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Stiffness and Deflection Analysis of Complex
Structures

M. J. TURNER,* R. W. CLOUGH,t H. C. MARTIN,{ ano L. J. TOPP**

ABSTRACT

A method is developed for calculating stiffness influence co-
efficients of complex shell-type structures. The object is to pro-
vide a method that will yield structural data of sufficient accuracy
to be adequate for subsequent dynamic and aeroelastic analyses.

Stiffness of the complete structure is obtained by summing
stifinesses of individual units. Stiffuesses of typical structural
components are derived in the paper. Basic conditions of con-
tinuity and equilibrium are established at selected points (nodes)
in the structure. Increasing the number of nodes increases the
accuracy of results. Any physically possible support conditions
can be taken into account. Details in setting up the analysis can
be performed by nonengineering trained personnel; calculations
are conveniently carried out on automatic digital computing
equipment.

Method is illustrated by application to a simple truss, a flat
plate, and a box beam. Due to shear lag and spar web deflection,
the box beam has a 25 per cent greater deflection than predicted
from beam theory. It is shown that the proposed method cor-
rectly accounts for these effects.

Considerable extension of the material presented in the paper
is possible.

(I) INTRODUCTION

PRESENT CONFIGURATION TRENDS in the design of
high-speed aircraft have created a number of
difficult, fundamental structural problems for the
worker in aeroelasticity and structural dynamics. The
chief problem in this category is to predict, for a given
elastic structure, a comprehensive set of load-deflection
relations which can serve as structural basis for dynamic
load calculations, theoretical vibration and flutter
analyses, estimation of the effects of structural deflec-
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tion on static air loads, and theoretical analysis of aero-
elastic effects on stability and control. This is a prob-
lem of exceptional difficulty when thin wings and tail
surfaces of low aspect ratio, either swept or unswept,
are involved.

It is recognized that camber bending (or rib bending)
is a significant feature of the vibration modes of the
newer configurations, even of the low-order modes;
in order to encompass these characteristics it seems
likely that the load-deflection relations of a practical
structure must be expressed in the form of either de-
flection or stiffness influence coefficients. One ap-
proach is to employ structural models and to determine
the influence coefficients experimentally; it is antici-
pated that the experimental method will be employed
extensively in the future, either in lieu of or as a final
check on the resfilt of analysis. However, elaborate
models are expensive, they take a long time to build,
and tend to become obsolete because of design changes;
for these reasons it is considered essential that a con-
tinuing research effort should be applied to the devel-
opment of analytical methods. It is to be expected
that modern developments in high-speed digital com-
puting machines will make possible a more fundamental
approach to the problems of structural analysis; we
shall expect to base our analysis on a more realistic
and detailed conceptual model of the real structure
than has been used in the past. As indicated by the
title, the present paper is exclusively concerned with
methods of theoretical analysis; also it is our object to
outline the development of a method that is well
adapted to the use of high-speed digital computing
machinery.

(II) ReEviEw oF EXISTING METHODS OF STRUCTURAL
ANALYSIS
(1) Elementary Theories of Flexure and Torsion

The limitations of these venerable theories are too
well known to justify extensive comment. They are
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adequate only for low-order modes of elongated struc-
tures. When the loading is complex (as in the case
of inertia loading associated with a mode of high order)
refinements are required to account for secondary
effects such as shear lag and torsion-bending.

(2) Wide Beam Theory: Schuerch!

Schuerch has devised a generalized theory of com-
bined flexure and torsion which is applicable to multi-
spar wide beams having essentially rigid ribs. Torsion-
bending effects are included but not shear lag. It is
expected that wide beam theory will be used extensively
in the solution of static aeroelastic problems (effect of
air-frame flexibility on steady air loads, stability, etc.).
However, the rigid rib assumption appears to limit its
utility rather severely for vibration and flutter anal-
ysis of thin low aspect ratio wings.

(3) Method of Redundant Forces: Levy, Bisplinghoff and

Lang, Langefors, Rand, Wehle and Lansing?—¢

These writers have contributed the basic papers
leading to the present widespread use of energy prin-
ciples, matrix algebra, and influence coeflicients in the
solution of structural deflection problems. Redundant
internal loads are determined by the principle of least
work, and deflections are obtained by application of
Castigliano’s theorem. The method is, of course,
perfectly general, However, the computational diffi-
culties become severe if the structure'is highly re-
dundant, and the method is not particularly well
adapted to the use of high-speed computing machines.
Rand has suggested a method of solution for stresses
in highly redundant structures which might also be
used for calculating deflections. Instead of using
member loads as redundants, he proposes to employ
systems of self-equilibrating internal stresses. These
redundant stresses may be regarded as perturbations
of a primary stress distribution that is in equilibrium
with the external loads (but does not generally satisfy
compatibility conditions). The number of properly
chosen redundants required to obtain a satisfactory
solution may be considerably less than the “degree of
redundancy.” Successful application of this method
requires a high degree of engineering judgment, and
the accuracy of the results is very difficult to evaluate.

(4) Plate Methods: Fung, Reissner, Benscoter, and

MacNeal'—*

As the trend toward thinner sections approaches the
ultimate limit, we enter first a regime of very thick
walled hollow structures, such that the flexural and
torsional rigidities of the individual walls make a
significant contribution to the overall stiffness of the
entire wing. Finally we come to the solid plate of
variable thickness. During the past few years a sub-
stantial research effort has been devoted to the develop-
ment of methods of deflection analysis for these struc-
tural types, and important contributions have been
made by all of the aforementioned authors.

(5) Direct Stiffness Calculation: Levy, Schuerch 1

In a recent paper Levy has presented a method of
analysis for highly redundaut structures which is par-
ticularly suited to the use of high-speed digital com-
puting machines. The structure is regarded as an
assemblage of beams (ribs and spars) and interspar
torque cells. The stiffness matrix for the entire struc-
ture is computed by simple summation of the stiff-
ness matrices of the elements of the structure. Fi-
nally, the matrix of deflection influence coefﬁqients is
obtained by inversion of the stiffness matrix. §chuerch
has also presented a discussion of the problem from the
point of view of determining the stiffness coefficients.

(I1I) SomE UNSOLVED PROBLEMS

At the present time, it is believed that the greatest
need is to derive a numerical method of analysis for a
class of structures intermediate between the thin
stiffened shell and the solid plate.. These are hollow
structures having a rather large share of the bending
material located in the skin, which is relatively thick
but still thin enough so that we may safely neglect
its plate bending stiffiness. In order to cope with this
class of structures successfully, we must base our
analysis upon a structural idealization that is suffi-
ciently realistic to encompass a fairly general two-
dimensional stress distribution in the cover plates;
and our method of analysis myst yield the load-deflec-
tion relations associated with such stresses. It is char-
acteristic of these problems that the directions of prin-
cipal stresses in certain critical parts of the structure
cannot be determined by inspection. Hence, the
familiar methods of structural analysis based upon the
concepts of axial load carrying members, joined by
membranes carrying pure shear, are not satisfactory,
even if we*employ effective width concepts to account
for the bending resistance of the skin. We should like
to include shear lag, torsion-bending, and Poisson’s
ratio effects to a sufficient approximation for reliable
prediction of vibration modes and natural frequencies
of moderate order. Also, we should like to avoid any
assumptions of closely spaced rigid diaphragms or of
orthotropic cover plates, which have been introduced
in many papers on advanced structural analysis. The
actual rib spacing and finite rib stiffnesses should be
accounted for in a realistic fashion. In summary, what
is required is an approximate numerical method of
analysis which avoids drastic modification of the
geometry of the structure or artificial constraints of its
elastic elements. This is indeed a very large order.
However, modern developments in high-speed digital
computing machines offer considerable hope that
these objectives can be attained.

(IV) MEeTHOD OF DIRECT STIFFNESS CALCULATION

For a given idealized structure, the analysis of
stresses and deflections due to a given system of loads
is a purely mathematical problem. Two conditions
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| must be satisfied in the analysis: (1) the forces de-
veloped in the members must be in equilibrium and (2)
the deformations of the members must be compatible—
ie., consistent with each other and with the boundary
conditions. In addition, the forces and deflections in
each member must be related in accordance with the
stress-strain relationship assumed for the material.
The analysis may be approached from two different
points of view. In one case, the forces acting in the
members of the structure are considered as unknown
quantities. In a statically indeterminate structure,
an infinite number of such force systems exist which
will satisfy the equations of equilibrium. The correct
force system is then selected by satisfying the condi-
tions of compatible deformations in the members.
This approach has heen widely used for the analysis of
all types of indeterminate structures but is, as already
noted, particularly advantageous for structures that
are not highly redundant.

