Fundamental Concepts

1.1 INTRODUCTION

Among the various numerical methods available, finite element method (FEM) is at present very
widely used in every engineering analysis. Several engineering problems will be defined in terms of
governing equations written in one, two and three dimensions. Usually these problems are
expressed in the form of ordinary or partial differential equations. The problems of structural
machanics such as deformation, trusses, stress analysis of automotive aircraft, building and bridge
structures, magnetic flux, seepage etc. have been reduced to a system of linear simultaneous
equations.

Solution of these equations gives us the approximate behaviour of the continuum. These facts
suggest that we need to keep pace with the developments by understanding the basic theory,
modeling techniques, and computational aspects of the finite element method. Applications range
from problems relating to heat transfer, fluid flow, lubrication, soil machanics, electric and
magnetic fields, structural engineering and discussions related to structural analysis problems.

1.2 A BRIEF HISTORY OF FEM

Although the name “finite element” is of recent origin, the basic concept has been used for
centuries. The basic concept of finite elements originates from advances in aircraft structural
analysis. One of the earlier problems dealt with this concept was by ancient mathematicians. In
1941, Hrenikoff found a solution of elasticity problems using the “framework method”.

Courant introduced piecewise polynomial interpolation (or continuous trial functions) over
triangular subregions to model tortion problems appeared in 1943.

In 1956, Turner et al. derived stiffness matrices for truss, beam, and other elements and
presented their new findings.

Clough first introduced the term finite element, appeared in 1960. The two landmark papers to
which the origin of the FEM is generally traced are those due to Turner, Clough, Martin and Topp
and Argyris and Kelsey. The first book on finite elements by O.C. Zienkiewicz and Cheng was
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published in 1967. The finite element method was applied to the problems which are non-linear and
large deformations in nature, appeared in the late 1960’s and early 1970’s. A book on nonlinear
continua appeared in 1972. It is curious to note that the mathematicians continue to put the finite
element method on sound theoretical ground whereas the engineers continue to find interesting
extensions in various branches of engineering. In 1959, Greenstadt (279) utilised this technique to
discretise cell. He defined the unknowns through a series of functions for each cell, proper
variational principle for them and satisfied continuity requirements to tie together the cells giving
fundamentalists of finite element technique. Thereafter in 1960s, Clough analysed plane elasticity
problems further by this method. The method started getting its base when in 1963, it was
recognised by Besseling and Melosh (174) as a form of Ritz’s method of approximations.
Zienkiewicz and Cheng (280), in 1965, discussed in a broad way and recognised that the method can
handle all field problems which can be expressed in variational forms. After this, the technique was
recognised by many and went on very fast.

Finite element method, today, is widely used in almost all fields of science and engineering,
such as, aeroelasticity, aerodynamics, fluid flows, pipe and channel flows, thermodynamics, soil
mechanics, foundation engineering, geotechnical engineering, structural engineering and
structural dynamics, pile foundations, machine foundations, nuclear containment systems,
lubrication, bearings, fluid and soil structure interactions, electrical technology, textile engineering,
cable systems etc. Numerous software packages have been developed of which some of the most
popular ones are SAP, ANSYS, ADINA, STAAD, STRUDL.

SAP and ANSYS are of the oldest softwares. SAP has got some of the best facilities for Dynamic
analyses even till today. ANSYS is like an encyclopaedia of finite element packages. It has got
almost all types of elements, with many facilities for many fields of machanics.

The accuracy of finite element method has always been a question to be answered. Based on
Ritz’s summation principle for approximating a solution with the help of parameters known at
some selected points, the method always is of an approximate one. However, the accuracy can be
controlled through

(i) Considering sufficient number of nodes and elements for a problem.
(if) Choice of suitable approximating functions.
(iii) Choice of suitable numerical integration scheme.

Mathematicians and engineers have simultaneously been developing the approximation
technique and some of the noted researchers in the field of FEM are listed below:

Researcher Period Researcher Period
1. Rayleigh 1870 9. Mchenry 1943
2. Ritz 1909 10. Courant 1943
3. Richardson 1910 11. Prager and Synge 1947
4. Galerkin 1915 12. Newmark 1949
5. Liebman 1918 13. Morsh and Feshback 1953
6. Biezenokoch 1923 14. Mchahon 1953
7. Southwell 1940 15. Argyris 1955
8. Hrenikoff 1941 16. Turner and his group 1956
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Researcher Period Researcher Period
17. Clough, Martin and Topp 1956 20. Besseling 1963
18. Greenstadt 1959 21. Melosh 1963
19. Varga 1962 22. Zienkiewicz 1965

FEM Vs. Finite Difference Method (FDM)

1. InFEM, the final differential equation is surpassed, whereas it is the differential equation to
start with in the finite difference method.

2. The approximation involved in FEM is physical in nature, as the actual continuum is
replaced by finite elements. The element for mutation is mathematically exact whereas the
finite difference technique involves the exact representation of the continuum in terms of
the differential equation and on this actual physical system, the mathematical model is
approximated.

3. FDM needs larger number of nodes to get good results while FEM needs fewer nodes.

4. FDM does not give the value at any point except at node points. It does not give any
approximating function to evaluate the basic values (deflections, in case of solid mechanics)
using the nodal values. FEM can give the values at the point. However, the values obtained
at points other than nodes are by using suitable interpolation formulae.

5. FDM makes pointwise approximation to the governing equationsi.e. it ensures continuity
only at the node points. Continuity along the sides of grid lines are not ensured. FEM makes
piecewise approximation i.e. it ensures the continuity at node points as well as along the
sides of the element.

6. FEM caters irregular geometry whereas FDM makes stair type approximation to sloping
and curved boundaries.

Finite Element Method Vs. Classical Methods

1. In FEM, we can obtain approximate solutions for the exact equations formed, whereas in
classical methods exact equations are formed and exact solutions are obtained.

