12.1 STRUCTURAL DESIGN BASIS

12.1.1 Basic Requirements. The seismic analysis and design procedures to be used in the design of building structures and their components shall be as prescribed in this section. The building structure shall include complete lateral and vertical force-resisting systems capable of providing adequate strength, stiffness, and energy dissipation capacity to withstand the design ground motions within the prescribed limits of deformation and strength demand. The design ground motions shall be assumed to occur along any horizontal direction of a building structure. The adequacy of the structural systems shall be demonstrated through the construction of a mathematical model and evaluation of this model for the effects of design ground motions. The design seismic forces, and their distribution over the height of the building structure, shall be established in accordance with one of the applicable procedures indicated in Section 12.6 and the corresponding internal forces and deformations in the members of the structure shall be determined. An approved alternative procedure shall not be used to establish the seismic forces and their distribution unless the corresponding internal forces and deformations in the members are determined using a model consistent with the procedure adopted.

EXCEPTION: As an alternative, the simplified design procedures of Section 12.14 is permitted to be used in lieu of the requirements of Sections 12.1 through 12.12, subject to all of the limitations contained in Section 12.14.

12.1.2 Member Design, Connection Design, and Deformation Limit. Individual members, including those not part of the seismic force-resisting system, shall be provided with adequate strength to resist the shears, axial forces, and moments determined in accordance with this standard, and connections shall develop the strength of the connected members or the forces indicated in Section 12.1.1. The deformation of the structure shall not exceed the prescribed limits where the structure is subjected to the design seismic forces.

12.1.3 Continuous Load Path and Interconnection. A continuous load path, or paths, with adequate strength and stiffness shall be provided to transfer all forces from the point of application to the final point of resistance. All parts of the structure between separation joints shall be interconnected to form a continuous path to the seismic force-resisting system, and the connections shall be capable of transmitting the seismic force \(F_p \) induced by the parts being connected. Any smaller portion of the structure shall be tied to the remainder of the structure with elements having a design strength capable of transmitting a seismic force of 0.15 times the short period design spectral response acceleration parameter \(q_{s,0} \). If the weight of the smaller portion is less than 5 percent of the portion’s weight, whichever is greater. This connection force shall have a minimum design strength of 5 percent of the dead plus live load reaction.

12.1.4 Connection to Supports. A positive connection for resisting a horizontal force acting parallel to the member shall be provided for each beam, girder, or truss either directly to its supporting elements, or to slabs designed to act as diaphragms. Where the connection is through a diaphragm, the connection element must be connected to the diaphragm. The connection shall have a minimum design strength of 5 percent of the dead plus live load reaction.

12.1.5 Foundation Design. The foundation shall be designed to resist the forces developed and accommodate the movements imparted to the structure by the design ground motions. The dynamic nature of the forces, the expected ground motion, the design basis for strength and energy dissipation capacity of the structure, and the dynamic properties of the soil shall be included in the determination of the foundation design criteria. The design and construction of foundations shall comply with Section 12.13.

12.1.6 Material Design and Detailing Requirements. Structural elements including foundation elements shall conform to the material design and detailing requirements set forth in Chapter 14.

12.2 STRUCTURAL SYSTEM SELECTION

12.2.1 Selection and Limitations. The basic lateral and vertical seismic force-resisting system shall conform to one of the types indicated in Table 12.2-1 or a combination of systems as permitted in Sections 12.2.2, 12.2.3, and 12.2.4. Each type is subdivided by the types of vertical elements used to resist lateral seismic forces. The structural system used shall be in accordance with the seismic design category and height limitations indicated in Table 12.2-1. The appropriate response modification coefficient, \(R_p \) system overstrength factor, \(\Omega_p \) and the deflection amplification factor, \(C_D \), indicated in Table 12.2-1 shall be used in determining the base shear, element design forces, and design story drift. The selected seismic force-resisting system shall be designed and detailed in accordance with the specific requirements for the system per the applicable reference document and the additional requirements set forth in Chapter 14. Seismic force-resisting systems that are not contained in Table 12.2-1 are permitted if analytical and test data are submitted that establish the dynamic characteristics and demonstrate the lateral force resistance and energy dissipation capacity to be equivalent to the structural systems listed in Table 12.2-1 for equivalent response modification coefficient, \(R_p \) system overstrength coefficient, \(\Omega_p \) and deflection amplification factor, \(C_D \) values.

12.2.2 Combinations of Framing Systems in Different Directions. Different seismic force-resisting systems are permitted to be used to resist seismic forces along each of the two orthogonal axes of the structure. Where different systems are used, the respective \(R_p \) and \(C_D \) coefficients shall apply to each system, including the limitations on system use contained in Table 12.2-1.

12.2.3 Combinations of Framing Systems in the Same Direction. Where different seismic force-resisting systems are used in combination to resist seismic forces in the same direction of structural response, other than those combinations considered as
TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE–RESISTING SYSTEMS

<table>
<thead>
<tr>
<th>Seismic Force–Resisting System</th>
<th>ASCE 7 Section where Detailing Requirements are Specified</th>
<th>Response Modification Coefficient, (R^*)</th>
<th>System Overstrength Factor, (k_{o})</th>
<th>Deflection Amplification Factor, (C_p)</th>
<th>Structural System Limitations and Building Height (ft) Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. BEARING WALL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Special reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.6</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>5</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>2. Ordinary reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.4</td>
<td>4</td>
<td>3 (\gamma)</td>
<td>6</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>3. Detailed plain concrete shear walls</td>
<td>14.2 and 14.2.3.2</td>
<td>2</td>
<td>2 (\gamma)</td>
<td>2</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>4. Ordinary plain concrete shear walls</td>
<td>14.2 and 14.2.3.1</td>
<td>1(\gamma)</td>
<td>2 (\gamma)</td>
<td>1(\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>5. Intermediate precast shear walls</td>
<td>14.2 and 14.2.3.5</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>6. Ordinary precast shear walls</td>
<td>14.2 and 14.2.3.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>7. Special reinforced masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>8. Intermediate reinforced masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>9. Ordinary reinforced masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>10. Detailed plain masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>11. Ordinary precast masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>12. Detailed plain masonry shear walls</td>
<td>14.2 and 14.2.3</td>
<td>3</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>13. Light-framed walls sheathed with steel or filled masonry panels rated for shear resistance or masonry shear walls</td>
<td>14.1, 14.1.4.2, 14.3</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>14. Light-framed walls sheathed with steel or filled masonry panels rated for shear resistance or masonry shear walls</td>
<td>14.1, 14.1.4.2, 14.3</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>15. Light-framed walls sheathed with steel or filled masonry panels rated for shear resistance or masonry shear walls</td>
<td>14.1, 14.1.4.2, 14.3</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>B. BUILDING FRAME SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Steel eccentrically braced frames</td>
<td>14.1</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>2. Steel eccentrically braced frames, non–moment-resisting, connections at columns away from links</td>
<td>14.1</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>3. Special steel concentrically braced frames</td>
<td>14.1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>4. Ordinary steel concentrically braced frames</td>
<td>14.1</td>
<td>3 (\gamma)</td>
<td>2 (\gamma)</td>
<td>3 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>5. Special reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.6</td>
<td>6</td>
<td>2 (\gamma)</td>
<td>5</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>6. Ordinary reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.4</td>
<td>5</td>
<td>2 (\gamma)</td>
<td>4 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>7. Detailed plain concrete shear walls</td>
<td>14.2 and 14.2.3.2</td>
<td>2</td>
<td>2 (\gamma)</td>
<td>2</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>8. Ordinary plain concrete shear walls with steel elements</td>
<td>14.2 and 14.2.3.1</td>
<td>1(\gamma)</td>
<td>2 (\gamma)</td>
<td>1(\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>9. Intermediate precast shear walls</td>
<td>14.2 and 14.2.3.5</td>
<td>5</td>
<td>2 (\gamma)</td>
<td>4 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>10. Ordinary precast shear walls</td>
<td>14.2 and 14.2.3.3</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>11. Composite steel and concrete eccentrically braced frames</td>
<td>14.3</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>12. Composite steel and concrete concentrically braced frames</td>
<td>14.3</td>
<td>5</td>
<td>2</td>
<td>4 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>13. Ordinary composite steel and concrete braced frames</td>
<td>14.3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>14. Composite steel plate shear walls</td>
<td>14.3</td>
<td>6 (\gamma)</td>
<td>2 (\gamma)</td>
<td>6 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>15. Special composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>6</td>
<td>2 (\gamma)</td>
<td>5</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>16. Ordinary composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>5</td>
<td>2 (\gamma)</td>
<td>4 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>17. Special reinforced masonry shear walls</td>
<td>14.4</td>
<td>5 (\gamma)</td>
<td>2 (\gamma)</td>
<td>5 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>18. Intermediate reinforced masonry shear walls</td>
<td>14.4</td>
<td>4</td>
<td>2 (\gamma)</td>
<td>4</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>19. Ordinary reinforced masonry shear walls</td>
<td>14.4</td>
<td>2</td>
<td>2 (\gamma)</td>
<td>2</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>20. Detailed plain masonry shear walls</td>
<td>14.4</td>
<td>2</td>
<td>2 (\gamma)</td>
<td>2</td>
<td>NL NL 160 160 100</td>
</tr>
<tr>
<td>21. Ordinary plain masonry shear walls</td>
<td>14.4</td>
<td>2 (\gamma)</td>
<td>2 (\gamma)</td>
<td>1 (\gamma)</td>
<td>NL NL 160 160 100</td>
</tr>
</tbody>
</table>

*See Table 14.1, 14.1.4.2, and 14.3 and 14.5 for additional limitations and building height limits.
<table>
<thead>
<tr>
<th>Seismic Force–Resisting System</th>
<th>ASCE 7 Section where (g) is Specified</th>
<th>Response Modification Factor, (A_R)</th>
<th>System Overstrength Factor, (\Omega)</th>
<th>Deflection Amplification Factor, (C_D)</th>
<th>Structural-System Limitations and Building Height (ft) Limit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Prestressed masonry shear walls</td>
<td>14.4</td>
<td>2/3</td>
<td>1/3</td>
<td>NL</td>
<td>NF</td>
</tr>
<tr>
<td>23. Light-framed walls sheathed with wood structural panels rated for shear resistance or steel sheets</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>7</td>
<td>2/3</td>
<td>4/3</td>
<td>NL</td>
</tr>
<tr>
<td>24. Light-framed walls with shear panels of all other materials</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>NL</td>
</tr>
<tr>
<td>25. Buckling-restrained braced frames, non-moment-resisting beam-column connections</td>
<td>14.1</td>
<td>1</td>
<td>2</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>26. Buckling-restrained braced frames, moment-resisting beam-column connections</td>
<td>14.1</td>
<td>6</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>27. Special steel plate shear wall</td>
<td>14.1</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>NL</td>
</tr>
<tr>
<td>C. MOMENT-RESISTING FRAME SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Special steel moment frames</td>
<td>14.1 and 12.2.5.5</td>
<td>8</td>
<td>1</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>2. Special steel truss moment frames</td>
<td>14.1</td>
<td>7</td>
<td>3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>3. Intermediate steel moment frames</td>
<td>12.2.5.5, 12.2.5.7, 12.2.5.9, 12.2.5.9.6, and 14.1</td>
<td>4.5</td>
<td>3</td>
<td>4</td>
<td>NL</td>
</tr>
<tr>
<td>4. Ordinary steel moment frames</td>
<td>12.2.5.6, 12.2.5.7, 12.2.5.9, 12.2.5.9.6, and 14.1</td>
<td>3.5</td>
<td>3</td>
<td>3</td>
<td>NL</td>
</tr>
<tr>
<td>5. Special reinforced concrete moment frames</td>
<td>12.2.5.5 and 14.2</td>
<td>8</td>
<td>3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>6. Intermediate reinforced concrete moment frames</td>
<td>14.2</td>
<td>5</td>
<td>3</td>
<td>4/3</td>
<td>NL</td>
</tr>
<tr>
<td>7. Ordinary reinforced concrete moment frames</td>
<td>14.2</td>
<td>5</td>
<td>3</td>
<td>2/3</td>
<td>NL</td>
</tr>
<tr>
<td>8. Special composite steel and concrete moment frames</td>
<td>12.2.5.5 and 14.3</td>
<td>8</td>
<td>3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>9. Intermediate composite moment frames</td>
<td>14.3</td>
<td>5</td>
<td>3</td>
<td>4/3</td>
<td>NL</td>
</tr>
<tr>
<td>10. Composite partially restrained moment frames</td>
<td>14.3</td>
<td>6</td>
<td>3</td>
<td>5/3</td>
<td>160</td>
</tr>
<tr>
<td>11. Ordinary composite moment frames</td>
<td>14.3</td>
<td>3</td>
<td>3</td>
<td>2/3</td>
<td>NL</td>
</tr>
<tr>
<td>D. DUAL SYSTEMS WITH SPECIAL MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRERESIDED SEISMIC FORCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Steel eccentrically braced frames</td>
<td>14.1</td>
<td>8</td>
<td>2/3</td>
<td>4</td>
<td>NL</td>
</tr>
<tr>
<td>2. Special steel concentrically braced frames</td>
<td>14.1</td>
<td>7</td>
<td>2/3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>3. Special reinforced concrete shear walls</td>
<td>14.2</td>
<td>7</td>
<td>2/3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>4. Ordinary reinforced concrete shear walls</td>
<td>14.2</td>
<td>6</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>5. Composite steel and concrete eccentrically braced frames</td>
<td>14.3</td>
<td>8</td>
<td>2/3</td>
<td>4</td>
<td>NL</td>
</tr>
<tr>
<td>6. Composite steel and concrete concentrically braced frames</td>
<td>14.3</td>
<td>6</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>7. Composite steel plate shear walls</td>
<td>14.3</td>
<td>7</td>
<td>2/3</td>
<td>6</td>
<td>NL</td>
</tr>
<tr>
<td>8. Special composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>6</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>9. Ordinary composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>6</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>10. Special reinforced masonry shear walls</td>
<td>14.4</td>
<td>5/3</td>
<td>3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>11. Intermediate reinforced masonry shear walls</td>
<td>14.4</td>
<td>4</td>
<td>3</td>
<td>5/3</td>
<td>NL</td>
</tr>
<tr>
<td>12. Buckling-restrained braced frame</td>
<td>14.1</td>
<td>8</td>
<td>2/3</td>
<td>5</td>
<td>NL</td>
</tr>
<tr>
<td>13. Special steel plate shear walls</td>
<td>14.1</td>
<td>8</td>
<td>2/3</td>
<td>6/3</td>
<td>NL</td>
</tr>
</tbody>
</table>

TABLE 12.2-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE–RESISTING SYSTEMS (continued)
dual systems, the more stringent system limitation contained in Table 12.2.1 shall apply and the design shall comply with the requirements of this section.