In the other approach, the displacements of the
- joints in the structure are considered as unknown
quantities. An infinite number of systems of mutually
compatible deformations in the members are possible;
the correct pattern of displacements is the one for which
the equations of equilibriumn are satisfied. The con-
cept of static determinateness or indeterminateness is
irrelevant when the analysis is considered from this
viewpoint. This approach is the basis for many re-
laxation type analyses (such as moment distribution)
and has been applied to the analysis of complex dircraft
structures by Levy in the aforementioned paper. This
will be called the method of direct stiffness calculation
hereafter.

After reviewing the various methods available to the
dynamics engineer for computing load-deflection rela-
tions of elastic structures, it is concluded that the most
promising approach to our present difficulties is to ex-
tend further the method of direct stiffness calculation.
The remainder of this paper is concerned with methods
by which that extension may be accomplished.

(V) SmMPLE EXAMPLES OF STIFFNESS INFLUENCE
COEFFICIENTS

(1) Elastic Spring

If an elastic spring deflects an amount 8 under axial
load F, Hooke’s Law applies and

F =k (N

Here & can be regarded as the force required to produce
a unit deflection; hence it can be considered to be a
stiffness influence coefficient,

Eq. (1) can also be written as

8§ =(/kBF = c¢F (2)
where ¢ is the deflection due to a unit force (deflection
influence coefficient).

(2) Two-Dimensional Elastic Body

Extending the above relations to the two-dimensional
body is most conveniently accomplished by introducing
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L =LENGTH
A=AREA »

E =MODULUS
y.v
Oy, -
O, u COS 6y »
1 1 Gos 93'}1
(@) (b) o

F1c. 1. Typical pin-ended truss member.

matrix notation. Egs. (1) and (2) become, respectively,

{F} = [K] {8} (3)
{8} = K17 {F} = [C]{F} ()

Here [K] is the matrix of stiffness influence coefficients.
A typical element of {K]is k,f" = force required at 4
in the {-direction, to support a unit displacement at j
in the y-direction. If £ and 5 always refer to the same
direction, we can use the simpler form k;;. In either
case an element of {K], and also of [C], must obey the
well-known reciprocal relations. In other words, the
[K] and [C] matrices are symmetrie, provided they
are referred to orthogonal coordinate systems. As will
be seen later, the symmetry condition does not apply
if oblique coordinates are used. .

(3) Truss Member

Fig. 1(a) shows a typical pin ended truss member.
We wish to determine its matrix of stiffness influence
coefficients. Loads may be applied at points (nodes)
1 and 2. Each node can experience two components
of displacement.h Therefore, prior to introducing
boundary conditions (supports), [K] for this member
will be of order 4 X 4.

To develop one column of [K], subject the member
toss # 0,41 = vy = vs = 0. Then

AL = us cos 8, = usn
The axial force needed to produce AL is
P = (AE/LYAL = (AE/LD)\ uy
The components of P at node 2 are
Fop=Pcost, = (AE/L) \* u,
F,, = Pcost, = (AE/L) hu u,

Equilibrium gives the forces at node 1 as

F, = —F,
lel = - FM
Eq. (3) for this member then takes the form
Frl . —2A? . . Y30
AE 2
iz‘z — T . : . . Us (5)
" . — Al . . 0N
Fw . >\l£ . . Vo
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The other eleinents in [K | are found in a similar manner.
We get

(72 Us v U2
AQ
AE
K] =l ©)
member D VI
—Ar A —p? gl

As given in Eq. (6), [K] is singular—that is, its deter-
minant vanishes and its inverse does not exist. This
is overcome by supplying boundary conditions or sup-
ports for the bar sufficient to prevent it from moving
as a rigid body. For example, we may choose u; =
v = #y = 0,7, # 0. Node 1 is then fixed, while node
2 is provided with a roller in the y-direction. The only
force component now capable of straining the bar is
F,,. 'The force in the bar and the reactions are given
by Egs. (5) and (6).

Any other physically correct boundary conditions
can be imposed. In other words, once [K] has been
determined, a solution can be found for any set of sup-
port conditions, The only requirement is that the
structure be fixed against rigid body displacement.

(VI) STIFFNESS ANALYSIS OF SIMPLE TRUSS

Once stiffness matrices for the various component
units of a structure have been determined, the next
step of finding the stiffriess of the composite structure
may be taken. The procedure for doing this is essen-
tially independent of the complexity of the structure.
As a result, it will be illustrated for a simple truss as
shown in Fig. 2.

The stiffness of any one member of the truss is given
by Eq. (6). Since length varies for the truss pémbers,
this term should be brought inside the matrix. Tt is
then convenient to call the elements of the stiffness
matrix A* = A2/length, etc. Then X, @, and Az repre-
sent the essential terms defining the stiffness of the
separate truss members. These are conveniently cal-
culated by setting up Table 1.

From the last three columns of Table 1 the truss
stiffness matrix can be written directly. This is best
seen by forming the truss equation [Eq. (7a)] analogous
to Eq. (5) for the single member.

The formation of all columns in Eq. (7a) can be ex-
plained by considering any one of them as an example.
The second column will be chosen. It represents the
case for which 2, # 0, all other node displacements = 0.

[ [~ 1 1 1 1
F, ———= 0 0 —— — ul
| 24/2L 24/2L 24/2L 24/2L *
1 1 1 1 1 1
F — = -+ =0 — - = -
| ’ 3L L T anEL L 2v/2L 222L |
1 1
l F, ‘ 0 0 — 0 —— 0 ‘ Ug
L L
{1 =AE | . ] ! (7a)
F, 0 - 0 0 0 v
J vz I3 L . 2
r o 1 1 S S 1
s e T = - = |
24/2L 22L L LT 2321 24/21, :
|
| 7 ‘ 1 1 0 0 1 1
—_ i —— = 7
e L 2BL oV 24/3L 9v2L
or 1F} = [K] {8} (7b) signs follow from the basic stiffness matrix given in
Eq. (6). Since equilibrium must hold, the sum of these
In this second column the y-components of force y-components of force must vanish.
are given by the g? terms in Table 1; the x-com- Similarly, F,, is the sum of the Az terms for members
ponents of force are given by the Mg terms. Thus 1-2 and 1-3. Likewise, F,, is the negative value of
F,, is the sum of 2 for members 1-2 and 1-3 since these M for member 1-2. Finally F,, is —~g for member
are strained due to displacement v Also F,, is —p? 1-3.  These forces must also sum to zero if equilibrium
for member 1-2, and ¥,, is —a? for member 1-3. The is to hold.
TaBLE 1 T -
Member x ¥ Length A m A? u? A o AZ a? Mo
1-2 0 —L L 0 —1 0 1 0 0 %
= 1 1 1 1 1 1 1 1
13 R . S S S R B, A Vol
23 L 0 L 1 0 10 9 7 0 0

i
i

e

—O— e g

—

F——;
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This process is repeated for all columns. In this way
g 2ol possible node displacement components are taken

b into account. In each case the displacements are com-
& patible ones for all members of the truss.

A structure having various kinds of structural com-
ponents-—beams as well as axially loaded members, for
example—would be treated in the same manner.
. However, the basic stiffness matrix for each type of
| member would have to be known. Deriving these
| for units of interest in aircraft design represents a
¢ major part of this paper.

The matrix of Eq. (7a) is singular. This is altered
by providing supports for the truss sufficient to prevent
it from displacing as a rigid body when loads are applied.
Any sufficient set of supports may be imposed; here
| wechoose to put

u1=z'1=u2=v2=0

- In other words, nodes 1 and 2 are fixed, while 3 is left
free.

STIFFNESS AND DEFLECTION ANALYSIS
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Y.

T

AE (SAME FOR ALL MEMBERS)

2L

G
2

— - XU
L 3

© Fic. 2. Simple truss.