2. The FEM provides the solutions for all problems whereas classical method yields solutions
for a few standard cases.

3. If structure consists of more than one materials, it is difficult to use classical method, but
finite element can be used without any difficulty.

4. When material property is not isotropic, solutions for the problems become very difficult in
classical method. Only few simple cases have been tried successfully by researchers. FEM
can handle structures with anisotropic properties also without any difficulty.

5. FEM is superior to the classical methods in the sense that the problems which cannot be
tackled by classical methods without making drastic assumptions.

1.3 NEED FOR STUDYING FEM

One may ask the question: “What is the need to study finite element method when there is a number
of users-friendly packages available in the market?” This argument is not sound. The
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mathematicians continue to put the finite element method on sound theoretical ground whereas the
engineers continue to find interesting extensions in various branches of engineering. Hence, the FE
knowledge makes a good engineer better while just user without the knowledge of FE may produce
more dangerous results. In order to use FEM packages properly, the user must know the following
points clearly:

1. How to discretise the domain to get good results?

Identification of variables.

Which elements are to be used for solving the problems in hand?
Incorporation of boundary conditions.

Solution of simultaneous equations.

Choice of approximating functions.

NSO DN

Identification of variables.
8. How the element properties are developed and what are their limitations?

The FEM is a product of the computer age, and the application of the method to solve practical
problems requires use of computer programs for analysis. Nowadays no such programs are
developed as there are several commercial finite element packages available that can solve varieties
of problems. Some of these packages are ANSYS, ALGOR, NISA, ABAQUS, NASTRAN etc. having
pre- and postprocessors that give graphical pictures of the structure before and after loading,.

Pre-processor helps in the generation of the finite element mesh and prepares the data for direct
input into the analysis. This becomes essential as the modern structures have complicated shapes
and geometry. As the geometry and loading become more and more complicated the discretization
also becomes very cumbersome and nodal numbering is really a strenuous one.

Some of these packages also address questions like, “which type of analysis is the best for the
problem?”, “what is the best element type for the application?”, “how can one combine different
types of elements?” etc. The preprocessor graphically displays the structure to be analyzed. If the
discretisation is not perfect then it can be modified before the analysis. Briefly, in pre-processing we
build the model with defining geometry; specifying element type; defining material properties;
creating meshes and nodes with numbering.

The post-processor is again a program that presents the results of the finite element analysis
usually graphically and also performs further calculations as desired by the user on the results. This
is a very attractive feature of the commercial packages.

Example: If at a node we have six degrees of freedom (3 displacements and 3 rotations) and 500
nodes, then nodal displacements will be 3000, i.e. we will get a print out of 3000 displacements. To
get any physical idea of these will once again be a formidable task. On the other hand, a graphical
picture incorporating these values and showing the structure in its displaced position will give a
physical grasp of the problems. Briefly, in postprocessing we extract results such as displacements,
stresses etc.; time-history relation wherever applicable; and graphical representation of the results.

The commercial package ANSYS is used to show what has been explained so far. Hence, it is
necessary that the users of FEM package should have sound knowledge of FEM.
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1.4 BASIC CONCEPTS OF ELASTICITY

The concept of elasticity provides a more sophisticated tool of stress analysis than strength of
materials approach. It can be observed that when a wet ball impinges on a hard floor a circular path
is observed. This shows that the ball is compressed at the point of concussion. When a body is
compressed it is slightly deformed, and almost immediately tends to recover its original shape.
Internal forces are called into play to restore the body to its original shape.

But, when a glass ball is dropped on a marble floor it rebounds and attains a height almost equal
to the original one ; but if dropped on a wooden floor the height regained is much smaller. Again if
balls of different materials are dropped on the same floor the heights regained are different. The
velocities of all these balls will be the same when they reach the floor, but the velocities of the
rebound are different and so the heights reached are also different.

The property by virtue of which the differences in the velocities of the rebound are caused, and
the bodies tend to revert to the original shapes is called elasticity.

All bodies are more or less elastic. They possess the property of elasticity in different degrees.

Stresses and Equilibrium

In continuum mechanics, two distinct types of forces are considered: body forces and surface forces.
Forces which are distributed over the volume of the body are called body forces. That is, body forces
are forces that act on every element of a material and hence on the entire volume of the material.
These forces are expressed as ‘force per unit mass of the element’. Self weight of a structure, inertia
force, magnetic force are examples of such body forces.

Forces distributed over the surface of the body are called surface forces. That is, surface forces
act on the surface of a material. This surface may be either a part or the whole of the boundary
surface, if any, of the material or an imaginary surface visualized in the interior of the material. In
other words, surface forces are external forces that act on the boundary surface of the material.
These are usually expressed as ‘force per unit surface area of the element’. Hydrostatic pressure,
frictional force, wind forces, and forces exerted by a liquid on a solid immersed in it are examples of
such surface forces. Stresses are system’s internal bond forces acting at molecular level at all points
and in all directions. Strains are defined as rate of change of displacements (deformations) with
respect to the original dimensions (positions). In a deformed body they are present at all points and
in all directions.

Preliminary Definitions and Results in Elasticity
Definition (1) (Stress): The intensity of internally distributed forces that tend to resist change in
the shape of a body is defined as stress.
Load _P N
Cross-sectional area A (mm2)

Stress (c) =

Definition (2) (Axial strain or linear strain or primary strain): Change in length per unit length of
linear dimension of a body is defined as linear strain.

Change in length _ (3/) (mm)

Strai =
rain (¢ or €) Original length () (mm)
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Definition (3) (Lateral strain or secondary strain): It is defined as the ratio of change in lateral
dimension to original dimension.

. Change in diameter  &d
Lateral strain = — _ =
Original diameter d

Definition (4) (Volumetric strain): It is defined as the ratio of change in volume to original
volume.