Table 12.2.1 Design Coefficients and Factors for Seismic Force-Resisting Systems (continued)

<table>
<thead>
<tr>
<th>Seismic Force-Resisting System</th>
<th>ASCE 7 Section where Detailing Requirements are Specified</th>
<th>Response Modification Coefficient, R*</th>
<th>System Overstrength Factor, Ω_1</th>
<th>Deflection Amplification Factor, C_{dB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. DUAL SYSTEMS WITH INTERMEDIATE MOMENT FRAMES CAPABLE OF RESISTING AT LEAST 25% OF PRESSURE-DERIVED SEISMIC FORCES</td>
<td>12.2.5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Special steel concentrically braced frames</td>
<td>14.1</td>
<td>6</td>
<td>$2^{1/2}$</td>
<td>5</td>
</tr>
<tr>
<td>2. Special reinforced-concrete shear walls</td>
<td>14.2</td>
<td>$6^{1/2}$</td>
<td>$2^{3/2}$</td>
<td>5</td>
</tr>
<tr>
<td>3. Ordinary reinforced masonry shear walls</td>
<td>14.4</td>
<td>3</td>
<td>3</td>
<td>$2^{1/2}$</td>
</tr>
<tr>
<td>4. Intermediate reinforced masonry shear walls</td>
<td>14.4</td>
<td>$3^{1/2}$</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5. Composite steel and concrete concentrically braced frames</td>
<td>14.3</td>
<td>$5^{1/2}$</td>
<td>$2^{3/2}$</td>
<td>4</td>
</tr>
<tr>
<td>6. Ordinary composite braced frames</td>
<td>14.3</td>
<td>$3^{1/2}$</td>
<td>$2^{3/2}$</td>
<td>3</td>
</tr>
<tr>
<td>7. Ordinary composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>5</td>
<td>3</td>
<td>$2^{3/2}$</td>
</tr>
<tr>
<td>8. Ordinary reinforced concrete shear walls</td>
<td>14.2</td>
<td>$5^{1/2}$</td>
<td>$2^{3/2}$</td>
<td>4</td>
</tr>
<tr>
<td>F. SHEAR WALL-FRAME INTERACTIVE SYSTEM WITH ORDINARY REINFORCED CONCRETE MOMENT FRAMES AND ORDINARY REINFORCED CONCRETE SHEAR WALLS</td>
<td>12.2.5.10 and 14.2</td>
<td>$4^{1/2}$</td>
<td>$2^{3/2}$</td>
<td>4</td>
</tr>
<tr>
<td>G. CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR:</td>
<td>12.2.5.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Special steel moment frames</td>
<td>12.2.3.5 and 14.1</td>
<td>$2^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$2^{1/2}$</td>
</tr>
<tr>
<td>2. Intermediate steel moment frames</td>
<td>14.1</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
</tr>
<tr>
<td>3. Ordinary steel moment frames</td>
<td>14.1</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
</tr>
<tr>
<td>4. Special reinforced concrete moment frames</td>
<td>12.2.3.5 and 14.2</td>
<td>$2^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$2^{1/2}$</td>
</tr>
<tr>
<td>5. Intermediate concrete moment frames</td>
<td>14.2</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
</tr>
<tr>
<td>6. Ordinary concrete moment frames</td>
<td>14.2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7. Tubber frames</td>
<td>14.5</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
<td>$1^{1/2}$</td>
</tr>
<tr>
<td>H. STEEL SYSTEMS NOT SPECIFICALLY DETAILLED FOR SEISMIC RESISTANCE EXCLUDING CANTILEVER COLUMN SYSTEMS</td>
<td>14.1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Response modification coefficient, $R*$, for use throughout the standards. Note: $R*$ reduces forces to a strength level, not an allowable stress level.
2. Reflection amplification factor, C_{dB}, for use in Sections 12.8.6, 12.8.7, and 12.9.2.
3. NL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 m for 160 ft. Heights are measured from the base of the structure as defined in Section 11.2.
4. See Section 12.2.5.4 for a description of building systems limited to buildings with a height of 240 ft (73.2 m) or less.
5. See Section 12.2.5.3 for a description of building systems limited to buildings with a height of 100 ft (48.8 m) or less.
6. The tabulated value of the overstrength factor, Ω_1, is permitted to be reduced by subtracting one-half for structures with flexible diaphragms, but shall not be taken as less than 2.0 for any structure.
7. See Sections 12.2.5.6 and 12.2.5.7 for limitations for steel OMFs and IFMs in structures assigned to Seismic Design Category D or E.
8. See Sections 12.2.5.8 and 12.2.5.9 for limitations for steel OMFs and IFMs in structures assigned to Seismic Design Category F.
9. Steel ordinary concentrically braced frames are permitted in single-story buildings up to a height of 60 ft (18.3 m) where the dead load of the roof does not exceed 20 psf (0.96 kN/m²) and in penthouse structures.
10. Increase in height to 45 ft (13.7 m) is permitted for single story storage warehouse facilities.
11. Increase in height to 45 ft (13.7 m) is permitted for single story storage warehouse facilities.
2. Other supported structural systems with a weight equal to or less than 10 percent of the weight of the structure.

A two-stage equivalent lateral force procedure is permitted to be used for structures having a flexible upper portion above a rigid lower portion, provided that the design of the structure complies with the following:

a. The stiffness of the lower portion must be at least 10 times the stiffness of the upper portion.

b. The period of the entire structure shall not be greater than 1.1 times the period of the upper portion considered as a separate structure fixed at the base.

c. The flexible upper portion shall be designed as a separate structure using the appropriate values of \(R \) and \(\rho \).

d. The rigid lower portion shall be designed as a separate structure using the appropriate values of \(R \) and \(\rho \). The reactions from the upper portion shall be those determined from the analysis of the upper portion amplified by the ratio of the \(R_{ud}/R_{ld} \) of the upper portion over \(R_{ud}/R_{ld} \) of the lower portion. This ratio shall not be less than 1.0.

12.2.3.2 \(R \), \(C_z \), and \(\rho \) Values for Horizontal Combinations. Where a combination of different structural systems is utilized to resist lateral forces in the same direction, the value of \(R \) used for design in that direction shall not be greater than the least value of \(R \) for any of the systems utilized in that direction. Resisting elements are permitted to be designed using the least value of \(R \) for the different structural systems found in each independent line of resistance if the following three conditions are met: (1) Occupancy Category I or II building, (2) two stories or less in height, and (3) use of light-frame construction or flexible diaphragms. The value of \(R \) used for design of diaphragms in such structures shall not be greater than the least value for any of the systems utilized in that same direction.

The deflection amplification factor, \(C_z \), and the system over strength factor, \(\rho \), in the direction under consideration at any story shall not be less than the largest value of this factor for the \(R \) factor used in the same direction being considered.

12.2.4 Combination Framing Detailing Requirements. Structural components common to different framing systems used to resist seismic motions in any direction shall be designed using the detailing requirements of Chapter 12 required by the highest response modification coefficient, \(R \), of the connected framing systems.

12.2.5 System Specific Requirements. The structural framing system shall also comply with the following system specific requirements of this section.

12.2.5.1 Dual System. For a dual system, the moment frames shall be capable of resisting at least 25 percent of the design seismic forces. The total seismic force resistance is to be provided by the combination of the moment frames and the shear walls or braced frames in proportion to their rigidities.

12.2.5.2 Cantilever Column Systems. Cantilever column systems are permitted as indicated in Table 12.2.1 and as follows. The axial load on individual cantilever column elements calculated in accordance with the load combinations of Section 2.3 shall not exceed 15 percent of the design strength of the column to resist axial loads alone, or for allowable stress design, the axial load stress on individual cantilever column elements, calculated in accordance with the load combinations of Section 2.4 shall not exceed 15 percent of the permissible axial stress.

Foundation and other elements used to provide overturning resistance at the base of cantilever column elements shall have the strength to resist the load combinations with over strength factor of Section 12.4.3.2.

12.2.5.3 Inverted Pendulum-Type Structures. Regardless of the structural system selected, inverted pendulums as defined in Section 11.2, shall comply with this section. Supporting columns or piers of inverted pendulum-type structures shall be designed for the bending moment calculated at the base determined using the procedures given in Section 12.8 and varying uniformly to a moment at the top equal to one-half the calculated bending moment at the base.

12.2.5.4 Increased Building Height Limit for Steel Braced Frames and Special Reinforced Concrete Shear Walls. The height limits in Table 12.2.1 are permitted to be increased from 160 ft (50 m) to 240 ft (75 m) for structures assigned to Seismic Design Categories D or E and from 100 ft (30 m) to 160 ft (50 m) for structures assigned to Seismic Design Category F that have steel braced frames or special reinforced concrete cast-in-place shear walls and that meet both of the following requirements:

1. The structure shall not have an extreme torsional irregularity as defined in Table 12.2.1 (horizontal structural irregularity Type 1b).

2. The braced frames or shear walls in any one plane shall resist no more than 60 percent of the total seismic forces in each direction, neglecting accidental torsional effects.

12.2.5.5 Special Moment Frames in Structures Assigned to Seismic Design Categories D through F. For structures assigned to Seismic Design Categories D, E, or F, a special moment frame that is used but not required by Table 12.1-1 shall not be discontinued and supported by a more rigid system with a lower response modification coefficient, \(R \), unless the requirements of Sections 12.3.3.2 and 12.3.3.4 are met. Where a special moment frame is required by Table 12.1-1, the frame shall be continuous to the foundation.

12.2.5.6 Single-Story Steel Ordinary and Intermediate Moment Frames in Structures Assigned to Seismic Design Category D or E. Single-story steel ordinary moment frames and intermediate moment frames in structures assigned to Seismic Design Category D or E are permitted up to a height of 65 ft (20 m) where the dead load supported by and tributary to the roof does not exceed 20 psf (0.96 kN/m²). In addition, the dead loads tributary to the moment frame, of the exterior wall more than 35 ft above the base shall not exceed 20 psf (0.96 kN/m²).

12.2.5.7 Other Steel Ordinary and Intermediate Moment Frames in Structures Assigned to Seismic Design Category D or E. Steel ordinary moment frames in structures assigned to Seismic Design Category D or E not meeting the limitations set forth in Section 12.2.5.6 are permitted within light-frame construction up to a height of 35 ft (10.6 m) where neither the roof nor the floor dead load supported by and tributary to the moment frames exceeds 35 psf (1.68 kN/m²). In addition, the dead load of the exterior walls tributary to the moment frame shall not exceed 20 psf (0.96 kN/m²). Steel intermediate moment frames in structures assigned to Seismic Design Category D or E not meeting the limitations set forth in Section 12.2.5.6 are permitted as follows:

1. In Seismic Design Category D, intermediate moment frames are permitted to a height of 35 ft (10.6 m).

2. In Seismic Design Category E, intermediate moment frames are permitted to a height of 35 ft (10.6 m) provided neither the roof nor the floor dead load supported by and tributary
12.3 DIAPHRAGM FLEXIBILITY, CONFIGURATION IRREGULARITIES, AND REDUNDANCY

12.3.1 Diaphragm Flexibility. The structural analysis shall consider the relative stiffnesses of diaphragms and the vertical elements of the seismic force-resisting system. Unless a diaphragm can be idealized as either flexible or rigid in accordance with Sections 12.3.1.1, 12.3.1.2, or 12.3.1.3, the structural analysis shall explicitly include consideration of the stiffness of the diaphragm (i.e., semi-rigid modeling assumption).