It is now convenient to rewrite Eq. (7a) and simul-

taneously partition it as shown by the broken lines in
Eq. (7c).

[dse o]
B | Dy

expanding Eq. (7c) leads to the following two sets of

equations:
f an } " u3}
1 F!/a, B [A ] Uz ) (Ra)
B and F,, _
’ Fl , Vu {
= B (sb)
Fy

Eq. (8a) gives unknown node displacements in terms of

&} :pplied forces,
]u-@} . 1 ! FZ;}
1‘1’3/ - [A]' {Fya.

while Eq. (8b), together with Eq. (9a), gives unknown
reactions in terms of applied forces,

(9a)

[F ! E1-}— ! ! L L 1 O_Hu ‘
h 24/2 242 24/2 24/2 ! ? |
1 1 1 1
_ _ - . . 0 0 }
Py 24/2 22| 2vZ 23 s ’
J v - ! " 1 o 0 llu=v] (7¢)
"= L—’ 24/2 24/2 24/2 24/2 T '
1 1 1 1 1 o
| F V2 T avE aya oy 0~ jjm=0
| P, } -1 0 0 0 1 0 | Uy =0 }
"\FﬂzJ [‘_ 0 0 0 -1 0 IJ[w:O)
If the partitioned square (stiffness) matrix is designated F,,
E by ) F]/j _ }F:r }
= [B) [4]! : 9b)
7 [B] [4] \FE, (
F,

¥

In dynamic analyses of aircraft structures it is ordi-
narily sufficient to determine [4]-!. This is the
flexibility matrix. It is interesting to note that [4]
can be found froin the complete [K] matrix by merely
striking out columns and rows corresponding to zero
displacements as prescribed by the support conditions.
A complete stress analysis leading to the truss mem-
ber forces can also be carried out. Tt is merely neces-
sary to know the force-deflection relations for the
individual members, or components, of the structure.
This is a straightforward problem for the truss and,
therefore, will not be discussed further in this paper.
It is worth while to notice that once the stiffness
matrix has been written, the solution follows by a
series of routine matrix calculations. These are
rapidly carried out on automatic digital computing
equipment. Changes in design are taken care of by
properly modifying the stiffness matrix, This cuts




810

COVER PLATE
ELEMENTS

FLANGE AREAS

F16. 3. Wing structure breakdown,

analysis time to a minimum, since development of the

stiffness matrix is also a routine procedure. In fact,

it may also be programmed for the digital computing

machine.

SUMMARY—METHOD OF DIRECT STIFFNESS
CALCULATION

(VII)

(1) A complex structure must first be replaced by an
equivalent idealized structure consisting of basic struc-
tural parts that are connected to each other at selected
node points.

(2) Stiffness matrices must be either known or de-
termined for each basic structural unit appearing in the
idealized structure.

(3) While all other nodes are held fixed, a given
node is displaced in one of the chosen coordinate direc-
tions. The forces required to do this and the reactions
set up at neighboring nodes are then known from the
various individual member stiffness matrices. These
forces and reactions determine one column in the overall
stiffness matrix. When all components of displacement
at all nodes have been considered in this manner, the
complete stiffness matrix will have been developed,
In the general case, this matrix will be of order 31 X 3,
where # equals the number of nodes. The stiffness
matrix so developed will be singular.

(4) Desired support conditions can be imposed by
striking out columns and corresponding rows, in the
stiffness matrix, for which zero displacements have
been specified. This reduces the order of the stiffness
matrix and renders it nonsingular.

(5) For any given set of external forces at the nodes,
matrix caleulations applied to the stiffness matrix then
yield all components of node displacement plus the
external reactions,

R ————————
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(6) Forces in the internal members can be found by
applying the appropriate force-deflection relations.

The primary functions of the engineer will be to
provide the information required in steps (1) and (2)
above and to provide the individual member force-
deflection relations if a stress analysis is to be carried
out. Steps (3) through (6) can be performed by non-
engineering trained personnel. Changes in design can
be taken into account by correcting local stiffness con-
tributions to K, Node densities can be incrgased in
regions of maximum complexity and importince. If
vertical deflections only are required, as in the case of
the aircraft wing problem, the 3z X 3n matrix for K
can be reduced to order # X # by a sequence of matrix
calculations. Physically, continuity of displacements
in three directions at each node will still be maintained.

(VIII) STIFFENED SHELL STRUCTURES

In carrying the above procedure over to stiffened
shell structures, it is first necessary to perform steps
(1) and (2) of the previous outline.

For a wing structure the idealization will be made
by replacing the actual structure by an assemblage
of spar segments, rib segments, stiffeners, and cover
plate elements, joined together at selected nodes.
Fig. 3 shows the proposed idealized structure. The
decomposition of the structure can be carried further
with some increase in accuracy (for example, by de-
composing spar segments into spar caps and shear
webs), or it can be simplified by treating the structure
as an assemblage of spars and torque boxes. The
degree of breakdown should be consistent with the
complexity of structural deformations required by the
problem at hand. (In a vibration analysis the order of
the highest mode is a determining factor.) In light
of the propo%ed idealization, it is necessary that stiffness
matrices be developed for the following components:
beam segments consisting of flanges joined by thin
webs, and plate elements of arbitrary shape. In
addition, provision must be made for taking stiffeners
into account and possibly for including the effect of
sandwich type skin panels.

In the general case, spars will be swept, nonparallel,
and not necessarily orthogonal to ribs. It will generally
be convenient to transfer stiffness values for any given
member to a fixed set of reference axes. These refer-
ence axes will be chosen as rectangular Cartesian
(x, ¥, 2) in order to preserve symmetry in the total
K-matrix. .

An outline of the determination of member stiffness
for simple structural elements is given in the paper.
Further details are presented in Appendixes. Deriva-
tion of stiffness matrices for more complex elements
can be accomplished in a straightforward manner,
However, in the analysis of an actual structure, it will
be necessary to weigh the relative advantages of em-
ploying a small number of large complex elements
against the advantages of using a larger number of
small elements for which simple stiffness coefficients
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'may be employed. The main criterion to be observed
f in resolving this issue is that the problem must be pro-
 grammed so that as much as possible of the data proc-
 essing is performed automatically by the computer
and not by human operators substituting in complex
f formulas.

(IX) Spars AND RiBs

First we consider the untapered beam segment of
uniform cross section shown in Fig. 4. Its stiffness
| matrix will be determined by application of beam
theory, which is extended, however, to include shear
web flexibility.

Nodes, 1, 1/, 2, and 2’ are established as shown in

Fig. 4. The following notation is used:
I = moment of inertia of beam section about
neutral (y) axis
ly = ¢ = thickness of shear web
E = modulus of elasticity of flange material
G = modulus of rigidity of shear web material

Poisson ratio

Displacements are assumed such as to be compatible
with elementary beam theory.

In other words,

Uy
[(4/3) (1 + n)
0
6E] —(h/L)

K] = LiX1 + 4n)
(2/3) (1 — 2n)
0

_ h/L

where n = 3(E/G) [I/(hLY] (11b)

| Contribution of shear web deformation to the above

stiffness matrix is indicated by values of » > 0; for a
= (.
As a simple example of the use of the beam stiffness

b matrix, we consider a cantilever of length L and loaded

' by force P at the free end (nodes 1 and 17). Putting
M » = 0and applying Eq. (11a) gives:
7w
I O NODES
3’1 1 ?z 1
F, — 2 R,
Xy 1 Xy - f .
2
—-——%u h -y
l T
F e F
xl 11 } 2: Xy
Far Py
Fic. 4. Beam (spar or rib) segment.

(4

oo

O OO

811

”
vl
- X
- /
=

F16. 5. Rectangular Cartesian axes systems.

w = wr, Wy = Wsr (10)

U = — Uy, Uz = —Ugy

Stiffiness in the y-direction is assumed negligible.