. . _ Change in volume _ 8V
Volumetric strain = =_"

Original volume Vv
Definition (5) (Poisson’s ratio): It is the ratio of lateral strain to linear strain.

. , . Lateral strain
Poisson’s ratio = ———
Linear strain

Definition (6) (Body): A body is a portion of matter occupying a finite portion of space (and so is
bounded).

Definition (7) (Mass, volume, density): Mass is the quantity of matter in the body. The amount of
space occupied by a body is called its volume. Mass per unit volume of the body is called its density.
Definition (8) (Particle): A body of indefinitely small dimensions is a particle. Or, a particle is
regarded as a mathematical point endowed with a mass.

Note: Very often the dimensions of a body are not considered, and we treat the body as if its whole
mass is concentrated at a single point, or for purposes of discussion we treat it as a particle.
Definition (9) (Displacement): The displacement of a moving particle is the change of its
position. It has both magnitude and direction.

Definition (10) (Strain energy): When a member is gradually loaded, within its elastic limit, it
deforms. On removal of the load it regains its original shape. During deformation it absorbs the
energy and gives back the energy while regaining the shape. The energy stored is called “strain
energy”.

Definition (11) (Work): A force acting on a particle is said to do work when the point of
application of the force moves in the direction of the line of action of the force.

Definition (12) (Work done): Whenever a force S moves through a small distance , dx, then work
is said to be done.

Work done = Force x Distance moved
= Sdx
(i) If S and dx are in the same direction, then that work is said to be positive.

(ii) If S and dx are in opposite directions (such as frictional force), then the work is said to be
negative.
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Example: For alinearly elastic rod shownin Fig. 1.1, the force varies linearly from O to P when the
displacement increases from O to A.

Small work done = (+S) (+dx)

P
We know S=Zx

Since in a linearly elastic material, force varies linearly with deformation
A Ap
Work done = J Sdx = J. — xdx
0 OA

1
=—PA -1
> 1
= (average force x distance moved)
Eq. (1) represents external work

External work = +% PA

Definition (13) (Internal work): Itis observed that at every section of Fig. 1.2, the material offers
a resistance equal to the external force whose direction is opposite to that of the external force. But
magnitude is same. This resistance undergoes the same displacement but with a difference. That is,
in this case the force moves against the direction of displacement. Hence, work is negative.

LIJIL LI g bl

|7

Fig. 1.2 Deformed configuration
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Internal work = - % PA -[2]

Definition (14) (Strain energy due to shear stress): Strain energy is the work done by shear force.
It is given by the relation
2
u= (q_ X V]
2c

¢ = modulus of rigidity

where g = shear stress

V = volume of the given material
Definition (15) (Column, strut): Any member subjected to compressive stress is called strut. Strut
may be vertical, horizontal, or inclined. The vertical strut is called as column.
Definition (16) (Isotropic material): Materials having the same properties in all directions.
Definition (17) (Anisotropic material): Anisotropic materials possess different machanical
properties in different directions with reference to their crystallographic planes.
Definition (18) (Orthotropic): If the material has three orthogonal planes of symmetry it is said to
be orthotropic.
Definition (19) (Structure): Structure is defined as an assemblage of finite elements,
interconnected at finite number of joints called nodes as shown in Fig. 1.3.

The deformations anywhere in the structure can be defined in terms of nodal displacements.
For the truss shown in Fig. 1.3 if the displacements at the four joints are known, deformations at any
other point can be uniquely determined.

4
u Nodes

Elements

Structure

Fig. 1.1 Truss

Definition (20) (Degrees of freedom [Generalized coordinates]): These are the number of
independent coordinates which must be specified to uniquely define all the displacements.

For the truss shown in Fig. 1.3 the degree of freedom is 5. This is also called kinematic degree of
indeterminacy. The structure (finite element) has a fixed number of nodes. Each node is capable of
deformation. The deformation includes displacements, rotations and/or strains. These are
collectively known as Nodal degrees of freedom.
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Boundary conditions

A structure cannot resist any external load or its own weight without proper boundary conditions.
Because of all these the problems in structural machanics fall into boundary value problems
essentially.

Work, Energy

Consider a structure in equilibrium under the action of forces {Q} with a deformed configuration
represented by generalized displacement coordinates {g}. Consider a conservative system and the
loads are applied gradually. If W denotes the work done by the forces {Q} on displacement {g}, then
the external work I/ done by forces {Q} on displacements {7} (Fig. 1.4) is equal to the strain energy U
stored in the structure (energy is conserved).

Fig. 1.4 Structure in equilibrium under the action of generalized forces

The structure shown in Fig. 1.5 in state A is the initial configuration. {c} are the internal stresses
which are in equilibrium with the external loads {Q} and the strains {E} are compatible with the
displacement {g}.

Now, we shall study the response of the structure for small variation in displacements {84} and
forces {8Q} from initial position.

Due to small variation of displacements and forces there will be changes in work,
complementary work, strain energy and complementary energy.

The small variation in displacements Ag takes the structure from equilibrium state A to state B.
The incremental changes in work AW and strain energy AU are given by vertical strips of shaded
area as shown in Fig. 1.6(a) (i) and (ii). Magnifying the Fig. 1.6(a) (i) and (ii) as in Figs. 1.6(b) (i) and
(i)

0,+AQ, 0,+AQ,

! |

*‘h

Aq]/ /}\qu

T T #\ Incremental Position B

Fig. 1.5 Initial and deformed configuration of the structures
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W- work U- strain energy
W*-complementary work U*-complementary
energy
AW* *
v v A\U
ol A0 ML Glho
Y x
w < AW U* AU
W»Aq« U, Age
q €

® (i)
Fig. 1.6(a) Work and energy

(i) Incremental work (i1) Incremental strain energy

Fig. 1.6(b)

AW =ZQ;AV; + % ZAQ;AV; + higher order terms

In matrix form

AW = (80)7 Q) + - 180} (40} mi)

