield deformation defined by
: (6)
= In
o~(T]4
Putting Equations 5 and 6 together gives
2 )
T,
D=p| "
W24
Alternatively, by utilizing Equation 3, D can be expressed in terms of the elastic design
spectrum
2 (8)
R,\ 2T

Using Equation 8, D is determined corresponding to the three inelastic design spectra in
Figure 7. Such data pairs (4,,D) are plotted to obtain the demand diagram for inelastic

systems (Figure 8).
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Figure 7. Pseudo-acceleration design spectrum for inelastic systems (u= 2) using three g, —1—T,
equations: Newmark-Hall (NH), Krawinkler-Nassar (KN), and Vidic-Fajfar-Fischinger (VFF).

PROCEDURE A

This procedure, which uses the demand diagram for inelastic systems (Figure 8), will be
illustrated with reference to six elastoplastic systems defined by two values of 7, = 0.5 and
1.0 sec and three different yield strengths, given by Equation 2 using the Newmark-Hall
design spectrum (Figure 6a) corresponding to u = 2, 4, and 6, respectively. For systems with
T, = 0.5 sec, fy+w= 1.56, 0.90, and 0.60 for p = 2, 4, and 6, respectively. The
corresponding values for systems with 7, = 1 sec are f +w= 090, 0.45, and 0.30.
Superimposed on the demand diagrams are the capacity diagrams for three inelastic systems
with 7, = 0.5 sec (Figures 9a, 10a, and 11a) and 7, = 1.0 sec (Figures 9b, 10b, and 11b).
The yielding branch of the capacity diagram intersects the demand diagram for several p
values. One of these intersection points, which remains to be determined, will provide the
deformation demand. At the one relevant intersection point, the ductility factor calculated
from the capacity diagram should match the ductility value associated with the intersecting
demand curve. Determined according to this criterion, the deformation for each system is
noted in Figure 9. This result will be essentially identical to that given by Equation 7.
Implementation of this procedure is illustrated next for two systems.

Observe that the estimated deformation is the same for all three systems shown in Figure
9b; T, =1 sec for all of them but their yield strengths differ. This result is consistent with the
well known “equal displacement rule” (Veletsos and Newmark, 1960; Chopra, 1995: Section
7.10), which says that the deformation of a yielding system with T, in the velocity- or
displacement-sensitive region of the design spectrum is independent of its yield strength and
equal to the deformation of the elastic system with the same T, .
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Figure 6. Inelastic design spectra: (a)
Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and
Fischinger (1994).
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Figure 8. Inelastic demand diagrams: (a)
Newmark and Hall (1982), (b) Krawinkler and
Nassar (1992), and (c) Vidic, Fajfar and
Fischinger (1994).
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Examples
The yield deformation of System 1 (Table 1) is y,= 3.72cm . The yielding branch of the

capacity diagram intersects the demand curves for p =1, 2, 4, 6, and 8 at 133.93 cm, 66.96
cm, 33.48 cm, 22.3 cm, and 16.5 cm, respectively (Figure 9a). Dividing by y,, the

corresponding ductility factors are: 133.93+3.72=35.96 (which exceeds | = 1 for this demand
curve), 66.96+3.724=17.98 (which exceeds p = 2 for this demand curve), 33.48+3.72=8.99
(which exceeds | = 4 for this demand curve), 22.3+3.72=6 (which matches L = 6 for this
demand curve), and 16.5+3.72=4.43 (which is smaller than L = 8 for this demand curve).
Thus, the ductility demand is 6 and the deformation of System 1 is D =22.3 cm.

For System 3 (Table 1), y,= 9.68cm. The yielding branch of the capacity diagram

intersects the demand curve for p = 1 at 51.34 cm (Figure 9a). The corresponding ductility
factor is 51.34+9.68=5.3, which is larger than the p = 1 for this demand curve. The yielding
branch of the capacity diagram also intersects the demand curve for ) = 2 continuously from
9.68 cm to 25.2 cm, which correspond to ductility factors of 1 to 2.6. The intersection point at
19.39 cm corresponds to ductility factor = 19.39+9.68=2 which matches p = 2 for this
demand curve. Thus, the ductility demand is 2 and the deformation of System 3 is D = 19.39
cm.