12.3.1.1 Flexible Diaphragm Condition. Diaphragms constructed of untopped steel decking or wood structural panels are permitted to be idealized as flexible in structures in which the vertical elements are steel or composite steel and concrete braced frames, or concrete, masonry, steel, or composite shear walls. Diaphragms of wood structural panels or untopped steel decks in one- and two-family residential buildings of light-frame construction shall also be permitted to be idealized as flexible.

12.3.1.2 Rigid Diaphragm Condition. Diaphragms constructed of untopped steel decking or wood structural panels are permitted to be idealized as rigid. 3 or less in structures that have no horizontal irregularities are permitted to be idealized as rigid.

12.3.1.3 Calculated Flexible Diaphragm Condition. Diaphragms not satisfying the conditions of Sections 12.3.1.1 or 12.3.1.2 are permitted to be idealized as flexible where the computed maximum in-plane deflection of the diaphragm under lateral load is more than two times the average story drift of adjoining vertical elements of the seismic force-resisting system of the associated story under equivalent tributary lateral load as shown in Fig. 12.3-1. The loadings used for this calculation shall be those prescribed by Section 12.8. 20 psf (0.96 kN/m²).

12.3.2 Irregular and Regular Classification. Structures shall be classified as regular or irregular based upon the criteria in this section. Such classification shall be based on horizontal and vertical configurations.

12.3.2.1 Horizontal Irregularity. Structures having one or more of the irregularity types listed in Table 12.3-1 shall be designated as having horizontal structural irregularity. Such structures assigned to the seismic design categories listed in Table 12.3-1 shall comply with the requirements in the sections referenced in that table.

12.3.2.2 Vertical Irregularity. Structures having one or more of the irregularity types listed in Table 12.3-2 shall be designated as having vertical irregularity. Such structures assigned to the seismic design categories listed in Table 12.3-2 shall comply with the requirements in the sections referenced in that table.

12.3.3 Limitations and Additional Requirements for Systems with Structural Irregularities.

12.3.3.1 Prohibited Horizontal and Vertical Irregularities for Seismic Design Categories D through F. Structures assigned to Seismic Design Category E or F having horizontal irregularity Type 1b of Table 12.3-1 or vertical irregularities Type 1b, 5a, or 5b of Table 12.3-2 shall not be permitted. Structures assigned to Seismic Design Category D having vertical irregularity Type 5b of Table 12.3-2 shall not be permitted.

FIGURE 12.3-1 FLEXIBLE DIAPHRAGM

Note: Diaphragm is flexible if MDD > 2(ADVE)
12.3.3.2 Extreme Weak Stories. Structures with a vertical irregularity Type 5b as defined in Table 12.3-2, shall not be over two stories or 30 ft (9 m) in height.

EXCEPTION: The limit does not apply where the “weak” story is capable of resisting a total seismic force equal to 6% times the design force prescribed in Section 12.8.

12.3.3.3 Elements Supporting Discontinuous Walls or Frames. Columns, beams, trusses, or slabs supporting discontinuous walls or frames of structures having horizontal irregularity Type 4 of Table 12.3-1 or vertical irregularity Type 4 of Table 12.3-2 shall have the design strength to resist the maximum axial force that can develop in accordance with the load combinations with overstrength factor of Section 12.4.3.2. The connections of such discontinuous elements to the supporting members shall be adequate to transmit the forces for which the discontinuous elements were required to be designed.

12.3.3.4 Increase in Forces Due to Irregularities for Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E, or F and having a horizontal structural irregularity of Type 1a, 1b, 2, 3, or 4 in Table 12.3-1 or a vertical structural irregularity of Type 4 in Table 12.3-2, the design forces determined from Section 12.8.1 shall be increased 25 percent for connections of diaphragms to vertical elements and to collectors and for connections of collectors to the vertical elements. Collectors and their connections also shall be designed for these increased forces unless they are designed for the load combinations with overstrength factor of Section 12.4.3.2, in accordance with Section 12.10.2.1.

12.3.4 Redundancy. A redundancy factor, \(\rho \), shall be assigned to the seismic force-resisting system in each of two orthogonal directions for all structures in accordance with this section.

TABLE 12.3-1 HORIZONTAL STRUCTURAL IRREGULARITIES

<table>
<thead>
<tr>
<th>Irregularity Type and Description</th>
<th>Reference Section</th>
<th>Seismic Design Category Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Torsional Irregularity</td>
<td>12.3.3.4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>1b. Extreme Torsional Irregularity</td>
<td>Section 12.6-2</td>
<td>C, D, E, and F</td>
</tr>
<tr>
<td>2. Restroent Corner Irregularity</td>
<td>12.3.3.4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>3. Diaphragm Discontinuity Irregularity</td>
<td>12.3.3.4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>4. Out-of-Plane Offset Irregularity</td>
<td>12.3.3.4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>5. Nonparallel Systems-Irregularity</td>
<td>Table 12.6-4</td>
<td>C, D, E, and F</td>
</tr>
</tbody>
</table>

TABLE 12.3-2 VERTICAL STRUCTURAL IRREGULARITIES

<table>
<thead>
<tr>
<th>Irregularity Type and Description</th>
<th>Reference Section</th>
<th>Seismic Design Category Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. Stiffness-Soft Story Irregularity</td>
<td>Table 12.6-4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>2. Weight (Mass) Irregularity</td>
<td>12.3.3.4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>3. Vertical Geometric Irregularity</td>
<td>Table 12.6-4</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>4. In-Plane Discontinuity in Vertical Lateral Force-Resisting Element Irregularity</td>
<td>12.3.3.4</td>
<td>B, C, D, E, and F</td>
</tr>
<tr>
<td>5a. Discontinuity in Lateral Strength-Weak Story Irregularity</td>
<td>Table 12.6-1</td>
<td>D, E, and F</td>
</tr>
<tr>
<td>5b. Discontinuity in Lateral Strength-Extreme Weak Story Irregularity</td>
<td>12.3.3.3</td>
<td>D, E, and F</td>
</tr>
</tbody>
</table>

Minimum Design Loads for Buildings and Other Structures 125
12.3.4.1 Conditions Where Value of ρ is 1.0. The value of ρ is permitted to equal 1.0 for the following:

1. Structures assigned to Seismic Design Category B or C.
2. Drift calculation and P-delta effects.
3. Design of nonstructural components.
4. Design of nonbuilding structures that are not similar to buildings.
5. Design of collector elements, splices, and their connections for which the load combinations with overstrength factor of Section 12.4.3.2 are used.
6. Design of members or connections where the load combinations with overstrength of Section 12.4.3.2 are required for design.
7. Diaphragm loads determined using Eq. 12.10-1.
8. Structures with damping systems designed in accordance with Section 18.

12.3.4.2 Redundancy Factor, ρ, for Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E, or F, ρ shall equal 1.3 unless one of the following two conditions is met, whereby ρ is permitted to be taken as 1.0:

a. Each story resisting more than 35 percent of the base shear in the direction of interest shall comply with Table 12.3-3.

b. Structures that are regular in plan at all levels provided that the seismic force-resisting systems consist of at least two bays of seismic force-resisting perimeter framing on each side of the structure in each orthogonal direction at each story resisting more than 35 percent of the base shear. The number of bays for a shear wall shall be calculated as the length of shear wall divided by the story height or two times the length of shear wall divided by the story height for light-framed construction.

Table 12.3-3 Requirements for Each Story Resisting More Than 35% of the Base Shear

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Table 12.3-3 Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Braided Frames</td>
<td>Removal of an individual brace, or connection thereto, would not result in more than a 1.3% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).</td>
</tr>
<tr>
<td>Moment Frames</td>
<td>Loss of moment resistance at the beam-to-column connections at both ends of a single beam would not result in more than a 35% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).</td>
</tr>
<tr>
<td>Shear Walls or Wall Piers with a height-to-length ratio of greater than 1.0</td>
<td>Removal of a shear wall or wall pier with a height-to-length ratio greater than 1.0 within any story, or collector connections thereto, would not result in more than a 35% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).</td>
</tr>
<tr>
<td>Cantilever Columns</td>
<td>Loss of moment resistance at the base connections of any single cantilever column would not result in more than a 35% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).</td>
</tr>
<tr>
<td>Other</td>
<td>No requirements</td>
</tr>
</tbody>
</table>

12.4 SEISMIC LOAD EFFECTS AND COMBINATIONS

12.4.1 Applicability. All members of the structure, including those not part of the seismic force-resisting system, shall be designed using the seismic load effects of Section 12.4 unless otherwise exempted by this standard. Seismic load effects are the axial, shear, and flexural member forces resulting from application of horizontal and vertical seismic forces as set forth in Section 12.4.2. Where specifically required, seismic load effects shall be modified to account for system overstrength, as set forth in Section 12.4.3.

12.4.2 Seismic Load Effect. The seismic load effect, E, shall be determined in accordance with the following:

1. For use in load combination 5 in Section 2.3.2 or load combination 5 and 6 in Section 2.4.1, E shall be determined in accordance with Eq. 12.4-1 as follows:

 $$ E = E_0 + E_v $$

 (12.4-1)

2. For use in load combination 7 in Section 2.3.2 or load combination 8 in Section 2.4.1, E shall be determined in accordance with Eq. 12.4-2 as follows:

 $$ E = E_0 - E_v $$

 (12.4-2)

where:

- E_0 is the seismic load effect
- E_v is the effect of horizontal seismic forces as defined in Sections 12.4.2.1 and 12.4.2.2
- E_v is the effect of vertical seismic forces as defined in Section 12.4.2.2

12.4.2.1 Horizontal Seismic Load Effect. The horizontal seismic load effect, E_v, shall be determined in accordance with Eq. 12.4-3 as follows:

 $$ E_v = \rho Q_e $$

 (12.4-3)

where Q_e is the seismic load effect of vertical seismic forces from V or F_v. Where required in Sections 12.5.3 and 12.5.4, such effects shall result from application of horizontal forces simultaneously in two directions at right angles to each other.

- ρ is the redundancy factor, as defined in Section 12.3.4

12.4.2.2 Vertical Seismic Load Effect. The vertical seismic load effect, E_v, shall be determined in accordance with Eq. 12.4-4 as follows:

 $$ E_v = 0.2S_{E13}D $$

 (12.4-4)

where $S_{E13} = \text{design spectral response acceleration parameter at short periods obtained from Section 11.4.4}$ and $D = \text{effect of dead load}$

Exceptions: The vertical seismic load effect, E_v, is permitted to be taken as zero for either of the following conditions:

1. In Eqs. 12.4-1, 12.4-2, 12.4-5, and 12.4-6 where S_{E13} is equal to or less than 0.125.
2. In Eq. 12.4-2 where determining demands on the soil-structure interface of foundations.

12.4.2.3 Seismic Load Combinations. Where the prescribed seismic load effect, E, defined in Section 12.4.2 is combined with the effects of other loads as set forth in Chapter 2, the following seismic load combinations for structures not subject to flood or atmospheric ice loads shall be used in lieu of the seismic load combinations in either Section 2.5.2 or 2.4.1:
Basic Combinations for Strength Design (see Sections 2.3.2 and 2.2 for notation).

5. \((1.2 + 0.2S_{100}^d)/D + \rho QE + L + 0.2S\)

7. \((0.9 - 0.2S_{100}^d)/D + \rho QE + 1.6H\)

NOTES:
1. The load factor on \(L\) in combination 5 is permitted to equal 0.5 for all occupancies in which \(L_{ce}\) in Table 4-1 is less than or equal to 100 psf (4.79 kN/m²), with the exception of garages or areas occupied as places of public assembly.

2. The load factor on \(H\) shall be set equal to zero in combination 7 if the structural action due to \(H\) counteracts that due to \(E\). Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in \(H\) but shall be included in the design resistance.

Basic Combinations for Allowable Stress Design (see Sections 2.4.1 and 2.2 for notation).

5. \((1.0 + 0.14S_{100}^d)/D + H + F + 0.7\rho QE\)

6. \((1.0 + 0.10S_{100}^d)/D + H + F + 0.525\rho QE + 0.75L + 0.75L_{ce}\) or \(S\) or \(R\)

8. \((0.6 - 0.14S_{100}^d)/D + 0.7\rho QE + H\)

12.4.3.2 Load Combinations with Overstrength Factor. Where the seismic load effect with overstrength, \(E_o\), defined in Section 12.4.3 is combined with the effects of other loads as set forth in Chapter 2, the following seismic load combinations for structures not subject to flood or atmospheric ice loads shall be used in lieu of the seismic load combinations in either Section 2.3.2 or 2.4.1.

Basic Combinations for Strength Design with Overstrength Factor (see Sections 2.3.2 and 2.2 for notation).

5. \((1.2 + 0.2S_{100}^d)/D + \Omega Q_E + L + 0.2S\)

7. \((0.9 - 0.2S_{100}^d)/D + \Omega Q_E + 1.6H\)

NOTES:
1. The load factor on \(L\) in combination 5 is permitted to equal 0.5 for all occupancies in which \(L_{ce}\) in Table 4-1 is less than or equal to 100 psf (4.79 kN/m²), with the exception of garages or areas occupied as places of public assembly.

2. The load factor on \(H\) shall be set equal to zero in combination 7 if the structural action due to \(H\) counteracts that due to \(E\). Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in \(H\) but shall be included in the design resistance.

Basic Combinations for Allowable Stress Design with Overstrength Factor (see Sections 2.4.1 and 2.2 for notation).