Similarly, AU can be written as
su= [ {ag)" {odo+ % [1ae)T (a0} do 12

Recalling that the product of stress and strain represents energy/ unit volume, if we assume that
{Q} and {o} remain unchanged while considering the variation of W and U which is equivalent as
saying
{Ac} =0 -[3]
{AQ} =0 ..[4]
In the study of continuous media, we are concerned with the manner in which forces are
transmitted through a medium. If V is the volume occupied by a three-dimensional body bounded
by a surface S, then any point in the body is represented by x, y, z coordinates.
The external loads acting on the body include point forces, distributed force per unit area T,
also called traction. Under the loads the body deforms. The deformation of a point x (= [xyz]") is
given by the three components of the displacement vector

U=1lu,vw]" 1]
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The external load (force vector) F consists of the following three types of loads that a body may
normally be subjected to the vector (body force vector) f, given by

fx
=t 1= LAAT 2]
£,

where f,, f,, f. are the components in the x, y, z directions, respectively. The work done by these
forces can be expressed as

Work done = juT fdo 3]

4

The surface traction T can be expressed as

TJC

T=|T,|=IT,T,T]" ..[4]
T,

z
where T, T,, T, are the traction components in the x, y, z directions respectively. The work done by
the forces will be

Work done = JuTTds ..[5]
A
An external load P acting at a point i is represented by its three components (Fig. 1.7a)

Pi= [Px/ Py/ Pz];r [6]

Fig. 1.7(a)
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The state of stress in an elemental volume of a loaded body is defined in terms of six
components of stress, expressed in a vector form as:

6= {0} = [Gx Gy O, Txy Tyz sz] [7]
where 6, 6, G, are normal stresses and 1., T, T,, are shear stresses. The stresses must satisfy the
equilibrium condition at each and every point within the body, considering the equilibrium of the

elemental volume: dV = dx dy dz, (Fig. 1.7b).
Writing: X F, = 0; L F, = 0; £ F, = 0, we get the equilibrium equations

+
Xz

=T+

L
X

o.

Fig. 1.7(b)

Equilibrium of elemental volume, u=0on S,

ad

80x+ Txy+aTxZ +fx:0

ox dJdy 0z

ot 06, 01

Ly —L4 B yf =0 [8

ox " oy " 0z y 18]
ot

0T, yz+acz +f =0

ox dy 0z
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Sign convention: We shall employ the following sign convention for stresses.

A normal stress is positive when it produces tension; therefore, if it produces compression it is
negative. Shear stresses shown in Fig. 1.8(a) is accompanied with two subscripts, the first indicating
the plane given by its normal on which it acts and the second gives the direction of the component
of the stress. To explain it further, if we consider the two shearing stress components acting on the
plane which is perpendicular to x-axis, then the component which is in the direction of y-axis will be
7,, and that in the z-direction will be t... The positive directions of the components of shearing stress
on any side of the element are taken as the positive directions of the coordinate axes if a tensile stress
on the same would have the positive direction of the corresponding axis. Thus if on any side, the
tensile stress is opposite to the positive direction of the reference axis, the positive directions of the
shearing stress components will then be reversed. All the stress components shown in Fig. 1.8(a) are
positive, so that we can say that a stress is positive when it is on positive face in positive direction or
on negative face in negative direction [Figs. 1.8(b) and (c)]. From the Fig. 1.8(a) it is clear that there
are three components of normal stress—o,, 6, and 6, and six components of shear stress: 7, T,
Toy, Tyw Ty and 1. Furtheritis known thatt, =1,,, 7,, =7, and 1., = 1,,. Therefore, to describe the
stress at a point, the information of six quantities 5., 6,, 6,, 0,,, 0,,, 0, are all that is needed.
Boundary Conditions: There are two types of boundary conditions namely surface loading
conditions and displacement boundary conditions, in addition to equations of equilibrium
compatibility and constitutive law boundary conditions, to completely specify a problem in solid
mechanics. If u is specified on part of the boundary denoted by S,

we have, u=0onS,. 1]
z
A
GZ
A
S—
/ «
T, <
: TXZ
A4
Ty
/4 Ty: GV
A P\
4,,,,,9,,,, g

1 T,

! (0] Rl » X

3 > TW dZ 4

TXZ /
G, «
y dy
Y
B dx C
y

Fig. 1.8(a) Stressed element
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Table 1.1
Face Stress on -ve Face Stress on +ve Face Remarks
x oy o} =o,+ 90x gy
X
ot
+ _ Xy
T Ty = Ty + ax
xy Xy Ty T Ty
tﬂ T;Z = tXZ + Xz dX
oo Stress on positive face
+ Y i
y o, oy =0, + —=dy is equal to the stress on
dy negative face plus rate
T of change of that stress
+ yx ..
Tyx Tyx =Tt 3 ad) multlplled by the
y distance between the
T faces. (See Fig. 1.9)
+ _ yz
T T T, + d
yz yz yz ay
Jdc
z o, oy =0,+—%dz
0z
o1
Tax T;X =Tt a_;X az
ot
+ _ zy
Ty Tzy STyt 32 dz
z
A
Gx
«
T, Txy‘“”‘”l/
A \
< T.
T
A
T
Elposaecy '
T, !
\
O.
X X

Fig. 1.8(b)

Fig. 1.8(c)
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z 7
A A
/ < dy —»
/dx
i J.
>y
dz /
i X
/
X
Fig. 1.9

Let us consider the equilibrium of an orthogonal tetrahedron element ABCD shown in Fig. 1.10
where DA, DB and DC are parallel to the x, y and z coordinate axes, respectively and dA = area of
ABC, lies on the surface.