Observe that for the presented examples, the ductility factor at the intersection point
matched exactly the ductility value associated with one of the demand curves because the f

values were chosen consistent with the same p values for which the demand curves have
been plotted. In general this is not the case and interpolation between demand curves for two
u values would be necessary. Alternatively, the demand curves may be plotted at a finer p
interval avoiding the need for interpolation.
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Figure 9. Application of improved Procedure A using Newmark-Hall (1982) inelastic design
spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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This approach was used for analysis of the selected systems using the other two demand
diagrams (Figures 8b and 8c). Not all the demand curves at a very fine -interval are
included, however, in Figures 10 and 11. Only those corresponding to the final values of
ductility demand determined by the improved procedure are presented. For example, the
ductility demands calculated for system 1 are 5.14 and 4.69 using the Krawinkler-Nassar and
Vidic et al. demand diagrams, respectively; demand curves for these | values are shown in
Figures 10a and 11a. These | values are different than the ductility demand of 6 from the
Newmark-Hall demand diagram.,

G0 50 100 150 200
D,cm s
(@) (b)

Figure 10. Application of improved Procedure A using Krawinkler-Nassar (1992) inelastic design
spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.
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Figure 11. Application of improved Procedure A using Vidic-Fajfar-Fischinger (1994) inelastic
design spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.

Comparison with ATC-40 Procedure A

The improved procedure just presented gives the deformation value consistent with the
selected inelastic design spectrum, while retaining the attraction of graphical implementation
of the ATC-40 Procedure A. The two procedures are similar in the sense that the desired
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deformation is determined at the intersection of the capacity diagram and the demand
diagram. However, the two procedures differ fundamentally in an important sense; the
demand diagram used is different: the constant-ductility demand diagram for inelastic
systems in the improved procedure (Figures 9 to 11) versus the elastic demand diagram in
ATC-40 Procedure A for equivalent linear systems.

PROCEDURE B

This version of the improved procedure avoids construction of the inelastic design
spectrum. The peak deformation D of an inelastic system with properties 7,, {, and f is

determined by the following sequence of steps:

1. Plot the capacity diagram and the 5%-damped elastic demand diagram of Figure 2 in
A-D format.

2. Assume the expected ductility demand p; start with p=1.

3. Determine A,(T,,G,1) from the inelastic design spectrum for the estimated p and
calculate D from Equation 7.
4. Plot the point with coordinates D and 4, .

5. Check if the curve generated by connecting similar points intersects the capacity
diagram. If not, repeat Steps 3 and 4 with larger values of J; otherwise go to Step 6.

6. The earthquake-induced deformation demand D is given by the D-value at the
intersection point.

Examples

This procedure is implemented for the six systems defined earlier with the earthquake
excitation characterized by the elastic design spectrum of Figure 2. The inelastic design
spectrum of Newmark and Hall (1982) provides the pD,, A, pairs for T,= 0.5 sec and 1.0

sec and D is determined by Step 3. The (D, A,) pairs are plotted to obtain the curve A-B in

Figures 12a and 12b. The 5%-damped elastic demand diagram and capacity diagrams for the
selected systems are also shown; however, a plot of the elastic demand diagram is not
essential to the procedure. The intersection point between the curve A-B and the capacity
diagram gives the system deformation: D=22.32cm, D=22.32cm and D =19.39 cm for
Systems 1, 2, and 3, respectively (Figure 12a) and D = 44.64 cm for Systems 4 to 6 (Figure
12b), values same as given by Procedure A. In the latter case, the deformation of the inelastic
system is independent of the yield strength and equals that of the corresponding linear system
because T, is in the velocity-sensitive spectral region. This is the well-known equal
displacement rule.

Comparison with ATC-40 Procedure B

The improved procedure just presented gives the deformation value consistent with the
inelastic design spectrum, while retaining the attraction of a graphical implementation of
ATC-40-Procedure B. The two procedures are graphically similar. However, they differ
fundamentally in one important sense. Each point on the curve A-B (Figure 12) in the
improved procedure is determined by analyzing an inelastic system. In contrast the ATC-40-
Procedure B gives a point on the curve A-B by analyzing an equivalent linear system.
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ALTERNATIVE DEFINITION OF EQUIVALENT DAMPING