An outline of the derivation of the stiffness matrix
for the above beam segment is given in Appendix (A).
It is shown to be of the form

w Ug Vg Wy
h2/L2
(11a}
— (/L) @4/3) (L +m)
0 0 0
—(h%/LY) h/L*= 0 h%/L2 J
1L L
Fnl_GEl 3h* | fuy)
{F“j = s L 1 {wJ (12)
h

Eq. (12) may be inverted to yield tip displacements
#; and w, in- terms of applied load P (F,, = 0, F,, =
P/2). The results are

uy = —(PL*/2EI) (h/2), wy = PL3/3E]
which agree with known results,

In an actual wing structure, spar and rib segments
will be more or less randomly oriented with respect
to a set of standard reference axes. As a result, trans-
formation of stiffness matrices for these members to the
standard set of axes will generally be necessary. The
basis for such transformations is given below.

Let the direction cosines of x, y, 3-axes with respect
to standard &, ¥, Z-axes, Fig. 5, be
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Simple geometrical considerations then give the follow-
ing equation for relating forces in the ux, vy, 2 system to
forces in the 7, ¥, Z system:

Fz, DD VD W 0 F,
Fu B iy w, 0 0 0} \F,
Ful = |, v v, 0 0 0 F,
FITQ D O 0 )\x )\y >\z FZ‘z (13a)
Fu, 0 0 0 w u u £y,
Fs, 00 0 w s o, r.,
or, {F} = (9] | F) (13b)

Displacements are vectors similarly related to the
coordinate systems as forces and hence transform under

a rotation of axes in the same manner. Consequently,
ts =[] {s) (14)
11
151
where 5 = etc.
W,

From the above and Eq. (3) it follows that,

[K] = [2] [K] [#] 1 = [8] [K] [o] (15)
where [K] is the stiffness matrix referred to the stand-
ard &, 7, Z set of axes. Beam segments encountered in
the analysis of real structures will be tapered in depth,
and flange areas will be variable; generally the segments
will be taken short enough so that the variation in
depth may be assumed linear. Derivation of stiffness
matrices for elements of this kind js straightforward,
and details will not be included in the present paper.

(X) STIFFENED PLATES

(1) Stiffeners

A plan view of a typical portion of stiffened cover
skin structure is shown in Fig. 6. Nodes are initially
established at points 1, 2, 3, and 4. The included
structure then consists of spar segments (1-2 and 3-4), !
tib segments (1-3 and 2-4), and stiffened plate element

1-2-3-4, Stiffeners may be conveniently lupped with

spar caps and, if desired, into one or more¥equivalent
stiffeners located between spars. In this latter event
additional nodes must be established, as at the inter-
sections of these equivalent stiffeners with the tibs,
The stiffness matrix for a lumped stiffener of constant
area 4, length L, and modulus Z is

AE 1 -1
stEéEr]er L l:_]- 1]

(16)

Derivation of a similar matrix for a tapered member is
straightforward; the area 4 is replaced by a suitable
mean value. The influence of shear lag effects on
load-deflection relations for the panel and stiffeners
can only be included if nodes are established at inter-
mediate points on the ribs, between spars.

(2) Plate Stiffness

The quadrilateral plate element 1-2-3 4 of Fig. 6
is assumed to possess in-plane stiffness only. Since |
two independent displacement components can occur
at each node, the order of the K-matrix for this plate
element will be 8 X 8, The problem of calculating K
i8 not an easy one, and the solution offered here is felt
to have potential usefulness for finding approximate
solutions to many two-dimensional problems in elas-
ticity. -

Before proceeding with the method developed for
calculating K of the plate element, it is pointed out
that a so-called framework analogy' exists, which per-
mits one to replace the elastic plate with a lattice of
elastic bars. Under certain conditions the framework
then deforms as does the plate and hence can be used }
to calculate the plate stiffness. The determination of
a lattice representation for a rectangular plate is rela-
tively straightforward; however, plate elements of no- b
rectangular form present basic difficulties, For ex-
ample, if one attempts to apply the rectangular grid-
work to a nonrectangular plate, difficulties arise in
attempting to satisfy boundary conditions. On the
other hand, if one goes to nonrectangular lattice forms,
difficulties arise when attempting to satisfy the stress- )
strain relations in the interior of the plate. Consider-
ations such as these led to eventual abandonment of
this approach, ‘

The concept finally employed for determining plate
stiffness is based on approximating actual plate strains
by a restricted strain representation. In other words,
no matter what the actual strains in the plate may be,
these will be approximated by a superposition of
several simple strain states. The method for doing
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this and the accuracy of results based on such a repre-
- sentation form an important portion of this paper.

To give an initial illustration, the actual strain
b distribution in a rectangular plate element can be
t approximated by superimposing the strains that
i correspond to each of the simple external load states
shown in Fig. 7. These load states are seen to repre-
L sent uniform and linearly varying stresses plus constant
 shear, along the plate edges. Later it will be seen
- that the number of load states must be 2rn — 3, where
[ # = number of nodes. ,

Before commenting further on the scheme sugges ted
here for analyzing plate elements, the method will be
' applied to the triangular plate of Fig. 8. The triangle
| is not only simpler to handle than the rectangle but
E later it will be used as the basic ‘‘building block” for
- caleulating stiffness matrices for plates of arbitrary
j shape.

We start by assuming constant strains, or

€ a = (1/E) (o, — ve,) = du/0x
& = b= (1/E) (e, — ve,) = Jv/dy (17a)
Yoy = ¢ = (1/G)7py = (Ou/0y) + (dv/0x)

| Later it will be pointed out why we are restricted in the
| choice of strain expressions. Integrating we find the
displacements to be

u=ax + Av + B }

v =by+(c—A)x+C (17b)

where, 4, B, and C are constants of integration‘ which
| define rigid body translation and rotation of the tri-

1 vX32
X2 Xoy3
g N
z 1 b P X3y
o, ;= B R
‘ 1 — 2 X3 XoVa
Tzy)
Ava A
L X2V X2

2B fic. 7. Applied loads on edges of rectangular plate element.
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Yav

3 (%3.Y3)

—— X,
1 ‘xi’gi) 2()(2,92)

F16. 8. Node designation for triangular plate element.

K

angle. Hence the triangle can displace as a rigid body
in its own plane and undergo uniform straining accord-
ing to Eq. (17a).

Displacements at the nodes can be determined by
inserting applicable node coordinates into Eq. (17b).
In this way six equations occur which are just sufficient
for uniquely determining the six constants of Eq. (17b).
As a result the constants become known in terms of
node displacements and coordinates. It is this part
of the solution which determines the number of terms
which must be chosen in the strain expressions or alter-
natively the number of applied edge stress states which
must be used. The number is always twice the number
of nodes minus three. Hence, for the triangle we re-
quire three terms and five for the rectangle (or quadri-
lateral).

To proceed with the solution, we sojve directly for
stresses in terms of node displacements u;, v, s, etc.

Ifx; = x; — x;and Ay = (1 — »)/2, this gives ’
1_ —_ ﬁ 0 -V_ Uy

Xa X2Vs Vs o

2 - 1

> _ s | ue (18a)
Xy X2V3 Vs 4

an )\1 )\] U3

— — 0 U3

X2Y3 Xo Vs J
or {a} = [} {5} (18b)

The next step is to obtain the concentrated forces at
the nodes which are statically equivalent to the applied
constant edge stresses. The procedure for doing this
will be briefly illustrated for the case of the shear stress.

Fig. 9(a) shows the shear stresses on the circum-
scribed rectangular element, and Fig. 9(b) shows the
corresponding edge shear forces on the triangle. As
before x,, v, refer to coordinates of node points.