Itn=[n,n, n,]" is the outward drawn normal vector to dA, then

=[n,n,n]T

Fig. 1.10 An elemental volume at surface
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area BDC=n,dA
area ADC =n,dA 2]
and area ADB=rn,dA

In equilibrium, along the three axes direction yields

G M, +T,n, +T,,0, =T,

xyy
Toyly + O 1y, +7,.n, =T, [3]
Ty + Ty M, + 0,1, = T,

The conditions [1], [2] and [3] must be satisfied on the boundary, S;, where the tractions are
applied.

Strain—-Displacement Relations

The relations between the components of strain and the displacement components u, v and w at a
point are

- T
€= [8x/ 8y/ €y sz/ Yrzr ny] [1]
where g, €, and ¢, are normal strains and vy, ¥,, and v,, are the engineering shear strains.

Figure 1.11 yields the deformation of the dx - dy face for small deformations, which we consider
here, and also considering the other faces, we get

Ju dv ow dv OJw Ju oJw Jdu dv !
7 7 7 +_1_+_1_+_ [2]
0x dy dz dz Jdy dz Odx dy Ox

where the strain and displacement components are given by:

au 1|(ou) (00) (ow)
g,=— +— || — | +|=—| +|=—
Jdx 2 || dx ox ox
v 1_8u2 802 8w2
g =—+ || —| + +| —
Yoy 2|y ay dy

2 2 2
ow 1 |(du v ow
= — 4+ — —_— —_— ...3
& dz 2 Kazj i ayj i ay } 3]

v du OJduodu Jv dv Jw Jw
= + -+ 27 4 4+ =27

Ty ax dy  9dx dy ax dy  dx dy

Jw 0v OJuodu 0vIv Jw dw
= + 4+ 277 et

sz_@ dz dy dz @az dy 0Jz
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Ju oJw OJudu 0vodv OJw ow
9z 9x 9z dx 0Jz dx Jz Ox

* T o T ox dy
v Jw  Jdv
=y, =+ L[4
% dy ty Jdy 0z 4
S =a_w' =a_u +87w
: az’YZ’“ dz  dx

Stress—Strain Relations

The basic law of proportionality of stress and strain published by Robert Hooke in 1678 expressed
in the form of law known as Hooke’s Law which states that “within elastic limits of materials the
elongation produced by the tensile force is proportional to the tensile force”.

If the elongation is denoted by e and the tensile stress by T, then T = Ee, where E is a constant

depending on the properties of the material. The constant E is called the modulus of tension (or
Young’s modulus).

dy o R

\
\
Y ed

Fig. 1.11 Deformation of the element

Generalized Hooke’s Law

The constitutive equations for a linear, elastic solid which relates all the stresses to all the strains is
called the generalized Hooke’s law. It has the form

Gij = Cijkm Ekm -1
where Cyjy,, are the elastic constants and in eq. [1] we have 81 such constants since C;jy,, is a tensor of
fourth rank. The above equation is meant for an anisotropic material and the only requirement is
that the material should be stressed within the elastic limits. However, due to symmetry of both

stress and strain tensor there are utmost 36 distinct elastic constants only and the Hooke’s law can
be written as
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011 = Cpy&1q + Cippp + Ciagg + Crpps + Ciss + Cip8yp
O = Cp&11 + Cppepy + Czsg + Coups + Cpssp + Crpgyp
033 = Cy1811 + Capepp + Cyaag + Caups + Gy + Gy -[2]
O = Cyy + Cppepp + Cyag + Cpups + Cyssp + Cue€n

031 = C51811 + C5p€xp + Cyzgag + Coypg + Cosgy + Cseepp

0p1 = Cgr€qp + Cepenmp + Cezeag + Coypg + Cosay + Copepn

which can be written as

6;=Cjg  (4,j=1,234,56) ..[3]
This way it is understood that
G171 = O1; O = Op; O33 = O3; 023 = 03,= Gy, 031 = 013 = 05,012 = 021 = Op -[4]
and
€11 = € € = € €33 = €37 2803, = 283y = &y; 2831 = 2813 = €5, 285 = 28 = & -[5]

Constitutive Matrix: The system of equations [2] can be written in matrix form, for a linear elastic,
anisotropic and homogeneous material.

Oy C11 €12 - C16| | &
o, €1 G .. Co6| | €y
O.Z _ 8Z
T Vay
Tyz ’sz
Tox 161 Ce2 -+ Co6| |Vax
o {0} = [C] fe} ]

where [C] is called the constitutive matrix and its inverse relation for strain is given by

€y dyy  dy dig | | Ox
€y dyy dyy ... dy| |0y
o I o,
Yy Ty
Voo | e T,
Y 2x |de1 dex ... deg | |Tax

Thus, from Hooke's law, for linear elastic materials, we find stress-strain relationship in three
dimensions (and later we will reduce it to two dimensions).
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_%: Y9 _vo.
g =— - -
E E E
c
Y YO, YO,
g =—-—-— L1
Y E E E [1]
8=2 YO0, YO,
. _ 4 7x
E E E

Now, = -[2]
2(1+7)
where vis the Poisson’s ratio of the material
E is the Young’s modulus of elasticity
G is the shear modulus of elasticity
From [1], we have

g, +e, +€,= (1—_EZV) (6,+6,+0,), (From Hooke's law) .[3]

Y Y

Substituting for (o, + ¢,) and so on into equation [1],

y

we get,
c=D¢ ...[4]
G}C
Gy T
where S5 [T [6,0,0.1,,
T)CZ
[1-v v 0 0 0 ]
v 1-v 0 0 0
E v v 1-v 0 0 0
and = ...[5]
(1+v)(1-2v) 0 0 0 05-v 0 0
0 0 0 0 05-v 0
| 0 0 0 0 0 05-v]
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Particularly any element spreading in a single direction is known as one-dimensional element. The
normal stress 6 and the corresponding normal strain € are related by ¢ = Ee, which is the stress-
strain relation in one dimension (Hooke's law).

If u be the displacement, then the linear strain is given by €, = g—u, which is called the strain-
x

displacement relation. The stress is given by

| o,=Ee; €.=Dg,

where D = E, (Young’s modulus).