We digress briefly to observe that the capacity spectrum method based on the elastic
design spectrum has been modified to use an alternative definition of equivalent viscous
damping, , (Freeman, 1998; WIJE, 1996). This £, is derived by equating the peak
deformation of the equivalent linear system, determined from the elastic design spectrum
(Chopra, 1995; Section 6.9), to the peak deformation of the yielding system, determined from
the inelastic design spectrum (Chopra, 1995; Section 7.10). The capacity spectrum method,
modified in this way, should give essentially the same deformation as the improved
procedure just described. However, we see little benefit in making this detour when the well-
known constant-ductility inelastic design spectra can be used directly in the improved
procedure.
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Figure 12. Application of improved Procedure B using Newmark-Hall (1982) inelastic design
spectrum: (a) Systems 1 to 3, and (b) Systems 4 to 6.

IMPROVED PROCEDURE: NUMERICAL VERSION

BASIC CONCEPT

The improved procedures presented in the preceding section were implemented
graphically, in part, to highlight the similarities and differences relative to the Nonlinear
Static Procedure in the ATC-40 report. Graphical implementation of Procedure A, the A-
version of the improved procedure, is especially attractive as the desired earthquake-induced
deformation is determined at the intersection of the capacity and demand diagrams. However,
this graphical feature is not essential and the procedure can be implemented numerically.

Such a procedure using R, —p— T, equations is presented in this section.

Ry — p -T, EQUATIONS

The R,—p—7, equations for elastoplastic systems, consistent with the Newmark-Hall
inelastic design spectra are (Chopra, 1995; Section 7.10):
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1 T,<T,
@u-1)** T,<T.<T,
Ry=4\/T2“_1 Ty<T,<Te (9a)
.JH’ Tc' < Tn < Tc
T.
M T.>T.
where
B = ln(Tn//Ta)/ln(Tb/,Ta) (9b)

and the 7,, T,, and T, are defined in Figure 2 and T.. is the period where the constant-4 and
constant-¥ branches of the inelastic design spectrum intersect (Chopra, 1995, Section 7.10).
Recasting Equation 9 gives p as a function of R, :

Undefined 7,<7T,

1+R®)2 Tu<TW<T,
<1+Ri)/2 Ty<Tw<Te

p=is (10)
—cRy Tc'<Tn<Tc
T
R, T>T.

For a given R,, p can be calculated for all T, except for 7,<T,<T., wherein two
possibilities need to be checked since T, itself depends on pu (Chopra and Goel, 1999:
Appendix B).

Based on the earthquake response of bilinear systems, Krawinkler and Nassar (1992)
have developed the following R, —u -7, equations:

R =lelu-1]” ay

where

a 12
i b (12)
1+77 Tn

C(T,,,(l)=

and the numerical coefficients depend on the slope ak of the yielding branch: a =1 and
b=042 fora=0%;a=1and b=037 for o =2% ; a = 0.8 and b = 0.29 for a = 10%.
Recasting Equation 12 provides p as a function of R, :
1 (13)
w=1+=(r5-1)
c
For given values of R, and a, p can be calculated from Equation 13.

Based on the earthquake response of bilinear systems, Vidic, Fajfar and Fischinger (1994)
have developed the following R, —p— T, equations:
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135" L 41 1,27,
R,= (1) T, (14)
1.35(uw-1)""+1  7,>T,

where
T,=0.750"*T. < T, (15)
Recasting Equation 14 gives p as a function of R, :

1.053

1+ {0.74(Ry-1)§€} T.<T, 16)
1+[0.74(r,-1)]"* T,>T,

Since T, in Equation 16 depends on p (Equation 15), the value of p corresponding to a given
R, is determined by solving a nonlinear equation iteratively unless the simpler relation,
T,=T.,1s assumed.

Figure 13 shows plots of R, versus T, for selected values of p based on Equations 9, 11

for a =0, and 14. In Figure 14, p is plotted against 7, from Equations 10, 13 for o = 0, and
16. Observe the similarity among the three sets of results, indicating consensus among
different researchers.

The peak deformation of systems 1 to 6 (Table 1) are determined using R,-p-T,
relations of Equations 10, 13, and 16. Detailed calculations are presented in Chopra and Goel
(1999: Appendix B) and the results are summarized in Table 1. Observe that the deformation
values computed using R,—p-7, equations are identical to those determined by the
graphical procedure (Figures 9 to 11) except for round-off differences. For comparison, the
peak deformation values determined by the ATC-40 procedure have also been included. It is
clear that the ATC-40 values are generally too unconservative, compared to the deformation
determined from three R,—p—T, equations (recommended by different researchers), all of

which give similar values. The data in Table 1 for six systems is a small subset of the results
plotted in Figures 3 and 4.

