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it is assumed that the earthquake motions act in the direction of the x axis, the
mfluence vector for this case is given by 17 = [1 0 0]. The modal earthquake-
excitation factors for this structure are then obtained by substituting this vector into
Eq. (27-52), and the response is given finally by Eqs. (27-33) to (27-39).

_—?— EXAMPLE E27-6 Because the earthquake-response analysis of a rigid slab
structure of this type involves several features of special interest, the example
structure of Fig. E27-5 will be discussed in some detail. It is assumed that the
three columns supporting the slab are rigidly attached to the foundation and to
the slab, so that the resistance at the top of each column to lateral displacement
in any direction is 12EJJI? = 5 kips/ft. The torsional stiffness of the columns
is negligible.

For the purpose of this example, the three degrees of freedom of the

Rigid slab

/v3 /\I Total mass M =0.5f5tsec2

_— Y1 (each column)
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Slab supported by three columns. /‘fm
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FIGURE E27-6

Evaluation of stiffuess coeflicients for v, = 1: (a) displacement v, = 1 and
resisting column forces; (6) column forces and equilibrating stiffness coefficients,

slab are represented by the displacement components of the corners as shown,
The total mass of the slab is m = 0.5 kip-s¥/ft and is distributed uniformly
over the area. The structure is subjected to an earthquake hawng the response
spectrum of Fig. 'E27-1 and ac‘uné_ui the direction parallel with coordinate vy,
It is desued’tondetermme the max1mum d1sp1acements of the s ab due to thIS
earthqﬁéig )

The mass and st:ﬁ'ness matrices of this system can be evaluated by direct
application of the definitions of the influence coefficients. Considering first
the stiffness matrix, a unit displacement v, = 1 is applied while the other
coordinates are constrained, as shown in Fig. E27-6a. The forces exerted by the
columns in resisting this displacement are shown in this sketch, and the equili-
brating forces corresponding to the degrees of freedom are shown in Fig. 27-6b.
By applying unit displacements of the other two coordinates, the remaining
stiffness coefficients can be determined similarly.

The mass matrix is evaluated by applying a unit acceleration separately
to each degree of freedom and determining the resulting inertia forces in the
slab. For example, Fig. E27-7a shows the unit acceleration #, = 1 and the slab
inertia forces resisting this acceleration, while I'ig. E27-7b shows the mass
influence coefficients which equilibrate these inertial forces. The other mass
coeflicients can be found by unit accelerations of the other two coordinates.
The complete stiffness and mass matrices for the system are

T 4 -2 2 4 -1 3
PRl 2 3 -z m=%l-1 4 =3
El 28 3 61 3 -3 &
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FIGURE E27-7
Evaluation of mass coefficients for ¥ = 1. (ay Acceleration v, = 1 and resisiing
inertia forces; (b) slab inertia forces and cquilibrating mass coefficients.

When the eigenproblem (k — w’m)¥ = 0 is solved, the mode shapes and
frequencies of the system are found to be

0366  1.000 - 1.366 25.36
® = |1.000 1000  1.000 ©? = | 30.00 | (rad/s)?
1.000 —1.000  1.000 94,64

Study of these mode shapes reveals that the first and third represent
rotations about points on the symmeiry diagonal while the second is simple
translation along this diagonal. Obviously these motions could bave been
identified more easily by a more appropriate coordinate system; {ranslation
of the center of mass in the direction of the two diagonals plus rotation about the
center of mass would have been a better choice of coordinates.

The frequencies, periods of vibration, and the spectral velecitics given
by Fig. E27-1 (assuming 5 percent damping) for the three modes 'of this structure
are

5.036 1.25 0.55

@ = | 5.477 | rad/s T=1]115}s S, = ]0.354|ft/s
9.4064 0.65 0.48

Also the generalized masses M, and modal earthquake-excitation factors
», = ¢,’mr wherer’ = {0 0O 1] are

051 - 0.3415
M = | 1.0| kips-s¥/ft & = | —0.5000 kips - s?/ft
0.5 —-0.0915
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Hence the maximum modal displacements are found, from - - o4
.,9? Sin
¥n max
’ ey M n,
to be -
0.0272 _ 0.0493 —0.0124
Yy max = | 0.0745 ] ft Vi ui == 0.0493 | ft V3, max = 0.0091 | ft
0.0745 —0.0493 0.0091

An apprexzimation of the maximum displacement in each coordinate could be
determined from these results by the root-sum-square method. 1

Comparison with Uniform Building Code Requirements

It is of interest to compare the foregoing formulation of expressions for the forces
developed in a building due to seismic excitation with the seismic design requirements
of a typical building code, For example, in the Uniform Building Code (UBC)! the
principal seismic provision defines the effective intensity of the design earthquake in
terms of the maximum shear force which it produces at the base of the building. The
expression for this code base shear force U, is of the form

,OD L kew \ @

where W is the weight of the building, € is the base Sheé_li _CEE@H.E,‘?'EH and k£ is a
factor which dépénds on fhe type of structural fra;

] g system This factor is intended
to account for the relative f:nergy absorbmg capac1ty of the frammg lype and | varies

from 2/ 3 fora I‘lgld JOIﬁted frame which resists lateral forces by flexure of j@g _c_o_lumns
and girders to */; for a box-type structure “assembled frcm shear panels in the
honzontai and vertlcal _planes. “The base-shear coefficient i 1s expressed as a | function

of the tundamental pcrlod of v1brat10n T of the structurc as

_____ e T

| JT

(b)

Also contained in the UBC prov1310ns is a zone factor which reduces the design
forces for zones of less seismicity; the zone factor of umty 1mphed in Eq (a) is in-
tended for the regions of h1ghest se1sn:uc1ty

AR analytical expression corresponding to the code formula of Eq. (a) above
can easily be derived from Eq. (27-40) by considering only the fundamental mode and

! Published by the International Conference of Building Officials, Pasadena, California.