1.5 POTENTIAL ENERGY AND EQUILIBRIUM

The variational or energy methods are of primary importance in the finite element analysis. In solid
mechanics, we come across the problem of determining the displacement u of the body shown in
Fig. 1.12, satisfying the equilibrium equations [8]. It may be noted that the stresses are related to
strain, which, in turn, are related to displacements. Approximate solution methods normally
employ variational or energy methods. The energy a body possesses by virtue of its position is
known as potential energy.

|POTENTIAL ENERGY: (IT) (a term applicable to conservative fields of force only). |

The potential energy of the system arises because of two causes:
(i) Due to position of external loads
(if) Due to deformation of the structure (i.e., energy stored within the body due to physical
deformation known as strain energy. The concept of potential energy is fundamental and
exceedingly important in the study of structural mechanics and FEM. The total potential
energy is denoted by the Greek letter IT which is a function of displacements.

Definition: (Potential energy) is defined as the negative of the work done in displacing a particle
from its standard position to any other position, and the total potential energy, I1 of an elastic body
is defined as the sum of total strain energy (U) and the work potential (WV,).

The potential energy of the external load P is
W, = (Load) (Displacement from zero potential state).

=_Pu 1]
where the zero potential state corresponds to u = 0. Hence the total potential energy  is

¥

where U is the strain energy, W, is the potential of the applied loads (or work potential). The strain
energy density (strain energy per unit volume in the body) for a linear elastic body is defined as

T

_ sy lf o7
dUu=—-o0c ¢ = total energy = U 2J‘V(5 edV

N | =

and the potential of the applied loads (or work potential ) is given by (V).
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W, = -jVqudv - LUTT.ds - ZU,-TR- 3]

Hence the total potential becomes

n=% chTsdv-jVqudv- J;UTTds—zi:UiTPi 4]

Principle of virtual work: Since energy has to balance itself we equate the work done by the
system to the work done by the system in opposition.

The application of forces displaces various points of the system deforming it. The internal
stresses moving through the internal strains do another work.

Strain energy stored in the linear electric spring:

The spring constant (stiffness of the spring) is a constant denoted by k which is merely the force
per unit displacement. Here, force and displacement are general terms.

If D be the displacement of the spring, then energy stored in the spring is
u-= (1)1< D2
2
In case of flexural systems, the strain energy is expressed in two ways:

1, dx
u=j— M2
> M E]

. El c[a?y]
Alternatively, u= e dx
x

Potential of a constant force : Each and every activeforce has a capacity to perform work. For
example, it may be observed that from Fig. 1.12, a force is acting at a point A which is the reference
point.

Let the potential or potential energy of the force at point A be zero. When the force P moves
through a distance D along the line of action to a point B it loses some of its capacity to do work.
Now the potential of the force at B is defined as

Potential at B =0-(+P)(+D)
=-PD

_—
—

A
P

Fig. 1.12 Potential of a force
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We may note two points:
(i) Both force and displacement are in the same direction. Hence (+) sign is attached to both of
them.
(i) When the force moves, it loses some of the energy. Hence (-) sign is attached in the
beginning.

Potential Energy Function
The potential energy function is given by the equation
I=u+ WP [1]

where U is the strain energy of the material and IV, is the work potential.
Two spring systems are shown in Fig. 1.13.

D
R
(a) Single spring (b) Springs in parallel with same displacement
Fig. 1.13
1
U= ———
2kD
Wp =-RD
1 1
T=—s - ——— -2
2kD*  2RD 2

The P.E. function for spring system shown in Fig. 1.13 becomes

1 1
T = > +—2
24D%  2k,D

~RD 3]

Equations [1] and [2] are functions which depend on the displacement D.
Hence, they are called potential energy function.
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Potential energy functional
Let us consider the potential energy for the beam shown in Fig. 1.14 below:

H=U+Wp

q kN/m

<<
<

y
Fig. 1.14
Er[a?y |
U=I— a4y dx
2 | dx?
0
I
Wp =J. qy dx
0
1 2 2
EI(d
7t=J. 7(;2] —qy | dx -[1]
0

(wm=U+W,)
[1] is known as a functional.

Note: I1depends not only ony and its derivatives at a point but upon their integrated effect over
a region of interest. T becomes a functional when the system has infinite number of degrees of
freedom.

Derivation of Principle of Stationary Potential Energy
It is known that the principle of virtual work assumes the following two systems of quantities:
(i) Equilibrium system:
o with Fin W, }
and Tin$S
(ii) A system of virtual displacements u such that du =0

1

— 38U, = ode

U, €
Fig. 1.15 Increment in strain energy
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Another set of displacements u such that u = # on S;; and u produce (by the principle of
stationary potential energy) a set of ewhich results in the stress o through a single valued constitute
relation.

If a unique strain energy density, “ U, (€)” is associated with every set of strain €, the material is
said to be elastic. For such material

u= jcé‘)e [2]
0

energy in an elastic body is conserved and recovered and then

ou
— = .[3
e [3]

Now, if we consider the set of displacements, 1, which produce the set of strains € producing a
set of stresses ¢ and if we now consider 6 be infinitesimal increment in u resulting in incremental
strain d¢ then the left hand side of the virtual work equation

f‘,ﬁercdv = JSqrﬁTds + JSqudv
t 11 i
Real Equilibrium
Virtual Compatible
ou
becomes JGSﬁdV =Ja— dedv =J8U0 dv
V v € V
=9 JLIO dv

Therefore, the principle of virtual work becomes

duU-= JSqTFdV 4 JSqTTdS ..[4]
14 s

which is now the equilibrium condition for stresses ¢ arising from the displacements g which are
subjected to incremental displacements g, and which produces du.

Eq. [4] is valid for an elastic body with non-conservative external forces. But it is more usual to
consider the case of conservative forces for which it is possible to define the potential.