Table 1. Results from numerical implementation of improved procedure
using three R, —p — T, equations.

System Properties Newmark-Hall | Krawinkler-Nassar Vidic et al. ATC-40
Ay D D D
System| T, | 4 (f,+w) Dy=u, R, n (uxD,) L (uxD,) L (nxDy) D

®|® @ | ™ [(4+4)|Ba10) @m) | (€19 | (m) |(Ea22)| (cm) (em)
1 051271 0.60 3.72 451 5.99 22.29 5.14 19.11 4.69 17.43 10.46
2 0.90 5.58 3.01 3.99 22.29 3.25 18.15 3.05 17.02 9.25
3 1.56 9.70 1.73 2.00 19.39 1.77 17.20 1.71 16.54 11.51
4 1 11.80| 0.30 7.44 6.00 6.00 44.64 5.56 41.37 4.97 36.94 | 42.27
5 0.45 11.16 4.00 4.00 44.64 3.80 42.46 3.32 37.00 30.45
6 0.90 22.32 2.00 2.00 44.64 1.97 43.97 1.73 38.58 29.84
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Figure 13. Variation of R, with 7, for Figure 14. Variation of p with 7, for

selected ductility values based on three selected R, values based on three different

different sources: Newmark and Hall (1982), sources; Newmark and Hall (1982),

Krawinkler and Nassar (1992), and Vidic, Krawinkler and Nassar (1992), and Vidic,

Fajfar, and Fischinger (1994). Fajfar, and Fischinger (1994).
CONSISTENT TERMINOLOGY

Many new terms that have been introduced in the ATC-40 report and related publications
in connection with simplified analysis of inelastic systems are examined in this section and,
where necessary, better (in our opinion) terminology is recommended:

1.

Demand Spectrum. The term “spectrum” has traditionally implied a function of
frequency or period. For example, response spectrum is a plot of the peak value of a
response quantity as a function of the natural vibration period (or frequency) of an
SDF system. Another example: Fourier Spectrum of ground acceleration is a plot of
the amplitude of the Fourier transform of the excitation against exciting frequency.
The “Response Spectrum” terminology was introduced in the 1930s within the
context of earthquake engineering, whereas the “Fourier Spectrum” terminology has
existed for much longer. Given this background, “spectrum” is inappropriate to
describe a plot of pseudo-acceleration versus deformation. The terminology Demand
Diagram has therefore been used in this paper.

Capacity Spectrum. For the same reasons, the recommended terminology is Capacity
Diagram.

Acceleration-Displacement Response Spectrum (ADRS) Format. For the same
reasons, the recommended terminology is 4-D format.

4. Modal Participation Factor. This traditional terminology for", (Equation 1) implies

that it is a measure of the degree to which the nth mode participates in the response.
However, this is misleading because [, is not independent of how the mode is
normalized, nor a measure of the modal contribution to a response quantity (Chopra,
1995; Section 13.1).

CONCLUSIONS

This investigation of capacity-demand-diagram methods to estimate the earthquake-
induced deformation of inelastic SDF systems has led to the following conclusions:
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1.

The ATC-40 procedures were implemented for a wide range of 7, and p values with
the excitation characterized by an elastic design spectrum. The resulting estimate of
deformation for the inelastic system was compared with the deformation determined
from the inelastic design spectrum using three different R,—U -7, equations

(Newmark and Hall, 1982; Krawinkler and Nassar, 1992; Vidic, Fajfar, and
Fischinger, 1994), all of which provided similar results. Relative to these “reference”
values, the approximate procedure significantly underestimates the deformation for a
wide range of T, and p values.

The ATC-40 procedures are deficient relative to even the elastic design spectrum in
the velocity- sensitive and displacement-sensitive regions of the spectrum. For T, in

these regions, the peak deformation of an inelastic system can be estimated from the
elastic design spectrum using the well-known equal displacement rule. However, the
approximate procedure requires analyses of several equivalent linear systems and still
produces worse results.