5. \((1.0 + 0.14S_{100}^d)/D + H + F + 0.7\Omega Q_E\)

6. \((1.0 + 0.10S_{100}^d)/D + H + F + 0.525\Omega Q_E + 0.75L + 0.75L_{ce}\) or \(S\) or \(R\)

8. \((0.6 - 0.14S_{100}^d)/D + 0.7\Omega Q_E + H\)

12.4.3.3 Allowable Stress Increase for Load Combinations with Overstrength. Where allowable stress design methodologies are used with the seismic load effect defined in Section 12.4.3 applied in load combinations 5, 6, or 8 of Section 2.4.1, allowable stresses are permitted to be determined using an allowable stress increase of 1.2. This increase shall not be combined with increases in allowable stresses or load combination reductions otherwise permitted by this standard or the material reference document except that combination with the duration of load increases permitted in AFGA, NDS is permitted.

12.4.4 Minimum Upward Force for Horizontal Cantilevers for Seismic Design Categories D through F. In structures assigned to Seismic Design Category D, E, or F, horizontal cantilever structural components shall be designed for a minimum net upward force of 0.2 times the dead load in addition to the applicable load combinations of Section 12.4.

12.5 DIRECTION OF LOADING

12.5.1 Direction of Loading Criteria. The directions of application of seismic forces used in the design shall be those which will produce the most critical load effects. It is permitted to satisfy this requirement using the procedures of Section 12.5.2 for Seismic Design Category B, Section 12.5.3 for Seismic Design Category C, and Section 12.5.4 for Seismic Design Categories D, E, and F.

12.5.2 Seismic Design Category B. For structures assigned to Seismic Design Category B, the design seismic forces are permitted to be applied independently in each of two orthogonal directions and orthogonal interaction effects are permitted to be neglected.

12.5.3 Seismic Design Category C. Loading applied to structures assigned to Seismic Design Category C shall, as a minimum,
conform to the requirements of Section 12.5.2 for Seismic Design Category B and the requirements of this section. Structures that have horizontal structural irregularity Type 5 in Table 12.3-1 shall use one of the following procedures:

a. Orthogonal Combination Procedure. The structure shall be analyzed using the equivalent lateral force analysis procedure of Section 12.8, the modal response spectrum analysis procedure of Section 12.9, or the linear response history procedure of Section 16.1, as permitted under Section 12.6, with the loading applied independently in any two orthogonal directions and the most critical load effect due to direction of application of seismic forces on the structure is permitted to be assumed to be satisfied if components and their foundations are designed for the following combination of prescribed loads: 100 percent of the forces for one direction plus 30 percent of the forces for the perpendicular direction; the combination requiring the maximum component strength shall be used.

b. Simultaneous Application of Orthogonal Ground Motion. The structure shall be analyzed using the linear response history procedure of Section 16.1 or the nonlinear response history procedure of Section 16.2, as permitted by Section 12.6, with orthogonal pairs of ground motion acceleration histories applied simultaneously.

12.5.4 Seismic Design Categories D through E. Structures assigned to Seismic Design Category D, E, or F shall, as a minimum, conform to the requirements of Section 12.5.3. In addition, any column or wall that forms part of two or more intersecting seismic-force-resisting systems and is subjected to axial load due to seismic forces acting along either principal plan axis equaling or exceeding 20 percent of the axial design strength of the column or wall shall be designed for the most critical load effect due to application of seismic forces in any direction. Either of the procedures of Section 12.5.3 a or b are permitted to be used to satisfy this requirement. Except as required by Section 12.7.3, 2-D analyses are permitted for structures with flexible diaphragms.

12.6 ANALYSIS PROCEDURE SELECTION

The structural analysis required by Chapter 12 shall consist of one of the types permitted in Table 12.6-1, based on the structure’s seismic design category, structural system, dynamic properties, and regularity, or with the approval of the authority having jurisdiction, an alternative generally accepted procedure is permitted to be used. The analysis procedure selected shall be completed in accordance with the requirements of the corresponding section referenced in Table 12.6-1.

12.7 MODELING CRITERIA

12.7.1 Foundation Modeling. For purposes of determining seismic loads, it is permitted to consider the structure to be fixed at the base. Alternatively, where foundation flexibility is considered, it shall be in accordance with Section 12.13.3 or Chapter 19.

12.7.2 Effective Seismic Weight. The effective seismic weight, W, of a structure shall include the total dead load and other loads listed below:

1. In areas used for storage, a minimum of 25 percent of the floor live load (floor live load in public garages and open parking structures need not be included).

2. Where provision for partitions is required by Section 4.2.2 in the floor load design, the actual partition weight or a minimum weight of 10 psf (0.48 kN/m²) of floor area, whichever is greater.

3. Total operating weight of permanent equipment.

4. Where the flat roof snow load, two, exceeds 30 psf (1.44 kN/m²), 20 percent of the uniform design snow load, regardless of actual roof slope.

12.7.3 Structural Modeling. A mathematical model of the structure shall be constructed for the purpose of determining member forces and structure displacements resulting from applied loads and any imposed displacements or P-Delta effects. The model shall include the stiffness and strength of elements that are significant to the distribution of forces and deformations in the structure and represent the spatial distribution of mass and stiffness throughout the structure.

Structures that have horizontal structural irregularity Type 1a, 1b, 4, or 5 of Table 12.3-1 shall be analyzed using a 3-D representation. Where a 3-D model is used, a minimum of three dynamic degrees of freedom consisting of translation in two orthogonal plan directions and torsional rotation about the vertical axis shall be included at each level of the structure. Where the diaphragms have not been classified as rigid or flexible in accordance with Section 12.3.1, the model shall include representation of the diaphragm’s stiffness characteristics and such additional dynamic degrees of freedom as are required to account for the participation of the diaphragm in the structure’s dynamic response. In addition, the model shall comply with the following:

a. Stiffness properties of concrete and masonry elements shall consider the effects of cracked sections.

b. For steel moment frame systems, the contribution of panel zone deformations to overall story drift shall be included.
12.8 EQUIVALENT LATERAL FORCE PROCEDURE

12.8.1 Seismic Base Shear. The seismic base shear, \(V \), in a given direction shall be determined in accordance with the following equation:

\[
V = C_s W
\]

(12.8-1)

where

- \(C_s \) = the seismic response coefficient determined in accordance with Section 12.8.1.1
- \(W \) = the effective seismic weight per Section 12.7.2.

12.8.1.1 Calculation of Seismic Response Coefficient. The seismic response coefficient, \(C_s \), shall be determined in accordance with Eq. 12.8-2:

\[
C_s = \frac{S_{DS}}{R (I)}
\]

(12.8-2)

where

- \(S_{DS} \) = the design spectral response acceleration parameter in the short period range as determined from Section 11.4.4
- \(R \) = the response modification factor in Table 12.8-1
- \(I \) = the occupancy importance factor determined in accordance with Section 11.5.1

The value of \(C_s \) computed in accordance with Eq. 12.8-2 need not exceed the following:

\[
C_s = \left(\frac{S_{DS}}{R (I)} \right) \text{ for } T \leq T_L
\]

(12.8-3)

\[
C_s = \left(\frac{S_{DS} T_L}{R (I) T^2} \right) \text{ for } T > T_L
\]

(12.8-4)

\(C_s \) shall not be less than

\[
C_s = 0.01
\]

(12.8-5)

In addition, for structures located where \(S_i \) is equal to or greater than 0.6, \(C_s \) shall not be less than

\[
C_s = \frac{0.5 S_i}{R (I) T^2}
\]

(12.8-6)

Table 12.8-1 COEFFICIENT FOR UPPER LIMIT ON CALCULATED PERIOD

<table>
<thead>
<tr>
<th>Parameter at 1 s, (S_0)</th>
<th>Coefficient (C_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>1.4</td>
</tr>
<tr>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>0.15</td>
<td>1.6</td>
</tr>
<tr>
<td>0.1</td>
<td>1.7</td>
</tr>
</tbody>
</table>

where \(I \) and \(R \) are as defined in Section 12.8.1.1 and \(S_0 \) = the design spectral response acceleration parameter at a period of 1.0 s, as determined from Section 11.4.4

\(T \) = the fundamental period of the structure (s) determined in Section 12.8.2

\(T_L \) = long-period transition period (s) determined in Section 11.4.5

\(S_i \) = the mapped maximum considered earthquake spectral response acceleration parameter determined in accordance with Section 11.4.1.

12.8.1.2 Soil Structure Interaction Reduction. A soil structure interaction reduction is permitted where determined using Chapter 19 or other generally accepted procedures approved by the authority having jurisdiction.

12.8.1.3 Maximum \(S_i \) Value in Determination of \(C_s \). For regular structures five stories or less in height and having a period, \(T \), of 0.5 s or less, \(C_s \) is permitted to be calculated using a value of 1.5 for \(S_i \).

12.8.2 Period Determination. The fundamental period of the structure, \(T \), in the direction under consideration shall be established using the structural properties and deformational characteristics of the resisting elements in a properly substantiated analysis. The fundamental period, \(T \), shall not exceed the product of the coefficient for upper limit on calculated period \(C_s \) from Table 12.8-1 and the approximate fundamental period, \(T_a \), determined from Eq. 12.8-7. As an alternative to performing an analysis to determine the fundamental period, \(T \), it is permitted to use the approximate building period, \(T_a \), calculated in accordance with Section 12.8.2.1, directly.

12.8.2.1 Approximate Fundamental Period. The approximate fundamental period (\(T_a \)) in s, shall be determined from the following equation:

\[
T_a = C_a h_a^{0.75}
\]

(12.8-7)

where \(h_a \) is the height in ft above the base to the highest level of the structure and the coefficients \(C_a \) and \(x \) are determined from Table 12.8-2.

Table 12.8-2 VALUES OF APPROXIMATE PERIOD PARAMETERS \(C_a \) AND \(x \)

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>(C_a)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment-resisting frame systems in which the frames resist 100% of the required seismic force and are not enclosed or adjusted by components that are more rigid and will prevent the frames from deflecting where subjected to seismic forces</td>
<td>0.025</td>
<td>0.8</td>
</tr>
<tr>
<td>Concrete moment-resisting frames</td>
<td>0.016</td>
<td>0.9</td>
</tr>
<tr>
<td>Eccentrically braced steel frames</td>
<td>0.032</td>
<td>0.75</td>
</tr>
<tr>
<td>All other structural systems</td>
<td>0.02</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Metric equivalents are shown in parentheses.
Alternatively, it is permitted to determine the approximate fundamental period (\(T_n\)) in s, from the following equation for structures not exceeding 12 stories in height in which the seismic force-resisting system consists entirely of concrete or steel moment resisting frames and the story height is at least 10 ft (3 m):

\[T_n = 0.1N \]

(12.8-8)

where \(N\) = number of stories.

The approximate fundamental period, \(T_n\), in s for masonry or concrete shear wall structures is permitted to be determined from Eq. 12.8-9 as follows:

\[T_n = 0.0019 \frac{h_b}{\sqrt{C}} \]

(12.8-9)

where \(h_b\) is as defined in the preceding text and \(C\) is calculated from Eq. 12.8-10 as follows:

\[C = \frac{100}{T_a^2} \sum_{i=1}^{n} \left[\frac{b_i}{\sqrt{A_i}} \right]^2 \left(1 + 0.83 \frac{b_i}{D_i} \right) \]

(12.8-10)

where

- \(A_b\) = area of base of structure, \(\text{ft}^2\)
- \(A_i\) = web area of shear wall \("i"\) in \(\text{ft}^2\)
- \(D_i\) = length of shear wall \("i"\) in ft
- \(b_i\) = height of shear wall \("i"\) in ft
- \(x\) = number of shear walls in the building effective in resisting lateral forces in the direction under consideration.

12.8.3 Vertical Distribution of Seismic Forces. The lateral seismic force \((F_x)\) (kip or kN) induced at any level shall be determined from the following equations:

\[F_x = C_{Vx}V \]

(12.8-11)

and

\[C_{Vx} = \sum_{i=1}^{n} w_i b_i^k \]

(12.8-12)

where

- \(C_{Vx}\) = vertical distribution factor
- \(V\) = total design lateral force or shear at the base of the structure (kip or kN)
- \(w_i\) and \(w_i\) = the portion of the total effective seismic weight of the structure \((W)\) located or assigned to Level \(i\) or \(x\)
- \(h_i\) and \(h_i\) = the height (ft or m) from the base to Level \(i\) or \(x\)
- \(k\) = an exponent related to the structure period as follows:
 - for structures having a period of 0.5 s or less, \(k = 1\)
 - for structures having a period of 2.5 s or more, \(k = 2\)
 - for structures having a period between 0.5 and 2.5 s, \(k\) shall be 2 or shall be determined by linear interpolation between 1 and 2.

12.8.4 Horizontal Distribution of Forces. The seismic design story shear in any story \((V_x)\) (kip or kN) shall be determined from the following equation:

\[V_x = \sum_{i=1}^{n} F_x \]

(12.8-13)

where \(F_x\) = the portion of the seismic base shear \((V)\) (kip or kN) induced at Level \(i\).

The seismic design story shear \((V_x)\) (kip or kN) shall be distributed to the various vertical elements of the seismic force-resisting system in the story under consideration based on the relative lateral stiffness of the vertical resisting elements and the diaphragm.