The total potential energy of the external forces V can be written as

W, =-|[a" Edo+ [q" T as 5]

4 S

and the variation in potential is
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S, =- jqudejquTds 6]

Hence Eq. 6.17 may be written as

dU=-8W, or, d3(U+W,)=0, 7]
Defining the total potential was U + WV,
Then the equilibrium 8IT = 0 for Principle of Stationary Potential energy

O 0T
i=1""7t

“Of all possible system of deformations, that are compatible and satisfy the displacement
boundary conditions that system which also satisfies equilibrium makes the total potential energy
stationary.” That is,

;)_n = 0 gives the condition of equilibrium.
i

Principle of Minimum Potential Energy: It states that among all displacement fields that satisfy
the prescribed constraint condition of the structure, those that satisfy the equilibrium condition
make the total potential energy a minimum.

It may be observed that the structure (Fig. 1.16) is subjected to the generalized forces in the
following two states A and B as g, q; + 8q; 7 (g;) and = (g; + 8q;) refer to the total potential in states A
and B respectively. State B is in the vicinity of state A and is obtained by applying virtual
displacement 8g perturbing from states A to B. Total variation in potential energy in going from
states A to B may be written as

Am=m(q;+8q;) - 7 ()
N on
SIS ox

1
An=8n+582n+ .....

5 0 -1
3o g 00781 [1]

For equilibrium 87 = 0. If in addition we assume linear stress-strain relation (r is quadratic)
hence §° & ... and higher order terms are zero

0, +AQ, 0,+AQ,

%Inmal Position — A
e

e . Ag,
Incremental Position — B

Fig. 1.16 Initial and deformed configurations of structure
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a=2% Y LI 2]
5 90; 94, q; 84,

Moreover, & 1 is not a function of Q because the potential of external forces is first order
function in terms of displacement g

An=182n=182w [3]
2 2 p

Equation [3] is of course a familiar requirement that the slope of a function be zero at stationary
point, from differential calculus.
A starting point must meet this condition but this is not sufficient to ascertain if we are at

maximum, minimum or neutral points. In order to establish this the sign of curvature must be
considered.

<0

b4
T
63
b
SZTE >0 q,
q, Stable
T
q,
¥ n=0
Neutral
9

Fig. 1.17 States of equilibrium for two degree of freedom system

T T T
§n<0
N ¥n>0 /\ §n=0
q q q

(a) Stable (b) Unstable (c) Incipient
equilibrium equilibrium stability

Fig. 1.18
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?n>0 then 7 is minimum

Pn=0 then 7 is neutral

<0 then 7 is maximum
This is very clear from Figs. 1.17 and 1.18.

Note: For a linear elastic structure, we have

n=(U+W,) (1)

where U is always positive and W, is always negative as shown in Fig. 1.19.

AUV U

SU>0

<« qeq > 51'[:0; 8275>O

Fig. 1.19 Plot of n, U and V with respect to q

7 is quadratic form and 7 = 0 locates a minimum point on the plot & against 4.

Under these conditions principle of stationary potential energy becomes the principle of
minimum potential energy.

It is seen that

(a) Minimum potential energy principle applies only to elastic systems with conservative
forces.

(b) & m is positive ( if m is positive definite)—the theorem of stationary potential energy
becomes the theorem of minimum potential energy.

Principle of Virtual Forces: The principle of virtual forces may be written as

fvSGT&: dv = jSFquv + /8 Tqus
T A T A T
Real Compatible
Virtual Equilibrium

and the principle of stationary complementary potential may be stated as
dn =0 for a compatible system
SU +V)=0 -[2]
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Derivation of potential energy (I1) for the beam shown in Fig. 1.20.
(The system has a finite number of degrees of freedom.)

W

y
Fig. 1.20 Beam with a central load
Since n=U+W,
1 2 2
U= IE d—g dx
2 \dx
0
Wp =-PA
1 2 2
T = IE d_g dx — PA
: 2 dx

Derivation of potential energy functional (I) for a truss element subjected to uniform traction as
shown in Fig. 1.21.

q

_— > > —> —> —> —

MIH% Jf_> s

LAE

Fig. 1.21 Truss member with uniform traction

Since the system has got infinite degrees of freedom, © expression results in a functional.

Solution:
n=U+W, 1]
U= j % &) {0} do 2]
We know o=Ee
dv =A dx
Potential Energy

1
_LAE
u-l—z &2 dx 3]
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But 8=%
dx
) 2
AE (du
U=|—|—1|4d ..[4
-([2 (dx) * 4]

!
W, =- J(qu)u
0

!
W, =- Jqu dx ..[5]
0
Substituting Egs. (4) and (5) in Eq. (1), we get

l 2
AE
I1 =J —(Qj —qu | dx
2 \dx
0
Example: Establish the P.E. functional for a beam column subjected to a uniformly distibuted load
q kN/metre as shown in Fig. 1.22.

(Infinite degrees of freedom, hence, P.E. expression results in a functional.)

q kN/i P
P—> < > X

M

y
Fig. 1.22 A Beam Column
Solution: Since n=U+Wp 1]
1 2 2
El (d°y
U=|—|—5| dx .2
-([ 2 (dsz 2
W, =-PL-qy .-[3]

where

/
X=J~l(ﬂj2dx
02 dx

Substituting Egs. (2) and (3) in Eq. (1), we get

1 2 2
El(d°y| P dy]
= _ | —L = — | £ — d
" -([[2 (dxz] Z(dx qy} *
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Computation of A: From Fig. 1.23(b) originally straight ds has become curved ds. During this
process a descent dA occurs as seen in Fig. 1.23(b).

ds

(a) (b)
Fig. 1.23 (a) Two equilibrium shapes
(b) Originally straight ds has become curved ds

dh =ds-dx

= Jax? + dy? - dx
»71/2
=dx{1+(d—y) } —-dx
dx

For small values of Z—y, we know
X

2
=2 (ﬂ) dx 1]
2

Therefore, for the entire column Eq. (1) is integrated on both sides. Then
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Example: Figure 1.24 shows a system of springs. Assemble equations of equilibrium by direct
approach. Prove that minimization of potential energy also yields the same result.