An improved capacity-demand-diagram method that uses the well-known constant-
ductility design spectrum for the demand diagram has been developed and illustrated
by examples. When both capacity and demand diagrams are plotted in the A-D
format, the yielding branch of the capacity diagram intersects the demand curves for
several B values. The deformation is given by the one intersection point where the
ductility factor calculated from the capacity diagram matches the value associated
with the intersecting demand curve. This deformation is identical to the value
determined by the well-established Equation 7 using the selected inelastic design
spectrum, while retaining the attraction of graphical implementation of the ATC-40
methods.

One version of the improved method is graphically similar to ATC-40 Procedure A.
However, the two differ fundamentally in an important sense; the demand diagram
used is different: the constant-ductility demand diagram for inelastic systems in the
improved procedure versus the elastic demand diagram in ATC-40 for equivalent
linear systems.

A second version of the improved method is graphically similar to ATC-40 Procedure
B. However the two differ fundamentally in one important sense. Each point on curve
A-B is determined by analyzing an inelastic system in the improved procedure
(Figure 12) but an equivalent linear system in ATC-40.

The improved method can be conveniently implemented numerically if its graphical
features are not important to the user. Such a procedure, based on equations relating
R, and p for different T, ranges, has been presented and illustrated by examples

using three different R,—~pu -7, relations (Newmark and Hall, 1982; Krawinkler and

Nassar, 1992; Vidic, Fajfar, and Fischinger, 1994). The graphical and numerical
implementations of the improved method are shown to give essentially identical
values of deformation.

The new terminology that has been introduced in the ATC-40 report and related
publications in connection with simplified analysis of inelastic systems has been
examined and, where necessary, better terminology recommended:

(a) The term “spectrum” implies a function of frequency or period (e.g., response
spectrum or Fourier spectrum) and is therefore inappropriate to describe a plot of
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pseudo-acceleration versus deformation. The recommended terminology is
Demand Diagram and Capacity Diagram instead of Demand Spectrum and
Capacity Spectrum.

(b) Acceleration-Displacement Response Spectrum (ADRS) Format is inappropriate
for the same reason and A-D Format is preferable.

In this paper we have focussed on improving the one step in the NSP or CSM to
determine the earthquake induced deformation demand of an inelastic SDF system. We have
demonstrated here and in Chopra and Goel (2000) that the equivalent linear system approach,
as implemented in these methods, generally gives unacceptably unconservative estimates of
deformation due to far-field ground motions; it is expected to be even worse for near-field
ground motions. Fortunately, this approach is not necessary to achieve a simplified analysis
procedure suitable for design of new structures or evaluation of existing structures. In
particular, the improved capacity-demand-diagram method presented here, while retaining
the simplicity and graphical appeal of the NSP and CSM, provides results consistent with
selected elastic design spectrum and chosen rules for constructing the inelastic design
spectrum. Although illustrated for elastoplastic systems, this method is extendable to any
force-deformation relation. However, additional work is necessary to evaluate
approximations inherent in other steps of the NSP and CSM - in computing the pushover
curve for a MDF system and converting it to a capacity diagram.
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NOTATION

o strain hardening ratio
constant used in Krawinkler and Nassar R, — i — T, equations
constant used in Newmark and Hall R, — 4 — T, equations

pseudo-acceleration spectrum ordinate

A, @z/T,Y D, , pseudo-acceleration corresponding to yield deformation D,
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b constant used in Krawinkler and Nassar R, — 4 — T, equations
c variable used in Krawinkler and Nassar R,— M —T, equations
D deformation spectrum ordinate

D, yield deformation = 4,

0, fundamental mode

9, j‘h floor element of the fundamental mode ¢,

!, minimum strength required for a system to remain elastic

Iy yield strength

4 acceleration due to gravity

k initial elastic stiffness

I fundamental mode factor defined by Equation 1

m mass of the system

m; lumped mass at the jth floor level

M effective modal mass for the fundamental vibration mode

N number of floors

u ductility factor

R, yield reduction factor

T..Ts.Te.To»  periods that define spectral regions

T4 T Ty

T, transition period used in Vidic, Fajfar, and Fischinger R, — g ~ T, equations
T equivalent vibration period

T, natural vibration period

Uy roof displacement

Uy yield displacement

Ve base shear

w weight of the system
d viscous damping ratio of linearly elastic system
a viscous damping used in equivalent linear procedures