Forces on any edge are equally distributed between
nodes lying on that edge. For the forces as given in
Fig. 9(b), thisleads to

Fr® = —(x2 — x3) (/2) 7y
F,® = —y3(t/2) 7oy
Fo® = —x3(t/2) 74 (19)

F® = +y3(t/2> Try
Fe = +x0(t/2) Try
F,» =0
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where the superscript refers to case 3 (that of shear or T
stress). This procedure is repeated for the two normal Y tria
stresses. Superimposing results for these three cases {7 = 111{d} (20b) leac
then le.ads to the follovs(ing system of equations for node Substituting Eq. (18b) into Eq. (20b), | Ay
forces in terms of applied edge stresses: t sho
Fy —ys 0 — (s — ) {F} = 11151 {9} (20c) ,; att
J;Z: L 25 —(xzo— x3) :zz ox Comparing this last equation with Eq. (3) shows that ! prg
F,, 2] o — 3 ¥s :” K] = [T7] [S] L@y mat
F, 0 0 N d P cast
£y, 0 %o 0 Carrying out the indicated matrix multiplication and [ can
(20a) putting A, = (1 + »)/2 gives incl
_ { use
/ steg
o ] B
Xa X2z !\ T
N Aox32 E )\1_3’3 ?Vit}
) XoY3 X ‘ in I
i calc
Cw M oww | Mm  hd I Eq
(K] = Et X2 X2Y3 X2 X2 Xz X3 (22) i rect

oo PETOVN e s e MmO
X3 X2 X2¥3 X2 X2 XaY3 Xa
- o - M - Ay A P Sinc
¥s Vs ¥s tan,
X3 x; ° X3 late
—v - — v - = 0o — )

L Vs Vs 3 | sist
thes
stru

An alternative approach to the above method for to spar, rib, etc., stiffnesses which are also given for for
calculating the plate stiffness mratrix is to calculate the specified nodal points. However, the plate node befc
strain energy in the plate due to the assumed strain forces are statically equivalent to certain plate edge plis
distribution and to then apply Castigliano’s Theorem stresses. Rurthermore, these edge stresses will tend to pria
for finding the node forces. This procedure can also approach actual edge stresses, even of a complex nature, I
be conveniently carried out in terms of matrix oper- if sufficient subelements are used. A result of these app!
ations; details will not be included here, however, since equivalent edge stresses is that continuity will tend to for
the result is the same as that already obtained. be approximately maintained along common edges of 0

Stiffness matrices for plates having four and more subelements, between nodes. In other words, we are angl
nodes have been derived and studied. The advantage assuming that a plate under complex strains will deform in tl
in introducing additional nodes lies in the fact that a in a manner that can be approximated by relatively
more general strain expression may then be employed— simple strains acting on subelements into which the
or equivalently additional load states as illustrated by larger plate has been divided. The accuracy of this
Fig. 7 may be used for the plate. As a result a choice representation should increase as the number of sub- 4
between two points of view may be adopted; first, the elements increases. i
simplest or triangular plate stiffness matrix may be used
and the desired accuracy obtained by using a sufficient (3) Quadrilateral Plates )
number of subelements, or second, a more general plate In the analysis of wings and tail surfaces it is generally
stiffness matrix may be used with fewer subelements. convenient to employ a subdivision of cover plates
Experience to date indicates that satisfactory results such that most elements are of quadrilateral shape. r
can be obtained using the triangular plate stiffness The stiffness matrix for such elements can then be de-
matrix. rived in one of two ways: (a) the previous solution Sinc

Some additional plate stiffness matrices are given demonstrated for the triangle can be extended to in- equi
in Appendix (B). clude the quadrilateral and (b) the quadrilateral can conc

To summarize briefly the meaning and significance be subdivided into triangles and its stiffness matrix
of the plate stiffness matrix, it is first pointed out that determined by superposition of the stiffnesses of the
this matrix relates node forces to node displacements. individual triangles. In this section the latter pro-

As a result the plate stiffness can be immediately added cedure will be adopted. :jvr;
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Two simple subdivisions of the quadrilateral into
¢ triangles are shown in Figs. 10(a) and 10(s). These
| lead to different stiffness matrices for the quadrilateral.
A unique result is obtained by using the subelements
shown in Fig. 10(c). The interior node will be located
b at the centroid, although any other choice could be used.
For the general quadrilateral plate it has proved to be
- preferable to program the calculation of the stiffness
matrix for high-speed computing equipment. In the
case of the rectangle, however, an explicit derivation

2 can be readily carried out. The necessary calculations,

- included below, are given here, since the end result is
‘useful and since these calculations serve to illustrate a

B step of some importance in carrying out the analysis

- of a more complete structure—for example, a wing or
tail surface.
L The rectangle and its four triangular subelements,
with interior node number 5 at the centroid, is shown
in Fig. 11. Stiffness matrices for the triangles can be
calculated from Eq. (22), or more conveniently from
'+ Eq. (B-3) of Appendix (B). In determining K of the
rectangle, superposition in the following form is used:

K = Ki4+ Kn+ Kin+ Ky

rectangle

Since five nodes have been established, K for the rec-
tangle will initially be of order 10 X 10. This will
later be reduced to order 8 X 8 to give a result con-
sistent with the choice of four external nodes; only at
these external nodes is contact implied with adjoining
structure. The immediate point is, however, that K
for each triangle must be increased to order 10 X 10
before superposition is carried out. This is accom-
plished in the usual way—that is, by introducing appro-
priate rows and columns of zero elements.

In order to simplify the expressions for elements
appearing in the stiffness matrices the derivation of K
for the rectangle will be restricted to »'= 1/3.

On superimposing stiffnesses for the component tri-
angles of Fig. 11 it becomes possible to express Eq. (3)
in the form

Fy, 231
Fzz U
F,, U
Fz‘ Us .
= [Afxs ]B—m] o (23)
Ue Blyxs | Coxa | | V2
Fﬂa Vs
’ Fy‘ Us
sz Uy
Fus L Us

Since forces are to be applied to the rectangle by stresses
equivalent to forces acting at nodes 1, 2, 3, and 4, the
condition

F25=Flls=0

B can be applied to Eq. (23). Doing this results in the
B two sets of equations written below:

Txy

‘Kuj Yzt

— Ty (X2 %3)t

N

() (k)

F16. 9. Shear loading on triangular plate element.

(@) (b) (c)

Fre. 10. Decomposition of quadrilateral plate into triangular
subelements.

s 3(x5.93)

~ I P
\\5(X )//
2Ys
xR

P s
P ™~
-~ I ~
X,wu

1(’(1:‘:]1) %2492

F16. 11. Triangular subelements for rectangular plate.

j=— 100" —
! .
I40"é-—--—-—x,u — @, (UNIFORM)
1=

7

YV

t =0.050 IN.

E =105X10 PSI

v =1/3

TOTAL LOAD =2 LBS.

F1G. 12. Clamped rectangular plate subjected to uniform tensile
loading.
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‘ Fifx ‘ U
- Fy, Uo
FJJ; Us
F Us Us
L= B 244,
lou sl e
F!/'z U2
Fy:r U3
Fm ' U4
(5%
Uz
U3
0L _ , | s Us
{0} =Bl i {w} (24b)
Ug
U3
[ Vs
23] Uy U3
i 9
Im + —
9
1 |m—— 3m + —
Ku=y m m
3 : 9
—m — — —-3m+ - 3dImA+—
m
3. 9
—3m + — —m — - m— —
m m
71 V2 U3
[ 3
9m + —
m
3
Im — — 9m + —
| m m
KW = - 1
T4 -3m - = —9m + — om +
m
1 1
—9m 4 - —3m — — Im —
B m m
" Vs V3 U4
1
K[v = 0 "_1
—1 0 1 (27d)
0 1 0 —1
Kﬁl = Klg' (27&)

If the order of v-terms in the above equations are re-
arranged from oy, ve, vs, v4 to 1, 14, U3, vs, it will be dis-
covered that K equals Ky provided we replace m in
Ky, everywhere by 1/m. The corresponding form for
Ki» may be written without difficulty. It is again
pointed out that the above plate stiffness matrix is
basedon v = 1/3.

The process of eliminating displacements at node 5
. is similar to the situation that arises when only w dis-

F|w F|W
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Solving Eq. (24b) for displacements at node 5 and sub-
stituting the result into Eq. (24a),

Pl = qar - mrer st e
whered = 1, 2, 3, 4. Comparing Eq. (25) with Eq. (3)
gives

(K]

rectangle

= 4] = [B][C]* [B) (26)

"
Carrying out the calculations required by Eq. (26) re-
sults in the following rectangular plate stiffness matrix:

3Et[Ku |l K
(K] =22 [ 1 | 12i] (272)
rectangle 16 K21 | K22
where, when m = (xs — x1)/{ys — 1),
Uy (251 Ug Uy Uy
" - -
—1
1 1 --1
T ot 1 (27b)
METL -1 1 —1
9 1 *-1 1 =1
] |
Vs 1 V2 V3 V4
- _
. ]
L 1 1 -1
T L3 (270)
T w -1 1 +1
3 _ —
Om + 1 1 1 1
m —_ o =

placements are to be retained in a wing analysis. In
this latter problem it then becomes necessary to elimi-
nate all # and v components of displacement. The
procedure for doing this is the same as that used in
eliminating #s and v; from the above problem of the
rectangular plate. ‘

(4) Example

It is of interest to carry out calculations on a simple
example and compare results obtained by applying the
plate stiffness matrix with values that can be regarded
as correct.