12.8.4.1 Inherent Torsion. For diaphragms that are not flexible, the distribution of lateral forces at each level shall consider the effect of the inherent torsional moment, \(M_t\), resulting from eccentricity between the locations of the center of mass and the center of rigidity. For flexible diaphragms, the distribution of forces to the vertical elements shall account for the position and distribution of the masses supported.

12.8.4.2 Accidental Torsion. Where diaphragms are not flexible, the design shall include the inherent torsional moment \((M_t)\) (kip or kN) resulting from the location of the structure masses plus the accidental torsional moments \((M_{at})\) (kip or kN) caused by assumed displacement of the center of mass each way from its actual location by a distance equal to 5 percent of the dimension of the structure perpendicular to the direction of the applied forces.

Where earthquake forces are applied concurrently in two orthogonal directions, the required 5 percent displacement of the center of mass need not be applied in both of the orthogonal directions at the same time, but shall be applied in the direction that produces the greater effect.

12.8.4.3 Amplification of Accidental Torsional Moment. Structures assigned to Seismic Design Category C, D, E, or F, where Type 1a or 1b torsional irregularity exists as defined in Table 12.3-1 shall have the effects accounted for by multiplying \(M_{at}\) at each level by a torsional amplification factor \((A_t)\) as illustrated in Fig. 12.8-1 and determined from the following equation:

\[A_t = \left(\frac{\delta_{max}}{1.2\delta_{avg}} \right)^2 \]

(12.8-14)

where

- \(\delta_{max}\) = the maximum displacement at Level \(x\) (in. or mm) computed assuming \(A_t = 1\)
- \(\delta_{avg}\) = the average of the displacements at the extreme points of the structure at Level \(x\) computed assuming \(A_t = 1\) (in. or mm).

EXCEPTION: The accidental torsional moment need not be amplified for structures of light-frame construction.

The torsional amplification factor \((A_t)\) is not required to exceed 3.0. The more severe loading for each element shall be considered for design.

12.8.5 Overturning. The structure shall be designed to resist overturning effects caused by the seismic forces determined in Section 12.8.3.

12.8.6 Story Drift Determination. The design story drift \((\Delta)\) shall be computed as the difference of the deflections at the centers of mass at the top and bottom of the story under consideration. See Fig. 12.8-2. Where allowable stress design is used, \(\Delta\) shall be computed using the strength level seismic forces specified in Section 12.8 without reduction for allowable stress design.
The deflections of Level \(x \) at the center of the mass (\(\delta_x \) (in. or mm)) shall be determined in accordance with the following equation:

\[
\delta_x = \frac{C_d \delta_{xe}}{I} \tag{12.8-15}
\]

where

- \(C_d \) = the deflection amplification factor in Table 12.2-1
- \(\delta_{xe} \) = the deflections determined by an elastic analysis
- \(I \) = the importance factor determined in accordance with Section 11.5.1

12.8.6.1 Minimum Base Shear for Computing Drift. The elastic analysis of the seismic force-resisting system shall be made using the prescribed seismic design forces of Section 12.8.

12.8.6.2 Period for Computing Drift. For determining compliance with the story drift limits of Section 12.12.1, it is permitted to determine the elastic drifts, \((\delta_{xe}) \), using seismic design forces based on the computed fundamental period of the structure without the upper limit \((C_u T_a) \) specified in Section 12.8.2.

12.8.7 P-Delta Effects. P-delta effects on story shears and moments, the resulting member forces and moments, and the story drifts induced by these effects are not required to be considered.
where the stability coefficient (θ) is determined by the following equation is equal to or less than 0.10:

$$\theta = \frac{P \Delta}{Vh_i C_d} \quad (12.8-16)$$

where P_i = the total vertical design load at and above Level x (kip or kN), where computing P_i, no individual load factor need exceed 1.0

Δ = the design story drift as defined in Section 12.8.6 occurring simultaneously with V_i (in. or mm)

V_i = the seismic shear force acting between Levels x and x + 1 (kip or kN)

h_{i-1} = the story height below Level x (in. or mm)

C_d = the deflection amplification factor in Table 12.2-1

The stability coefficient (θ) shall not exceed θ_{max}, determined as follows:

$$\theta_{max} = 0.5 \frac{C_d}{25} \quad (12.8-17)$$

where β is the ratio of shear demand to shear capacity for the story between Levels x and x + 1. This ratio is permitted to be conservatively taken as 1.0.

Where the stability coefficient (θ) is greater than 0.10 but less than or equal to θ_{max}, the incremental factor related to P-delta effects on displacements and member forces shall be determined by rational analysis. Alternatively, it is permitted to multiply displacements and member forces by 1.0/(1 - θ).

Where θ is greater than θ_{max}, the structure is potentially unstable and shall be redesigned.

Where the P-delta effect is included in an automated analysis, Eq. 12.8-17 shall still be satisfied, however, the value of θ computed from Eq. 12.8-16 using the results of the P-delta analysis is permitted to be divided by (1 + θ) before checking Eq. 12.8-17.

12.9 MODAL RESPONSE SPECTRUM ANALYSIS

12.9.1 Number of Modes. An analysis shall be conducted to determine the natural modes of vibration for the structure. The analysis shall include a sufficient number of modes to obtain a combined modal mass participation of at least 90 percent of the actual mass in each of the orthogonal horizontal directions of response considered by the model.

12.9.2 Modal Response Parameters. The value for each force-related design parameter of interest, including story drifts, support forces, and individual member forces for each mode of response shall be computed using the properties of each mode and the response spectra defined in either Section 11.4.5 or 21.2 divided by the quantity ϕ. The value for displacement and drift quantities shall be multiplied by the quantity ϕ.

12.9.3 Combined Response Parameters. The value for each parameter of interest calculated for the various modes shall be combined using either the square root of the sum of the squares method (SRSS) or the complete quadratic combination method (CQC), in accordance with ASCE 4. The CQC method shall be used for each of the modal values or where closely spaced modes that have significant cross-correlation of translational and torsional response:

12.9.4 Scaling Design Values of Combined Response. A base shear (V) shall be calculated in each of the two orthogonal horizontal directions using the calculated fundamental period of the structure T in each direction and the procedures of Section 12.8, except where the calculated fundamental period exceeds (C_1/T_r), then (C_1/T_r) shall be used in lieu of T in that direction. Where the combined response for the modal base shear (V_i) is less than 85 percent of the calculated base shear (V) using the equivalent lateral force procedure, the forces, but not the drifts, shall be multiplied by 0.65.

where V = the equivalent lateral force procedure base shear, calculated in accordance with this section and Section 12.8

V_i = the base shear from the required modal combination

12.9.5 Horizontal Shear Distribution. The distribution of horizontal shear shall be in accordance with the requirements of Section 12.8.4 except that amplification of torsion per Section 12.8.4.3 is not required where accidental torsional effects are included in the dynamic analysis model.

12.9.6 P-Delta Effects. The P-delta effects shall be determined in accordance with Section 12.8.7. The base shear used to determine the story shears and the story drifts shall be determined in accordance with Section 12.8.6.

12.9.7 Soil Structure Interaction Reduction. A soil structure interaction reduction is permitted where determined using Chapter 19 or other generally accepted procedures approved by the authority having jurisdiction.

12.10 DIAPHRAGMS, CHORDS, AND COLLECTORS

12.10.1 Diaphragm Design. Diaphragms shall be designed for both the shear and bending stresses resulting from design forces. At diaphragm discontinuities, such as openings and reentrant corners, the design shall assure that the dissipation or transfer of edge (chord) forces combined with other forces in the diaphragm is within shear and tension capacity of the diaphragm.

12.10.1.1 Diaphragm Design Forces. Floor and roof diaphragms shall be designed to resist design seismic forces from the structural analysis, but shall not be less than that determined in accordance with Eq. 12.10-1 as follows:

$$F_{px} = \sum_{i} \frac{P_i}{w_i} \quad (12.10-1)$$

where

F_{px} = the diaphragm design force

P_i = the design force applied to Level i

w_i = the weight tributary to Level i

w_{px} = the weight tributary to the diaphragm at Level i

The force determined from Eq. 12.10-1 need not exceed 0.5Δ where Δ = the deflection amplitude due to loads or other forces. Where the diaphragm is required to transfer design seismic force from the vertical resisting elements above the diaphragm to other vertical resisting elements below the diaphragm due to offsets in the placement of the elements or to changes in relative lateral stiffness in the vertical elements, these forces shall be added to those determined from Eq. 12.10-1. The redundancy factor, ρ, applies to the design of diaphragms in structures assigned to Seismic Design Category D, E, or F. For inertial forces calculated in accordance with Section 12.10-1, the redundancy factor shall equal 1.0. For transfer forces, the redundancy factor, ρ, shall be the same as that used for the structure. For structures having horizontal or vertical structural irregularities of the types indicated in Section 12.3.3.4, the requirements of that section shall also apply.
12.10 Collector Elements. Collector elements shall be provided that are capable of transferring the seismic forces originating in other portions of the structure to the element providing the resistance to those forces.

12.10.2 Collector Elements Requiring Load Combinations with Overstrength Factor for Seismic Design Categories C through F. In structures assigned to Seismic Design Category C, D, E, or F, collector elements (see Fig. 12.10-1), splices, and connections to resisting elements shall resist the load combinations with overstrength of Section 12.4.3.2.

EXCEPTION: In structures or portions thereof braced entirely by light-frame shear walls, collector elements, splices, and connections to resisting elements need only be designed to resist forces in accordance with Section 12.10.1.1.

12.11 STRUCTURAL WALLS AND THEIR ANCHORAGE

12.11.1 Design for Out-of-Plane Forces. Structural walls and their anchorage shall be designed for a force normal to the surface equal to 0.4SDI times the weight of the structural wall with a minimum force of 10 percent of the weight of the structural wall. Interconnection of structural wall elements and connections to supporting framing systems shall have sufficient ductility, rotational capacity, or sufficient strength to resist shrinkage, thermal changes, and differential foundation settlement when combined with seismic forces.

12.11.2 Anchorage of Concrete or Masonry Structural Walls. The anchorage of concrete or masonry structural walls to supporting construction shall provide a direct connection capable of resisting the greater of the following:

a. The force set forth in Section 12.11.1.

b. A force of 400FS 0.8SDI 1 lb/linear ft (5.84FS 0.8 kN/m) of wall

c. 280 lb/linear ft (4.09 kN/m) of wall

Structural walls shall be designed to resist bending between anchors where the anchor spacing exceeds 4 ft (1,219 mm).

12.11.2.1 Anchorage of Concrete or Masonry Structural Walls to Flexible Diaphragms. In addition to the requirements set forth in Section 12.11.2, anchorage of concrete or masonry structural walls to flexible diaphragms in structures assigned to Seismic Design Category C, D, E, or F shall have the strength to develop the out-of-plane force given by Eq. 12.11-1:

\[F_p = 0.8SDI W_p \]

12.11.2.2 Additional Requirements for Diaphragms in Structures Assigned to Seismic Design Categories C through F.

12.11.2.2.1 Transfer of Anchorage Forces into Diaphragm. Diaphragms shall be provided with continuous ties or struts between diaphragm chords to distribute these anchorage forces into the diaphragms. Diaphragm connections shall be positive, mechanical, or welded. Added chords are permitted to be used to form subdiaphragms to transmit the anchorage forces to the main continuous cross-ties. The maximum length-to-width ratio of the structural subdiaphragm shall be 2.5 to 1. Connections and anchorage capable of resisting the prescribed forces shall be provided between the diaphragm and the attached components. Connections shall extend into the diaphragm a sufficient distance to develop the force transferred into the diaphragm.

12.11.2.2.2 Steel Elements of Structural Wall Anchorage System. The strength design forces for steel elements of the structural wall anchorage system, with the exception of anchor bolts and reinforcing steel, shall be increased by 2.5 times the forces otherwise required by this section.

12.11.2.2.3 Wood Diaphragms. In wood diaphragms, the continuous ties shall be in addition to the diaphragm sheathing. Anchoring shall not be accomplished by use of toe nails or nails subject to withdrawal nor shall wood ledgers or framing be used in cross-grain bending or cross-grain tension. The diaphragm sheathing shall not be considered effective as providing the ties or struts required by this section.

12.11.2.2.4 Metal Deck Diaphragms. In metal deck diaphragms, the metal deck shall not be used as the continuous ties required by this section in the direction perpendicular to the deck span.

12.11.2.2.5 Embedded Straps. Diaphragm to structural wall anchorage using embedded straps shall be attached to, or hooked around, the reinforcing steel or otherwise terminated so as to effectively transfer forces to the reinforcing steel.

12.11.2.2.6 Eccentrically Loaded Anchorage System. Where elements of the wall anchorage system are loaded eccentrically or are not perpendicular to the wall, the system shall be designed to resist all components of the forces induced by the eccentricity.
12.12 DRIFT AND DEFORMATION

12.12.1 Story Drift Limits. The design story drift (Δ_s) as determined in Sections 12.8.6, 12.9.2, or 16.1, shall not exceed the allowable story drift ($\Delta_{s,\text{a}}$) as obtained from Table 12.12-1 for any story. For structures with significant torsional deflections, the story drift (Δ_s) shall be computed as the largest difference of the deflections along any of the edges of the structure at the top and bottom of the story under consideration.