For this purpose the plate of Fig. 12 is analyzed using
several different methods. Deflections at several points
due to the indicated loading will be calculated. Since
an exact solution is not available, correct displacements
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TABLE 2
E Solution - w s 3 Uy s 7 v3 Uy
No. Method Fig. Multiply all values by 1078
1 Relaxation 13 2.703 2.607 2.703 1.391 1.248 0.686 —0.685 0.562
2 Simple theory 13 2.721 2.721 2.721 1.360 1.360 0.635 —0.635
3 Plate K-matrix 13a 2,595 2.595 0.740 —0.740
4 Plate K-matrix 13h 2.692 2.578 2.602 1.355 1.199 0.680 —0.680 0.568
5 Plate K-matrix 13c 2. 718 2697 0.686 —0.717
6 Plate K-matrix 13d 2714 2.712 0.688 —(}.691

} will be taken as those calculated by applying the re-
laxation method to the fundamental equations govern-
- ing this problem. Although details of these calcula-
' tions are not presented, results are listed in Table 2.
i The problem is interesting for at least two reasons.
| First, the accuracy obtainable using various numbers
E of subelements can be observed, and second, the effect
| of using random orientation of subelements—with
. tespect to the plate edges—can be observed.
Results of all calculations are summarized in Table 2.
I Node locations and subelements are illustrated in Fig.
13.
i In Table 2 the solution based on simple theory was
obtained from u PL/AE and ¢, It is
observed that on this basis both #; and »; agree quite
b well with the relaxation solution.
The crudest plate matrix solution is listed in Table 2
 as Solution No. 3. It was obtained by considering the
plate as a single element whose stiffness is given by
B Eq. (27). The results for «; and z; are seen to be
reasonably good. Solution No. 4 considers the plate
' as consisting of four rectangular subelements as shown
in Fig. 13(b). Again the stiffness matrix was obtained
by using Eq. (27), this time for each subelement.
| Agreement with relaxation results is seen to be satis-
| factory, particularly in regard to w;. Also the dif-
ferences between u, and u, are approximated accu-
rately by this solution. It is to be remembered that
the actual strain distribution in the plate is complex
in nature.

— ¥ €.

Each subquadrilateral was considered as consisting of
four triangles in a manner analogous to the treatment -
described previously for the rectangle of Fig. 11. In
Solution No. 5 we note that #; and #3 are not equal, a
consequence of the random nature of orientation of the
subelements. By increasing the number of random
subelements as in Solution No. 6, this lack of symmetry
in results is virtually removed. Comparison with
relaxation values is seen to be very good for both Solu-
tions 5 and 6.

A more comprehensive example is given in the next
section of the paper.

(XI) AwnaLysis oF Box BEaMm

As a final example, the box beam of Fig. 14 will be
analyzed for deflections, using the stiffness matrices
previously derived.

The box is uniform in section, unswept, and contains
a rib at the unsupported end. The fdllowing dimen-
sions apply: a/b = =, 2b/h = 10,t, = t, =t = 0.05
in.,, 4, = bt/2, ¢ = 400 in.

As the simplest possible breakdown, we consider the
box to consist of two spars, one rib, and two cover
skins. The nodes are then as shown in Fig. 15. Forces
may be applied at the nodes at the free end. Two
cases will be investigated: (1) up loads at each spar
(bending) and (2) up load on one spar and a down
load at the other spar (twisting).

Solutions 5 and 6 in Table 2 were carried out in a The spar matrix is given by Eq. (11a). Calculation
matter of minutes on a high-speed digital computer. shows it to be
1 OF Uy Wy Or W U3 OF U4 W; OF W,
1.13903
K] = Et}  0.05227 0.00333 (28)
spar 2 0.50303 0.05227 1.13903
—0.05227 —0.00333 —-0.05227 0.00333
Cover plate stiffness is given by Eq. (27a) and for this case becomes
Uy [ Us V2 Uz Va Uy Vg
0.90878 ]
—0.37500 1.39778
—0.19329 0 0.90879
K] = Lt 0 —1.15928  0.37500 1.39778 (29
cover 2 |—0.31916 0 —0.39634 —0.37500 0.90879
plate 0 0.37109 —0.37500 —0.60959 0.37500  1.39778
—0.39634 0.37500 —0.31916 O —-0.19329 O 0.90879
| 0.37500 —0.60939 0 0.37109 O —1.15928 —0.37500 1.39778 |
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The rib has not been defined as yet. Two possible rib configurations will be analyzed in this paper. In the first
case, the rib is considered as a beam identical in section to the spar. This leads to the following stifiness matrix
for the rib:

U1 w1 Vo We
0.13086
(K] = Et| —0.00976  0.00098
Wb 5| 0.06413 —0.00976 0.13086 (302)

0.00976 —0.00098 0.00976 0.00093

In the second case, the rib is treated as a flat plate. The general stiffness matrix which has been derived for a
rectangular flat plate is of order 8 X 8. However, in the present instance, the following conditions must be intro-
duced to insure compatibility with the other portions of the structure (see Fig. 15 for subscript locations):

W = Wy and v = —Ur Using the same technique as described for the simple

Wy = Wy P9 = — Uy truss, it is now a straightforward matter to form the

o stiffness matrix for the complete box. Advantage can

and, likewise, for the forces be taken of the following: (1) structural symmetry
F, = F F,= —Fy that exists for the box with respect to the xy-midplane

and and (2) restriction in this problem to loads that act

F,, = —Fy normal to this plane. Under these conditions each
pair of upper and lower surface nodes will experience,
in addition to equal vertical deflections, equal but
opposite displacements with respect to the xy-midplane.
In other words, the box will deflect in the sense of a
conventional beam. The spar and rib stiffness ma-

FZ:=F21'

Treating the rib as a flat plate (¢ = 0.050 in.) and apply-
ing the above conditions leads to the following rib
stiffness matrix:

U1 wr % W
5 65088 trices already provide for such, elastic behavior. The
Et| —0. 37500 0.03754 plate stiffness matrices make no distinction, other than
[{i{b 1 = o 1. 84181 —0.37500 5.65088 in the sign of the node forces, for a reversal in direction

of node displacement. Consequently, if the normal
Joading is carried equally by upper and lower nodes,
only the upper set will need be considered when forming

—0.03754 0.37500 0.03754
(30b)

0.37500

It is anticipated that the choice of rib will have little
effect on deflections due to the bending-type loading
and a more pronounced effect on the twisting-type
loading.

the box stiffness matrix. Due to the division of load-
ing, correct deflections will result. In this manner
the stiffnes matrix for the box is found to be [Eq.
(30a) used for rib stiffness]

U1 U1 Wy Uz Yz Wa
2.04782
—0.37500 1.52864
Et{ —0.05227 —0.00976 0.00430
[b{i] T2 —0.19329 0 2.04782 (B1)
0 —1.09515 —0.00976 0.37500 1.52864
0 0.00976 —0.00098 —0.05227 0.00976 0.00430
The inverse of this matrix is the flexibility matrix.
Fy, £y, F, Fe, Fy, Fa
0.81646
0.22705 1.66224
2 | —10.47344 2.72965 409.39998
-1 = - —
[t{o{x] €] Et 0.20384 —0.08123 —5.55027 0.81646 (32)
0.08123 1.26026 5.01982  —0.22705 1.66224
—5.55027 —5.01982 142 67751 —10.47344 —2.72965 40939998

From the flexibility matrix, deflections due to applied loads can be found at once.

loadings we find the following (rib treated as beam).