12.12.1.1 Moment Frames in Structures Assigned to Seismic Design Categories D, E, and F having horizontal irregularity Types 1a or 1b of Table 12.3-1, the design story drift, Δ_s, shall be computed by the procedures in Chapters 12 and 16 and a rational value of member and restraint stiffness shall be incorporated in dynamic analyses unless smaller variations can be justified based on field measurements of dynamic soil properties or direct measurements of dynamic foundation stiffness. Where foundation flexibility is included for the linear analysis procedures in Chapters 12 and 16, the load-deformation characteristics of the foundation-soil system (foundation stiffness) shall be modeled in accordance with the requirements of this section. The linear load-deformation behavior of foundations shall be represented by an equivalent linear stiffness using soil properties that are compatible with the soil strain levels associated with the design earthquake motion. The strain-compatible shear modulus, G, and the associated strain-compatible shear wave velocity, v_s, needed for the evaluation of equivalent linear stiffness shall be determined using the criteria in Section 19.2.1.1 or based on a site-specific study. A 50 percent increase and decrease in stiffness shall be incorporated in dynamic analyses unless smaller variations can be justified based on field measurements of dynamic soil properties or direct measurements of dynamic foundation stiffness. The largest values of response shall be used in design.

12.12.2 Diaphragm Deflection. The deflection in the plane of the diaphragm, as determined by engineering analysis, shall not exceed the permissible deflection of the attached elements. Permissible deflection shall be that deflection that will permit the attached element to maintain its structural integrity under the individual loading and continue to support the prescribed loads.

12.12.3 Building Separation. All portions of the structure shall be designed and constructed to act as an integral unit in resisting seismic forces unless separated structurally by a distance sufficient to avoid damaging contact under total deflection (δ_s) as determined in Section 12.8.6.

12.12.4 Deformation Compatibility for Seismic Design Categories D through F. For structures assigned to Seismic Design Category D, E, or F, every structural component not included in the seismic force-resisting system in the direction under consideration shall be designed to be adequate for the gravity load effects and the seismic forces resulting from displacement to the design story drift (Δ_s) as determined in accordance with Section 12.8.6 (see also Section 12.12.1).

EXCEPTION: Reinforced concrete frame members not designed as part of the seismic force-resisting system shall comply with Section 21.9 of ACI 318.

Where determining the moments and shears induced in components that are not included in the seismic force-resisting system in the direction under consideration, the stiffening effects of adjoining rigid structural and nonstructural elements shall be considered and a rational value of member and restraint stiffness shall be used.

12.13 FOUNDATION DESIGN

12.13.1 Design Basis. The design basis for foundations shall be as set forth in Section 12.1.5.

12.13.2 Materials of Construction. Materials used for the design and construction of foundations shall comply with the requirements of Chapter 14. Design and detailing of steel piles shall comply with Section 14.1.8. The design and detailing of concrete piles shall comply with Section 14.2.3.

12.13.3 Foundation Load-Deformation Characteristics. Where foundation flexibility is included for the linear analysis procedures in Chapters 12 and 16, the load-deformation characteristics of the foundation-soil system (foundation stiffness) shall be modeled in accordance with the requirements of this section. The linear load-deformation behavior of foundations shall be represented by an equivalent linear stiffness using soil properties that are compatible with the soil strain levels associated with the design earthquake motion. The strain-compatible shear modulus, G, and the associated strain-compatible shear wave velocity, v_s, needed for the evaluation of equivalent linear stiffness shall be determined using the criteria in Section 19.2.1.1 or based on a site-specific study. A 50 percent increase and decrease in stiffness shall be incorporated in dynamic analyses unless smaller variations can be justified based on field measurements of dynamic soil properties or direct measurements of dynamic foundation stiffness. The largest values of response shall be used in design.

12.13.4 Reduction of Foundation Overtwisting. Overtwisting effects at the soil-foundation interface are permitted to be reduced by 25 percent for foundations of structures that satisfy both of the following conditions:

a. The structure is designed in accordance with the Equivalent Lateral Force Analysis as set forth in Section 12.8.

b. The structure is not an inverted pendulum or cantilevered column type structure.

Overtwisting effects at the soil-foundation interface are permitted to be reduced by 10 percent for foundations of structures designed in accordance with the modal analysis requirements of Section 12.9.

TABLE 12.12-1 ALLOWABLE STORY DRIFT, $\Delta_{s,\text{a}}$, δ_s

<table>
<thead>
<tr>
<th>Structure</th>
<th>Occupancy Category</th>
<th>1 in H</th>
<th>1/2 in</th>
<th>1/3 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceiling and exterior wall systems that have been designed to accommodate the story drift, $\Delta_{s,\text{a}}$</td>
<td>0.025%</td>
<td>0.020%</td>
<td>0.018%</td>
<td></td>
</tr>
<tr>
<td>Masonry cantilever shear wall structures</td>
<td>0.010%</td>
<td>0.010%</td>
<td>0.010%</td>
<td></td>
</tr>
<tr>
<td>Other masonry shear wall structures</td>
<td>0.020%</td>
<td>0.015%</td>
<td>0.010%</td>
<td></td>
</tr>
<tr>
<td>All other structures</td>
<td>0.020%</td>
<td>0.015%</td>
<td>0.010%</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta_{s,\text{a}}$ is the story height below Level x.

Δ_s is obtained from Table 12.12-1 for any story. For structures with significant torsional deflections, the story drift should be computed as the largest difference of the deflections along any of the edges of the structure at the top and bottom of the story under consideration.

*For seismic force-resisting systems comprised solely of moment frames in Seismic Design Categories D, E, and F: the allowable story drift shall comply with the requirements of Section 12.12.1.

EXCEPTION: Structures in which the basic structural system consists of masonry shear walls designed as vertical elements cantilevered from their base or foundation support which are so constructed that moment transfer between shear walls (coupling) is negligible.
12.13.5 Requirements for Structures Assigned to Seismic Design Category C. In addition to the requirements of Section 11.8.2, the following foundation design requirements shall apply to structures assigned to Seismic Design Category C.

12.13.6.3 General Pile Design Requirement. Piling shall be confined by competent rock, hard cohesive soils, very dense granular soils, or other approved means.

12.13.5.2 Foundation Ties. Individual pile caps, drilled piers, or caissons shall be interconnected by ties. All ties shall have a design strength in tension or compression at least equal to 10 percent of S_{DR} times the larger pile cap or column factored dead plus factored live load unless it is demonstrated that equivalent restraint will be provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils, very dense granular soils, or other approved means.

12.13.5.3 Pile Anchorage Requirements. In addition to the requirements of Section 14.2.3.1, anchorage of piles shall comply with this section. Where required for resistance to uplift forces, anchorages of steel pipe (round HSS sections), concrete-filled steel pipe or H piles to the pile cap shall be made by means other than concrete bond to the bare steel section.

EXCEPTION: Anchorages of concrete-filled steel pipe piles is permitted to be accomplished using deformed bars developed into the concrete portion of the pile.

12.13.6 Requirements for Structures Assigned to Seismic Design Categories D through F. In addition to the requirements of Sections 11.8.2, 11.8.3, 14.1.8, and 14.2.3.2, the following foundation design requirements shall apply to structures assigned to Seismic Design Category D, E, or F. Design and construction of concrete foundation components shall conform to the requirements of ACI 318, Section 21.8, except as modified by the requirements of this section.

EXCEPTION: Detached one- and two-family dwellings of light-frame construction not exceeding two stories in height above grade need only comply with the requirements of Sections 11.8.2, 11.8.3, and 12.13.5.

12.13.6.1 Pole-Type Structures. Where construction employing posts or poles as columns embedded in earth or embedded in concrete footings in the earth is used to resist lateral loads, the depth of embedment required for posts or poles to resist seismic forces shall be determined by means of the design criteria established in the foundation investigation report.

12.13.6.2 Foundation Ties. Individual pile caps, drilled piers, or caissons shall be interconnected by ties. All ties shall have a design strength in tension or compression at least equal to a force equal to 10 percent of S_{DR} times the larger pile cap or column factored dead plus factored live load unless it is demonstrated that equivalent restraint will be provided by reinforced concrete beams within slabs on grade or reinforced concrete slabs on grade or confinement by competent rock, hard cohesive soils, very dense granular soils, or other approved means.

12.13.6.3 General Pile Design Requirement. Piling shall be designed and constructed to withstand deformations from earth-quake ground motions and structure response. Deformations shall include both free-field soil strains (without the structure) and deformations induced by lateral pile resistance to structure seismic forces, all as modified by soil-pile interaction.

12.13.6.4 Batter Piles. Batter piles and their connections shall be capable of resisting forces and moments from the load combinations with overstrength factor of Section 12.4.3.2 or 12.14.3.2.2. Where vertical and batter piles act jointly to resist foundation forces as a group, these forces shall be distributed to the individual piles in accordance with their relative horizontal and vertical rigidities and the geometric distribution of the piles within the group.

12.13.6.5 Pile Anchorage Requirements. In addition to the requirements of Section 12.3.5.3, anchorage of piles shall comply with this section. Design of anchorage of piles into the pile cap shall consider the combined effect of axial forces due to uplift and bending moments due to the pile cap. For piles required to resist uplift forces or provide rotational restraint, anchorage into the pile cap shall be capable of developing the following:

1. In the case of uplift, the lesser of the nominal tensile strength of the longitudinal reinforcement in a concrete pile, or the nominal tensile strength of a steel pile, or 1.3 times the pile pullout resistance, or the axial tension force resulting from the load combinations with overstrength factor of Section 12.4.3.2 or 12.14.3.2.2. The pile pullout resistance shall be taken as the ultimate frictional or adhesive force that can be developed between the soil and the pile plus the pile weight.

2. In the case of rotational restraint, the lesser of the axial and shear forces and moments resulting from the load combinations with overstrength factor of Section 12.4.3.2 or 12.14.3.2.2 or development of the full axial, bending, and shear nominal strength of the pile.

12.13.6.6 Splices of Pile Segments. Splices of pile segments shall develop the nominal strength of the pile section, but the splice need not develop the nominal strength of the pile in tension, shear, and bending where it has been designed to resist axial and shear forces and moments from the load combinations with overstrength factor of Section 12.4.3.2 or 12.14.3.2.2.

12.13.6.7 Pile Soil Interaction. Pile moments, shears, and lateral deflections used for design shall be determined considering the interaction of the shaft and soil. Where the ratio of the depth of embedment of the pile to the pile diameter or width is less than or equal to 6, the pile is permitted to be assumed to be flexurally rigid with respect to the soil.

12.13.6.8 Pile Group Effects. Pile group effects from soil on lateral pile nominal strength shall be included where pile center-to-center spacing in the direction of lateral force is less than eight pile diameters or widths. Pile group effects on vertical nominal strength shall be included where pile center-to-center spacing is less than three pile diameters or widths.

12.14 SIMPLIFIED ALTERNATIVE STRUCTURAL DESIGN CRITERIA FOR SIMPLE BEARING WALLS OR BUILDING FRAME SYSTEMS

12.14.1.1 Simplified Design Procedure. The procedures of this section are permitted to be used in lieu of other analytical procedures in Chapter 12 for the analysis and design of simple buildings with bearing wall or building frame systems, subject to all of the limitations listed in this Section 12.14.1.1. Where these procedures are used, the seismic design category shall be determined from Table 11.6.1 using the value of S_{DR} from Section 12.14.8.1.
TABLE 12.14-1 DESIGN COEFFICIENTS AND FACTORS FOR SEISMIC FORCE–RESISTING SYSTEMS FOR SIMPLIFIED DESIGN PROCEDURE

<table>
<thead>
<tr>
<th>Seismic Force–Resisting System</th>
<th>ASCE 7 Section where Detailing Requirements are Specified</th>
<th>Response Modification Coefficient, R</th>
<th>Seismic Design Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. BEARING WALL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Special reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.6</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>2. Ordinary reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.4</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>3. Detached plain concrete shear walls</td>
<td>14.2 and 14.2.3.3</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>4. Ordinary plain concrete shear walls</td>
<td>14.2 and 14.2.3.1</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>5. Intermediate precast shear walls</td>
<td>14.2 and 14.2.3.5</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>8. Ordinary reinforced masonry shear walls</td>
<td>14.4 and 14.4.3</td>
<td>3/4</td>
<td>P</td>
</tr>
<tr>
<td>9. Ordinary masonry shear walls</td>
<td>14.4</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>10. Detached plain masonry shear walls</td>
<td>14.4</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>11. Ordinary plain masonry shear walls</td>
<td>14.4</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>12. Precast masonry shear walls</td>
<td>14.4</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>13. Light-frame walls with shear panels of all other materials permitted up to 35 ft in height in Seismic Design Category D and not permitted in Seismic Design Category E</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>14. Light-frame walls with shear panels of all other materials</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>15. Light-frame wall systems using flat strap bracing</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>B. BUILDING FRAME SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Steel eccentrically braced frames, moment-resisting connections at columns away from links</td>
<td>14.1</td>
<td>8</td>
<td>P</td>
</tr>
<tr>
<td>2. Steel eccentrically braced frames, non-moment-resisting connections at columns away from links</td>
<td>14.1</td>
<td>7</td>
<td>P</td>
</tr>
<tr>
<td>3. Special steel concentrically braced frames</td>
<td>14.1</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>5. Special reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.6</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>8. Ordinary reinforced concrete shear walls</td>
<td>14.2 and 14.2.3.4.1</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>9. Detailed plain concrete shear walls</td>
<td>14.2 and 14.2.3.2</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>12. Ordinary plain concrete shear walls</td>
<td>14.2 and 14.2.3.1</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>13. Intermediate precast shear walls</td>
<td>14.2 and 14.2.3.5</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>16. Ordinary precast shear walls</td>
<td>14.2 and 14.2.3.3</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>14. Composite steel and concrete eccentrically braced frames</td>
<td>14.3</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>15. Composite steel and concrete concentrically braced frames</td>
<td>14.3</td>
<td>6</td>
<td>P</td>
</tr>
<tr>
<td>16. Ordinary composite steel and concrete braced frames</td>
<td>14.3</td>
<td>3</td>
<td>P</td>
</tr>
<tr>
<td>17. Composite steel plate shear walls</td>
<td>14.3</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>18. Special composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>19. Ordinary composite reinforced concrete shear walls with steel elements</td>
<td>14.3</td>
<td>5</td>
<td>P</td>
</tr>
<tr>
<td>20. Special reinforced masonry shear walls</td>
<td>14.4</td>
<td>5/4</td>
<td>P</td>
</tr>
<tr>
<td>22. Ordinary reinforced masonry shear walls</td>
<td>14.4</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>23. Detached plain masonry shear walls</td>
<td>14.4</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>24. Ordinary plain masonry shear walls</td>
<td>14.4</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>25. Precast masonry shear walls</td>
<td>14.4</td>
<td>1/2</td>
<td>P</td>
</tr>
<tr>
<td>26. Light-frame walls, detached with wood structural panels rated for shear resistance or steel sheets</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>27. Light-frame walls with shear panels of all other materials</td>
<td>14.1, 14.1.4.2, and 14.5</td>
<td>4</td>
<td>P</td>
</tr>
</tbody>
</table>

*Response modification coefficient, R, for use throughout the standard.
+P = permitted, NP = not permitted.
Light-frame walls with shear panels of all other materials permitted up to 35 ft in height in Seismic Design Category D and not permitted in Seismic Design Category E.
The simplified design procedure is permitted to be used if the following limitations are met:

1. The structure shall qualify for Occupancy Category I or II in accordance with Table 1-1.
2. The site class, defined in Chapter 20, shall not be class E or F.
3. The structure shall not exceed three stories in height above grade.
4. The seismic-force resisting system shall be either a bearing wall system or building frame system, as indicated in Table 12.14-1.
5. The structure shall have at least two lines of lateral resistance in each of two major axis directions.
6. At least one line of resistance shall be provided on each side of the center of mass in each direction.
7. For structures with flexible diaphragms, overhangs beyond the outside line of shear walls or braced frames shall satisfy the following:
 \[a \leq \frac{d}{5} \]
 (12.14-1)

where
- \(a \) = the distance perpendicular to the forces being considered from the extreme edge of the diaphragm to the line of vertical resistance closest to that edge
- \(d \) = the depth of the diaphragm parallel to the forces being considered at the line of vertical resistance closest to the edge

8. For buildings with a diaphragm that is not flexible, the distance between the center of rigidity and the center of mass parallel to each major axis shall not exceed 15 percent of the greatest width of the diaphragm parallel to that axis. In addition, the following shall be satisfied for each major axis direction:

\[
\sum_{i=1}^{n} k_{ii} d_{i}^2 + \sum_{j=1}^{m} k_{jj} d_{j}^2 \geq 2.5 \left(0.05 + \frac{e_{1}}{b_{2}} \right) b_{2} \sum_{i=1}^{n} k_{ii}
\]
(12.14-2)

where (see Fig. 12.14-1):
- \(k_{ii} \) = the lateral load stiffness of wall “i” or braced frame “i” parallel to major axis 1
- \(k_{jj} \) = the lateral load stiffness of wall “j” or braced frame “j” parallel to major axis 2

Minimum Design Loads for Buildings and Other Structures 137
d\textsubscript{ij} = the distance from the wall "i" or braced frame "i" to the center of rigidity, perpendicular to major axis 1

d\textsubscript{xy} = the distance from the wall "x" or braced frame "y" to the center of rigidity, perpendicular to major axis 2

e\textsubscript{l} = the distance perpendicular to major axis 1 between the center of rigidity and the center of mass

b\textsubscript{1} = the width of the diaphragm perpendicular to major axis 1

m = the number of walls and braced frames resisting lateral force in direction 1

n = the number of walls and braced frames resisting lateral force in direction 2

Eq. 12.14-2 need not be checked where a structure fulfills all the following limitations:

1. The arrangement of walls or braced frames is symmetric about each major axis direction.
2. The distance between the two most separated lines of walls or braced frames is at least 90 percent of the dimension of the structure perpendicular to that axis direction.
3. The stiffness along each of the lines considered for item 2 above is at least 33 percent of the total stiffness in that axis direction.

9. Lines of resistance of the lateral force-resisting system shall be oriented at angles of no more than 15\degree from alignment with the major orthogonal horizontal axes of the building.

10. The simplified design procedure shall be used for each major orthogonal horizontal axis of the building.

11. System irregularities caused by in-plane or out-of-plane offsets of lateral force-resisting elements shall not be permitted.

EXCEPTION: Out-of-plane and in-plane offsets of shear walls are permitted in two-story buildings of light-frame construction provided they do not exceed 2\% of the width of the diaphragm perpendicular to major axis 1.

12. The lateral-load-resistance of any story shall not be less than 80\% of the story above.

12.14.1.2 Reference Documents. The reference documents listed in Chapter 23 shall be used in accordance with Section 12.14.

12.14.1.3 Definitions. The definitions listed in Section 11.2 shall be used in addition to the following:

PRINCIPAL ORTHOGONAL HORIZONTAL DIRECTIONS: The orthogonal directions that overlay the majority of lateral force-resisting elements.

12.14.1.4 Notation.

\begin{align*}
D & = \text{The effect of dead load} \\
E & = \text{The effect of horizontal and vertical earthquake-induced forces} \\
E\textsubscript{b} & = \text{Acceleration-based site coefficient, see Section 12.14.8.1} \\
E\textsubscript{s} & = \text{The portion of the seismic base shear, V, induced at Level i} \\
E\textsubscript{x} & = \text{The seismic design force applicable to a particular structural component} \\
E\textsubscript{d} & = \text{See Section 12.14.8.2} \\
h\textsubscript{i} & = \text{The height above the base to Level i} \\
h\textsubscript{s} & = \text{The height above the base to Level s} \\
I & = \text{The building level referred to by the subscript i; } i = 1 \text{ designates the first level above the base} \\
L & = \text{The level that is uppermost in the main portion of the building} \\
ox & = \text{See "Level l"} \\
Q & = \text{The effect of horizontal seismic forces} \\
R & = \text{The response modification coefficient as given in Table 12.14-1} \\
S\textsubscript{ds} & = \text{See Section 12.14.8.1} \\
S\textsubscript{e} & = \text{See Section 11.4.1} \\
V & = \text{The total design shear at the base of the structure in the direction of interest, as determined using the procedure of 12.14.8.1} \\
V\textsubscript{s} & = \text{The seismic design shear in Story s, see Section 12.14.8.3} \\
W & = \text{See Section 12.14.8.1} \\
W\textsubscript{w} & = \text{Weight of wall} \\
W\textsubscript{c} & = \text{Weight of structural component} \\
w\textsubscript{i} & = \text{The portion of the effective seismic weight, W, located at or assigned to Level i} \\
w\textsubscript{s} & = \text{See Section 12.14.8.2} \\

\end{align*}

12.14.2 Design Basis. The structure shall include complete lateral and vertical force-resisting systems with adequate strength to resist the design seismic forces, specified in this section, in combination with other loads. Design seismic forces shall be distributed to the various elements of the structure and their connections using a linear elastic analysis in accordance with the procedures of Section 12.14.8. The members of the seismic force-resisting system and their connections shall be detailed to conform with the applicable requirements for the selected structural system as indicated in Section 12.14.4.1. A continuous load path, or paths, with adequate strength and stiffness shall be provided to transfer all forces from the point of application to the final point of resistance. The foundation shall be designed to accommodate the forces developed.

12.14.3 Seismic Load Effects and Combinations. All members of the structure, including those not part of the seismic force-resisting system, shall be designed using the seismic load effects of Section 12.14.3 unless otherwise exempted by this standard. Seismic load effects are the axial, shear, and flexural member forces resulting from application of horizontal and vertical seismic forces as set forth in Section 12.14.3.1. Where specifically required, seismic load effects shall be modified to account for system overstrength, as set forth in Section 12.14.3.1.3.

12.14.3.1 Seismic Load Effect. The seismic load effect, E, shall be determined in accordance with the following:

1. For use in load combination 5 in Section 2.3.2 or load combination 5 and 6 in Section 2.4.1, E shall be determined in accordance with Eq. 12.14-3 as follows:

\[E = E\textsubscript{d} + E\textsubscript{a} \quad (12.14-3) \]

2. For use in load combination 7 in Section 2.3.2 or load combination 7 and 8 in Section 2.4.1, E shall be determined in accordance with Eq. 12.14-4 as follows:

\[E = E\textsubscript{d} - E\textsubscript{e} \quad (12.14-4) \]
where

\[E = \text{seismic load effect} \]
\[E_h = \text{effect of horizontal seismic forces as defined in Section 12.14.3.1} \]
\[E_v = \text{effect of vertical seismic forces as defined in Section 12.14.3.1} \]

12.14.3.1.1 Horizontal Seismic Load Effect. The horizontal seismic load effect, \(E_h \), shall be determined in accordance with Eq. 12.14-5 as follows:

\[E_h = Q_E \] (12.14-5)

where

\[Q_E = \text{effects of horizontal seismic forces from } V \text{ or } F_p \text{ as specified in Sections 12.14.7.5, 12.14.8.1, and 13.3.1} \]

12.14.3.1.2 Vertical Seismic Load Effect. The vertical seismic load effect, \(E_v \), shall be determined in accordance with Eq. 12.14-6 as follows:

\[E_v = 0.25QE D \] (12.14-6)

where

\[S_{SD} = \text{design spectral response acceleration parameter at short periods obtained from Section 11.4.4} \]

12.14.3.1.3 Seismic Load Combinations. Where the prescribed seismic load effect, \(E \), defined in Section 12.14.3.1 is combined with the effects of other loads as set forth in Chapter 2, the following seismic load combinations for structures not subject to flood or atmospheric ice loads shall be used in lieu of the seismic load combinations in Sections 2.3.2 or 2.4.1. Basic Combinations for Strength Design (see Sections 2.3.2 and 2.2 for notation).

5. \((1.2 + 0.25S_{SD})D + Q_E + L + 0.25S \)

7. \((0.9 - 0.25S_{SD})D + Q_E + 1.6H \)

NOTES:
1. The load factor on \(J \), in combination \(5 \) is permitted to equal 0.5 for all occupancies in which \(L_o \) in Table 4-1 is less than or equal to 100 psi (0.689 MPa), with the exception of gas stations or areas occupied as places of public assembly.
2. The load factor on \(H \) shall be set equal to zero in combination \(7 \) if the structural action due to \(H \) counteracts that due to \(E \). Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in \(H \) but shall be included in the design resistance.

Basic Combinations for Allowable Stress Design (see Sections 2.4.1 and 2.2 for notation).

5. \((1.0 + 0.145S_{SD})D + H + F + 0.75Q_E \)

6. \((1.0 + 0.105S_{SD})D + H + F + 0.525Q_E + 0.75L \)

8. \((0.6 - 0.145S_{SD})D + 0.75Q_E + H \)

12.14.3.2 Seismic Load Effect Including a 2.5 Overstrength Factor. Where specifically required, conditions requiring overstrength factor applications shall be determined in accordance with the following:

1. For use in load combination 5 in Section 2.3.2 or load combinations 5 and 6 in Section 2.4.1, \(E \) shall be taken equal to \(E_{aw} \) as determined in accordance with Eq. 12.14-7 as follows:

\[E_h = E_{aw} + E_v \] (12.14-7)

2. For use in load combination 7 in Section 2.3.2 or load combination 8 in Section 2.4.1, \(E_v \) shall be taken equal to \(E_{aw} \) as determined in accordance with Eq. 12.14-8 as follows:

\[E_v = E_{aw} \] (12.14-8)

EXCEPTION: The value of \(E_{aw} \) need not exceed the maximum force that can develop in the element as determined by a rational, plastic mechanism analysis or nonlinear response analysis utilizing realistic expected values of material strength.

12.14.3.2.1 Horizontal Seismic Load Effect with a 2.5 Overstrength Factor. The horizontal seismic load effect with overstrength factor, \(E_{aw} \), shall be determined in accordance with Eq. 12.14-9 as follows:

\[E_{aw} = 2.5QE \] (12.14-9)

where

\[Q_E = \text{effects of horizontal seismic forces from } V \text{ or } F_p \text{ as specified in Sections 12.14.8.1, 12.14.7.5, and 13.3.1} \]

EXCEPTION: The value of \(E_{aw} \) need not exceed the maximum force that can develop in the element as determined by a rational, plastic mechanism analysis or nonlinear response analysis utilizing realistic expected values of material strength.