For the two cases of applied

e ep—

e s L 1
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Case 1 (bending):

Forces of 1 1b. acting upward at each spar (nodes 1 and 2).

w = 11,04155/E Uy
ws = 11,041.55/F Us

Il

Case 2 (twisting):

Force of 1 1b. upward at node 1 and 1 1b. downward at node 2.

w = 5,334 45/FE =
wy, = —5,334.45/E "

i

Similar results may be calculated for the case when
the rib is assumed as a plate. Complete details are
not given. In bending we get w, = 10,888.12/F,
w = —310.a6/F, and v, = —18.25/E. Twisting
results are wy = 3615.72/E, vy = —23.84/E, and v, =
349.52/E.

It is now advisable to select additional nodes and
recalculate the previous deflection data. When added
nodes have little effect on results, the process can be
considered to have converged. Whether convergence
be to the correct values requires additional information.
These questions are now examined.

First, solutions are found for the node patterns
shown in Fig. 16. Vertical deflections at node 1 for
bending-type loading are as follows:

Fig. 16(a) w, = 8558.0/F
Fig. 16(b) w = 8391.2/K
Fig. 16(c) w = 8548.4/FE

It is seen that the change in w, in going from the node
pattern of Fig. 16(b) to 16(c) is about 1/2 per cent.
Consequently convergence can be assumed to have
been attained with the solution found from Fig. 16(b).

Obviously the first solution, based on Fig. 15, is in
considerable error. This is due to the poor tie between
spars and cover plate. Fig. 16(a) introduces an addi-
tional tie between these two components. The de-
creased value of w, for this case therefore reflects the
added stiffness due to including the two nodes at the
mid-span location.

An unexpected result is the close agreement between
the solutions based on Figs. 16(a) and 16(b). In fact
it would seem reasonable to expect Fig. 16(b) to lead
to a smaller value for w; than that given by Fig. 16(a).
Careful scrutiny, however, indicates that these results

“are quite reasonable. Whereas the node pattern of
Fig. 16(b) accounts for shear lag in the cover plate, this
is not the case with Fig. 16(a). As a result, the added
stiffness in Fig. 16(b), due to the additional nodes
connecting spars and cover skins, is offset by the

- added flexibility introduced by shear lag in cover skins,

The results indicate these factors to be nearly equal;

hence the reason for the nearly correct values given by

Fig. 16(a).

Fig. 16(c) allows for shear lag and, at the same time,
provides for adequate tie between spars and cover

—320.47/F v = —45.80/F
—320.47/F v, = 45.80/FE
—98.46/F v = 154 .99/F
098 .46/ E v, = 154 .99/

plates. It can therefore be felt that this node pattern
will give final results which represent convergence of
the method. As mentioned previously, this is substan-
tiated by comparison with values obtained from Fig.
16(b).

There remains the question as to what is the correct
value for w;, for this problem. Elementary beam
theory gives w; = 6,900/E, and, if extended to include
shear distortion of spar webs, gives w = 7,740/FE.
Using Reissner’s shear lag theory,® the tip deflection is
obtained as wy = 7,900/E. Finally if Reissner’s shear
lag theory is modified to include spar shear web de-
formation, the result is =y = 8,740/E. This is the
most accurate theory available. It agrees to approxi-
mately 2 per cent with the numerical solution based on
stiffness matrices.

The pronounced shear lag effect in this problem and
its marked influence on the vertical tipf deflection are
significant. It is precisely this effect that produces a
very complex stress distribution in the cover skins.
Nevertheless the plate stiffness matrix developed in
Eq. (27a) and based on triangular subelements repre-
sents this stress pattern with gratifying effectiveness.

The solution for the node pattern of Fig. 16(c) was
obtained in a few minutes by utilizing a program for a
high-speed digital computer that computed individual
plate and spar stiffnesses and then combined these
into the stiffness matrix for the complete box.

(XII) REDUCTION IN ORDER OF STIFFNESS MATRIX

(1) Eliminating Cdmponents of Node Displacement

In an actual problem—as a wing analysis—the num-
ber of nodes to be used can become quite large. If, for
purposes of discussion, 50 nodes are assumed, the stiff-
ness matrix becomes of order 150 X 150. By elimi-
nating % and v components of displacement at each node,
the stiffness matrix can be reduced to order 50 X 50.
However, this reduction process [see treatment of Eq.
(23), for example] can require the calculation of the
inverse of a 100 X 100 matrix. Such calculations are
best avoided at present.

The problem that arises in eliminating the » and v
components can be handled satisfactorily in any one
of several ways. First, the calculation of the inverse
of a large-order matrix can be avoided by eliminating a
single component at a time. This is a practical ex-
pedient when automatic digital computing equipment
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(c)

Nodes and supports for clamped tectangular plate.

(d)

Fic. 13.

-is available. Second, in some cases it may be feasible
to eliminate “‘blocks” of % and g components at a time,
thereby reducing the order of matrices to be inverted
at any one time to a reasonable size (say 20 X 20).
Third, the analysis can be carried out for sections of
the structure, taken one by one. For each section, ag
a spanwise portion of the wing, the complete stiffness
matrix can be determined. Elimination of # and
components can then be carried out at any selected
nodes, except those common to two distinct sections
of the structure. FEach section can be treated in this
manner. By properly adding the individual section
stifiness matrices, the total stiffness matrix can be ob-
tained. Finally % and v displacements at nodes where
the sections join together can be eliminated. The stiff-
ness matrix that remains will apply to w deflections
only.

From a practical standpoint, the method just de-
scribed has several worth-while features. For ex-
ample all components of displacement at g given node
may be eliminated. This can be useful when addi-
tional nodes are felt to be necessary in order to account
properly for regions of maximum structural com-
plexity. Even though eventually eliminated, these
nodes will have contributed to the elements retained
in the stiffness matrix.

(2) Inversion of Stiffness Matrix

Ordinarily, only the first few low-order vibration
nodes and frequencies are required for the purpose of
carrying out subsequent dynamic analyses. Using
the stiffness matrix directly in the matrix iteration
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method leads to the highest frequency and correspond-

ing mode. If the order of the stiffness matrix is high .

(say, 50 X 50), it becomes impractical to eliminate

successively the higher modes and so eventually obtain

the lowest modes.

Inversion of the stiffness matrix leads to the flexi- |

bility matrix.
procedure yields results for the lowest mode.

This matrix used in the matrix iteration |
There-

fore, it is ordinarily preferable to know the flexibility |

matrix. . | i
If the stiffness matrix is of high oxder (say, 50-X

50), inverting it becomes a major problem in itself.
This can be overcome to some extent by employing the
capabilities of present-day digital computing equip-
ment. However, in many instances an alternative
procedure may either be useful or necessary. Conse-
quently, a possible approach to overcoming this diffi-
culty will be outlined here.

The proposed method consists of converting the
original stifiness matrix X into a lower order stiffness
matrix K*  This is accomplished by introducing a set
of generalized coordinates which are related to the
original displacements (on which X is based) through a
set of appropriately chosen functions. The accuracy
inherent in X will have a direct influence on K*.

Suppose K is known for the cantilever beam of F ig.
17. The order of X is 10 X 10. Now assume a set of
polynomials of the form

COVER

06 .
M SKIN=t . =0.05"

h= SPAR WEB=t,=0.05"
2546 RIB

F—2be2sa6—— ]

Ap = 6.365 SQ.IN.

Fi1c. 14. Cantilevered box beam.

Frc. 15.

Simplest node pattern for box beam.
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Pl(x) = a1x2 + b]_JCa + C1x4\;
Py(x) = asx® + bax® 4+ concd |
! (33)

. |
Pi(x) = asx® + bsx® + c;vxSJ

Each of these will be made to satisfy the boundary
- conditions of the cantilever which are,

PL0) = P/(0) = P(L) = P/""(L) = 0
Applying these conditions results in

Pi(x) =  6(x/L) — 4(x/L)* + (x/L)*)
Py(x) = 20(x/L)* — 10(x/L)® + (x/L)

’% (34)
Py(x) = 140(x/L)* — 56(x/L)* + (v/L)*]

We now introduce generalized coordinates ¢; which are
| related to the displacements y, through the above poly-
' nomials. This relationship is established through the
F equations

Y ] Pi(x1) Pa(xr) - Py(x1) 7

Yo \' Pi(xs) Palxs) . . Py(x)
; ¢

| | 2 )
b= gs (30)
| ' g
‘ ' gs

(y.m)‘ -Pl(:xl(l) Pyan) . . Ps(xn0) -

It is seen that the ten displacements yy, s, . . . , ¥y are
to be replaced by the five coordinates i, ¢, . ., gs.

The free vibration problem for the cantilever can be
set up in terms of kinetic and potential energies. In
terms of original displacements yi, w, . . ., 4, these
energies are, respectively,

T=(1/2) {3}" [M] {3}  and }

V= /2 () (K] (o) GO
where [M] is the inertia (mass) matrix and [K] the
- original 10 X 10 stiffness matrix,

Writing Eq. (35) as
v} = [P]{g}
and substituting into Eqs. (36),
T = (1/2) {g}" [P [M] [P] {g}
V= (1/2) {g}" [P) [K] [P] {g)
from which we define
[K*] = [P]" [K] [P]}
[M*] = [P] [M] [P]

If K is of order of 10 X 10 and P of order 10 X 5, K*
will be of order 5 X 5. The vibration analysis is now
performed using K* and M* By inverting K* the
lower modes can be calculated directly. Or alterna-
tively, K* can be used and all modes and frequencies

(37)
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(a) (b) ()
F1c. 16. Additional node patterns for box beam.
3y
? — , —1
1 1+ 23 45 6780910
10 EQUAL PARTS

@ LA

Fre. 17. Station selections on cantilever beam.

determined, starting with the highest. This is feasible
if K* is of sufficiently low order (say, 10 X 10).

This process can be modified in several respects, and
the purpose here is not to give an exhaustive treatment
but rather to simply point out a possible approach to
the problem. Preliminary calculations indicate that
the idea may possess practical value. Extension to a
two-dimensional grid can be made by generalizing the
procedure suggested above.

APPENDIX (A)

-
DERIVATION OF SPAR STIFFNESS MATRIX

The structure and notation are described in Section
(IX) and Fig. 4.

Flanges are assumed to carry axial stresses, while the
web carries shear stresses. Cover plate material is not
included as part of spar flanges. Derivation below is
based on conventional beam theory.

Case 1

uy = —u’ # 0; all other components of node dis-
placement for the beam = 0.

The deflected beam and necessary forces and reac-
tions are shown in Fig. A-1. Due to forces F, at the
left end, the heam deflects upward. The F, forces
cause a downward deflection. Beam theory, including
effects of uniformly distributed shear in web, gives

_ E.hL | 2RI

il T o Em @A
Fhl  F,L2
S @D e -2

where w and 0 are deflection and slope at the left end of
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9’) w
,’ F'h F}z
2 4 F,(z
~—x
F} z-

F16. A-1. First beam displacement required in developing
beam stiffuess matrix,
F}1 F}z
“‘*sz
n E
2 Xz
F?z'

Fre. A-2. Second beam displacement required in developing
beam stiffness matrix.

the beam, respectively, and # is given by Eq. (11b).
Due to boundary conditions, @ = 0; also, from the
geometry of the deflected beam, 6§ = 2ui/h. Using

these relations in Eqs. (A-1) and (A-2) and solving for
forces gives

_8EI 14 =n 6E1 4

TORLI 4 T (0 f a3 LW m
(A-3)
6EI 1 6EI &
Fo= — -2 =, __ SE k -4
BT+ 4™ T T o a1 (A

Forces at node 2 follow from equilibrium considerations.
They are

4ET 1 — o 6EI 2
Fp= =0y, o WL 2
WL+ 42" " L2 + 4m) 3 ¢ n)
(A-5)
F,=-F, (A-6)

The above forces represent the first column of the re-
quired stiffness matrix. The other columns are found

we get
[ Agegg? + Vo3®

A2X32Vo3

(

K] = Ef(ﬁ Aoz 4 Vogys

2 Arayar 4 vxn3yeg

xo3? + )\1,’)/232

XagXz1 —+ >\13’23}'31
>\1x12x23 + N12¥os }\135213’23 + VXzaV10

-)\136323’12 + VXY X1eXes )\13’123'23

where P =

>\2%31}’31
AX19%31 -+ Yi2¥Va1

)\196133’12 -+ rXnYs XX + >\1y12y31

D ————

1956

in a similar manner. When w, = w;, = 0, while all
other nodes are held fixed, the forces of Fig. A-2 apply.

Forces due to displacements tmposed on the right-
hand end of the beam may be written from the above

results by analogy. The final spar stiffness matrix
is given as Eq. (11a).

APPENDIX (B)

PLATE STIFFNESS MATRICES ¥
i
Several plate stiffness matrices are given here with-

out derivation.

(1) Triangle—Arbitrary Node Locations

!

b

XB: ‘-‘-'3

X2 Y,

X2 Y,

0 . —— X

F16.B-1. Triangular plate element with arbitrary node locations.

The stiffness matrix will be defined with respect to
the equation

le 231
- Flll (21
Farz _ - Usg
LR (8-1)
Fr; 3
Fy, s
Again adopting the notation
Yig =% — x5 M =(1-= v)/2, X = 1+ )/2
(B-2)

N

>\1x13y23 + PX3¥n  Axm? + Va2

Tn® 4+ Ay
>\1x21y31 -+ iy Axp? 4+ Y1a®

x12® -+ Myip?
(B-3)

>\2x21y12

1/(1 — »d)
‘leya + X13y2 + xszylj

v

Ny

“_w—‘—m

)]

in

(K

whi

Eq

wh
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The stiffness matrix given below for the rectangle is
based on the load states shown in Fig. 7. Asa result
this matrix is more general than that given in Eq. (27)
due to the inclusion of linear terms in the strain expres-

sions.

Again the stiffness matrix is arranged to agree with
the equation

a- ‘ FZ/! U
Py ‘uz ’ o
| P, . 1
, - X, U TSR (B-4)
2 b 3 s, "
Fi6. B-2.  Node locations for rectangular plate element. FI4 Us
: FZM ‘ Uq
—_ (o) ("]
in which [K] is given by
Uy 71 s Vg U3 U3 Uy (N
[ a + b ]
1 + v as + bz
al——bl 1 — 3¢ a1+bl
_ Et‘_ 3r — 1 Ca — Qs —1 — vy Ll;)"i‘bg (Bf))
_8(1 — 1)2) —ay — ¢ -1 - € — a; 1 — 3» Cl]+b1 ! )
—1 —» —as — € 3v — 1 ag_‘bg l‘f—V (lg",‘bg
G — I 3»’—1 - — 1+V a1~b1 1‘—31’ L11+b]
‘ L 1 — 3» az_bg 1“"‘1} Qs — (s 3v — 1 Cs — Qo -1~ a2+b2_
where, in the above matrix, *
ar = m(l — »), bi = (2/3m) (4 — »%), & = (2/3m) (2 4+ »?) ] (B-6.
as = (1 — »)/m, by = (2m/3) (4 — v?), €= 2m/3) (2 + ) f o)
m = [’} (see Fig. 7) (B-7)
‘ Eq. (B-5) simplifies to the following if » = 1/3:
' U1 1 U U "3 V3 - tHq U
[ ¢1(m) K
18 (,0](1/7’}’!)
oa(m) 0 @1 (m)
0 3(1,/ —18 1/m) .
k) = 2 e1/m) ot (5-8)
96 | o4(m) —18 ea(m) 0 e1(m)
—~18 wi(1/m) 0 wa(1/m) 18 o1(1/m)
es(m) 0 e(m) 18 ex(1m) 0 () |
Lt 0 oo(1/m) 18 es(1/m) 0 e3(1/m) —18 or{m) |
em) = 9m 4 (35/m),  e(l/m) = (9/m) + 35m
em) = Om  — (35/m),  @(1/m) = (9/m) — 35m
esm) = =9m 4 (19/m),  ¢s(1/m) = (—9/m) + 19m
ps(m) = —9m — (19/m), es(1/m) = (—9/m) — 19m

(3) Other Shapes

Although the parallelogram and arbitrary quadri-
lateral can be treated in a manner similar to that used

for the rectangle, the individual elements in [K] tend
| to become unwieldy. For that reason use of automatic
 digital computing equipment is considered to offer the
practical means for obtaining stiffnesses of such plates.
Programs for carrying out such calculations can be de-

termined by following the basic ideas developed in this
paper.
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