12.14.3.2.2 Load Combinations with Overstrength Factor. Where the seismic load effect with overstrength, \(E_{aw} \), defined in Section 12.14.3.2 is combined with the effects of other loads as set forth in Section 2, the following seismic load combinations for structures not subject to flood or atmospheric ice loads shall be used in lieu of the seismic load combinations in Sections 2.3.2 or 2.4.1. Basic Combinations for Strength Design with Overstrength Factor (see Sections 2.3.2 and 2.2 for notation).

5. \((1.2 + 0.25S_{SD})D + 2.5Q_E + L + 0.25S \)

7. \((0.9 - 0.25S_{SD})D + 2.5Q_E + 1.6H \)

NOTES:
1. The load factor on \(J \), in combination \(5 \) is permitted to equal 0.5 for all occupancies in which \(L_o \) in Table 4-1 is less than or equal to 100 psi (0.689 MPa), with the exception of gas stations or areas occupied as places of public assembly.
2. The load factor on \(H \) shall be set equal to zero in combination \(7 \) if the structural action due to \(H \) counteracts that due to \(E \). Where lateral earth pressure provides resistance to structural actions from other forces, it shall not be included in \(H \) but shall be included in the design resistance.

Basic Combinations for Allowable Stress Design with Overstrength Factor (see Sections 2.4.1 and 2.2 for notation).

5. \((1.0 + 0.145S_{SD})D + H + F + 1.75Q_E \)

6. \((1.0 + 0.105S_{SD})D + H + F + 1.315Q_E + 0.75L \)

8. \((0.6 - 0.145S_{SD})D + 1.75Q_E + H \)

12.14.3.2.3 Allowable Stress Increase for Load Combinations with Overstrength. Where allowable stress design methodologies are used with the seismic load effect defined in
Section 12.14.3.2 applied in load combinations 5, 6, or 8 of Section 2.4.1, allowable stresses are permitted to be determined using an allowable stress increase of 1.2. This increase shall not be combined with increases in allowable stresses or load combination reductions otherwise permitted by this standard or the material reference document except that combination with the duration of load increases permitted in AF&PA NDS is permitted.

12.14.4.1 Selection and Limitations. The basic lateral and vertical seismic force–resisting system shall conform to one of the types specified in Table 12.14-1 and shall conform to all of the detailing requirements referenced in the table. The appropriate response modification coefficient, R, indicated in Table 12.14-1 shall be used in determining the base shear and element design forces as set forth in the seismic requirements of this standard.

Special framing and detailing requirements are indicated in Section 12.14.7 and in Sections 14.1, 14.2, 14.3, 14.4, and 14.5 for structures assigned to the various seismic design categories.

12.14.4.2 Combinations of Framing Systems.

12.14.4.2.1 Horizontal Combinations. Different seismic force–resisting systems are permitted to be used in each of the two principal orthogonal building directions. Where a combination of different structural systems is utilized to resist lateral forces in the same direction, the value of R used for design in that direction shall not be greater than the least value of R for any of the systems utilized in that direction.

EXCEPTION: For buildings of light-frame construction or have flexible diaphragms and that are two stories or less in height, resisting elements are permitted to be designed using the least value of R of the different seismic force–resisting systems found in each independent line of framing. The value of R used for design of diaphragms in such structures shall not be greater than the least value of any of the systems utilized in that same direction.

12.14.4.2.2 Vertical Combinations. Different seismic force–resisting systems are permitted to be used in different stories. The value of R used in a given direction shall not be greater than the least value of any of the systems used in that direction.

12.14.4.2.3 Combination Framing Detailing Requirements. The detailing requirements of Section 12.14.7 required by the higher response modification coefficient, R, shall be used for structural components common to systems having different response modification coefficients.

12.14.5 Diaphragm Flexibility. Diaphragms constructed of steel decking, (untopped), wood structural panels, or similar panelized construction are permitted to be considered flexible.

12.14.6 Application of Loading. The effects of the combination of loads shall be considered as prescribed in Section 12.14.3. The design seismic forces are permitted to be applied separately in each orthogonal direction and the combination of effects from the two directions need not be considered. Reversal of load shall be considered.

12.14.7 Design and Detailing Requirements. The design and detailing of the components of the seismic force–resisting system shall comply with the requirements of this section. The foundation shall be designed to resist the forces developed and accommodate the lateral movements imparted to the structure by the design ground motions. The dynamic nature of the forces, the expected ground motion, the design basis for strength and energy dissipation capacity of the structure, and the dynamic properties of the soil shall be included in the determination of the foundation design criteria. The design and construction of foundations shall comply with Section 12.13. Structural elements including foundation elements shall conform to the material design and detailing requirements set forth in Chapter 14.

12.14.7.1 Connections. All parts of the structure between separation joints shall be interconnected, and the connection shall be capable of transmitting the seismic force, F_p, induced by the parts being connected. Any smaller portion of the structure shall be tied to the remainder of the structure with elements having a strength of 0.20 times the short period design spectral response acceleration coefficient, $S_{0,5}$, times the weight of the smaller portion or 5 percent of the portion’s weight, whichever is greater.

A positive connection for resisting a horizontal force acting parallel to the member shall be provided for each beam, girders, or truss either directly to its supporting elements, or to slabs designed to act as diaphragms. Where the connection is through a diaphragm, then the member’s supporting element must also be connected to the diaphragm. The connection shall have minimum design strength of 5 percent of the dead plus live load reaction.

12.14.7.2 Openings or Restraint Building Corners. Except where otherwise specifically provided for in this standard, openings in shear walls, diaphragms, or other plate-type elements, shall be provided with reinforcement at the edges of the openings or reentrant corners designed to transfer the stress into the structure. The edge reinforcement shall extend into the body of the wall or diaphragm a distance sufficient to develop the force in the reinforcement.

EXCEPTION: Parallel shear walls of wood structural panels are permitted where designed in accordance with AF&PA SDPWS.

12.14.7.3 Collector Elements. Collector elements shall be provided with adequate strength to transfer the seismic forces originating in other portions of the structure to the element providing the resistance to those forces (see Fig. 12.10-1). Collector elements, splices, and their connections to resisting elements shall be designed to resist the forces defined in Section 12.14.3.2.

EXCEPTION: In structures, or portions thereof, braced entirely by light-frame shear walls, collector elements, splices, and connections to resisting elements are permitted to be designed to resist forces in accordance with Section 12.14-7.4.

12.14.7.4 Diaphragms. Floor and roof diaphragms shall be designed to resist the design seismic forces at each level, F_p, calculated in accordance with Section 12.14.8.2. Where the diaphragm is required to transfer seismic forces from the vertical resisting elements above the diaphragm to other vertical resisting elements below the diaphragm due to changes in relative lateral stiffness in the vertical elements, the transferred portion of the seismic shear force at that level, V_t, shall be added to the diaphragm design force. Diaphragms shall provide for both the shear and bending stresses resulting from these forces. Diaphragms shall have ties or struts to distribute the wall anchorage forces into the diaphragm. Diaphragm connections shall be positive, mechanical, or welded type connections.

12.14.7.5 Anchorage of Concrete or Masonry Structural Walls. Concrete or masonry structural walls shall be anchored to all floors, roofs, and members that provide out-of-plane lateral support for the wall or that are supported by the wall. The anchorage shall provide a positive direct connection between the wall and floor, roof, or supporting member with the strength to resist horizontal forces specified in this section for structures with flexible diaphragms or of Section 13.3.1 (using a_y equal to 1.0 and R_p equal to 2.5) for structures with diaphragms that are not flexible.
Anchorage of structural walls to flexible diaphragms shall have the strength to develop the out-of-plane force given by Eq. 12.14-8:

\[F_p = 0.8S_{SDS}W_p \]
(12.14-10)

where

- \(F_p \) = the design force in the individual anchors
- \(S_{SDS} \) = the design spectral response acceleration at short periods per Section 12.14.8.1
- \(W_p \) = the weight of the wall tributary to the anchor

EXCEPTION: For Seismic Design Category B, the coefficient 0.8 shall be 0.4, with a minimum force of 10 percent of the tributary weight of the wall or 400 lb/in² in pounds per foot, whichever is greater.

12.14.7.5.1 Transfer of Anchorage Forces into Diaphragms. Diaphragms shall be provided with continuous ties or struts between diaphragm chords to distribute these anchorage forces into the diaphragms. Added chords are permitted to be used to form subdiaphragms to transmit the anchorage forces to the main continuous cross ties. The maximum length-to-width ratio of the structural subdiaphragms shall be 2.5 to 1. Connections and anchorages capable of resisting the prescribed forces shall be provided between the diaphragm and the attached components. Connections shall extend into the diaphragm a sufficient distance to develop the force transferred into the diaphragm.

12.14.7.5.2 Wood Diaphragms. In wood diaphragms, the continuous ties shall be in addition to the diaphragm sheathing. Anchorage shall not be accomplished by use of toenails or nails subject to withdrawal nor shall wood ledgers or framing be used in cross-grain bending or cross-grain tension. The diaphragm sheathing shall not be considered effective as providing the ties or struts required by this section.

12.14.7.5.3 Metal Deck Diaphragms. In metal deck diaphragms, the metal deck shall not be used as the continuous ties required by this section in the direction perpendicular to the deck span.

12.14.7.5.4 Embedded Straps. Diaphragms to wall anchorage using embedded straps shall be attached to or hooked around the reinforcing steel or otherwise terminated so as to effectively transfer forces to the reinforcing steel.

12.14.7.6 Bearing Walls and Shear Walls. Exterior and interior bearing walls and shear walls and their anchorage shall be designed for a force equal to 40 percent of the short period design spectral response acceleration \(S_{SDS} \) times the weight of wall, \(W_e \), normal to the surface, with a minimum force of 10 percent of the weight of the wall. Interconnection of wall elements and connections to supporting framing systems shall have sufficient ductility, rotational capacity, or sufficient strength to resist shrinkage, thermal changes, and differential foundation settlement where combined with seismic forces.

12.14.7.7 Anchorage of Nonstructural Systems. Where required by Chapter 13, all portions or components of the structure shall be anchored for the seismic force, \(F_p \), prescribed therein.

12.14.8 Simplified Lateral Force Analysis Procedure. An equivalent lateral force analysis shall consist of the application of equivalent static lateral forces to a linear mathematical model of the structure. The lateral forces applied in each direction shall sum to a total seismic base shear given by Section 12.14.8.1 and shall be distributed vertically in accordance with Section 12.14.8.2. For purposes of analysis, the structure shall be considered fixed at the base.

12.14.8.1 Seismic Base Shear. The seismic base shear, \(V \), in a given direction shall be determined in accordance with Eq. 12.14-9:

\[V = F_{SDS}W \]
(12.14-11)

where

- \(F_{SDS} \) = the portion of the effective seismic weight of the structure, \(W \), at level \(v \).

12.14.8.2 Vertical Distribution. The forces at each level shall be calculated using the following equation:

\[F_v = \frac{w_s}{x}V \]
(12.14-12)

where \(w_s \) = the portion of the effective seismic weight of the structure, \(W \), at level \(v \).

12.14.8.3 Horizontal Shear Distribution. The seismic design story shear in any story, \(V_i \) (kip or kN), shall be determined from the following equation:

\[V_i = \sum_{i=0}^{n} F_i \]
(12.14-13)

where \(F_i \) = the portion of the seismic base shear, \(V \) (kip or kN) induced at Level \(i \).

12.14.8.3.1 Flexible Diaphragm Structures. The seismic design story shear in stories of structures with flexible diaphragms, as defined in Section 12.14.5, shall be distributed to the vertical elements of the lateral force resisting system using tributary area rules. Two-dimensional analysis is permitted where diaphragms are flexible.

12.14.8.3.2 Structures with Diaphragms That Are Not Flexible. For structures with diaphragms that are not flexible, as defined in Section 12.14.5, the seismic design story shear, \(V_i \), (kip or kN) shall be distributed to the various vertical elements of
the seismic force–resisting system in the story under consideration based on the relative lateral stiffnesses of the vertical elements and the diaphragm.

12.14.8.3.2.1 Torsion. The design of structures with diaphragms that are not flexible shall include the torsional moment, M_t (kip-ft or kN-m) resulting from eccentricity between the locations of center of mass and the center of rigidity.

12.14.8.4 Overturning. The structure shall be designed to resist overturning effects caused by the seismic forces determined in Section 12.14.8.2. The foundations of structures shall be designed for not less than 75 percent of the foundation overturning design moment, M_f (kip-ft or kN-m) at the foundation-soil interface.

12.14.8.5 Drift Limits and Building Separation. Structural drift need not be calculated. Where a drift value is needed for use in material standards, to determine structural separations between buildings, for design of cladding, or for other design requirements, it shall be taken as 1 percent of building height unless computed to be less. All portions of the structure shall be designed to act as an integral unit in resisting seismic forces unless separated structurally by a distance sufficient to avoid damaging contact under the total deflection.