% Fl ) F2 F3
% k, 1 k, 2 k, 3

—> 4 —> —> 4

Fig. 1.24

Solution: (1) Direct approach: Let the nodes (1), (2) and (3) be as shown in Fig. 1.25.
If g4, g5, g5 be the displacements of nodes, then the extensions of springs 1, 2 and 3 are:

Fl FZ
<—L> <—L> F3
<—O—>

k3, @ k,5, k,5, @ k;3, k8, @
Fig. 1.25
8 = qi;
8y =0, —; -[1]
83 =03 —qy;

The equilibrium equations are:

_k151 + k252 + Fl = 0

—k,0, + k305 +F, =0 .[2]
—k305+F =0

From first and second equations of eq. [2], we get

—kig1 + k(92 — 1)+ F =0
—ky (G2 — 1)+ k3 (95 —92)+ E, =0 ..[3]
—k3 (93 —q2)+ F5=0

(ki + ko)1 —kago = F
—koqy +(ky + k3) g2 —kags = F ...[4]
—k3qy +k3q3 = F
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Matrix form of system [4] is

(ki + k)  —ko 0 (¢ 151
—k2 k2 + k3 —k3 qo¢ = FZ [5]
0 —k3 ks | 493 Ey

(2) Potential energy approach:

1 1 1
n= 5 k15%+§ k83 +E k383 - 1y - Fyy - Faqs
1 1 1
=3 kyqi + 5 ky (G2 - q1)* + 5 k3 (93 = 42)* = F11 - Faq2 - Fags
o kigy + ko (g2 — 1) (1) - F =0
ﬁ =0= kih —ka (92 — 1) —F =0 ..[6]
! (ki + k) g1 —kyq, = F
orn
P =0=> k(@ -q1) * k(@3 -90) (-1) = F,
q2
~kyg1 + (ky + k3) g, - k3qs = F, -[7]
and ;—E=O:k3(q3—q2)—F3=0
qs
~k3q,+ kg5 = F3

Matrix form is given by

(kl + kz) —k2 0 q1 Fl
—k2 k2 + k3 —k3 qo ¢ = F2 [8]
0 —ks3 ks q3 E

Equations [5] and [8] are same. This completes the proof.
Example: The potential energy for the linear elastic rod with body force neglected is

L
= 1 EA(du) dx - 2u4
2 Jo dx

where up =u(1).
Compute the stress in the bar.

Solution: We assume a quadratic trial function

u=C;+ Cyx + Cx? -1]
Now, when x =0, u (0) = 0 yields C; = 0 and when x =2, u(2) = 0 yields

0=C+2C,+4G;
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=G =-2C;
. [1] becomes u=Cy(-2x +x%)
=u; =-C (atx=1)

du 12
=20y (-1+ ) and - Ejo 4C2(-1+x)2 dx-2(-Cy)

2 2 2
=2C2 jo (1= 2%+ %) dx +2C,

=2C3 (%) +2C,

o =4c3(§)+2=0.

G,
= C; = - 0.75;
1, =-C3=0.75

Hence, the stress in the bar is given by

0=E@
dx

=2(-0.75) (-1 + x)
= 6=15(-x)

1.6 RAYLEIGH-RITZ’S METHOD

The Rayleigh-Ritz method was proposed independently by Lord Rayleigh (1842-1919) and Walter

Ritz (1878-1909). Stated simply, “a function is assumed in terms of some unknown coefficients that
2

would represent a solution of equation % =- % An approximate solution can be obtained for a
x

differential equation using the Rayleigh-Ritz method whereby an approximating function is

substituted into the variational function. The approximating function must satisfy the boundary

conditions for the problem being studied.

The Rayleigh-Ritz method and the Ritz method are entirely different. The distinction is that the
Ritz method always refers to the nonvariational integral formulation whereas the Rayleigh-Ritz
method makes use of variational approach.

Illustration:
b
Let I= J F(x,y, y, ij) dx be a functional. 1]

a
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2
Choosing F=F(x,y, v, 1) =- % (%) +1000 x%y -[2]

.. Equation [1] becomes
1 1(dy ?
= | [1000x%y - ==L
jo[ 000 x2y 2(de ]dx [3]

In Rayleigh-Ritz method for continuous system we deal with the functional :

[3] maximizes or minimizes I.

b
I= J Fx,y, y)dx ..[4]

a

Discription of the Method

Rayleigh-Ritz method is a method for determining approximate solutions of functional equations
through the expedient of replacing them by finite systems of equations.

It is one of the most useful approximate methods stemming from variational considerations,
wherein, for the present we employ the following approximate displacement field components for
expressing the total potential energy:

1
un :q)O(xl Y, Z) +Z aiq)i(xl Y, Z)
i=1

Vo =wolx,y, 2+ Y, by, 2) 1]

j=1+1

Wn:YO(x/y/Z)+ 2 CkYk(x/y/Z)

k=m+1

n>m>1

where a;, b;and ¢are 3n linearly independent parameters, which behave as generalised coordinates.
In order to determine these coefficients 31 equations/conditions are sought: ¢;, y; and v, are chosen
as to satisfy kinematic boundary conditions.

Finite element technique may be thought of as an extension of Ritz’s analysis of a continuous
system. It tries to represent any continuous system with the help of parameters at some chosen
points only. It was first taken up by Rayleigh and then elaborated by Ritz. The method is also known
as Rayleigh-Ritz method.

For a most stable equilibrium, the total potential energy is minimized.

We may write the system of equations [1] as
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u, = Z a;0;;
V.= by 2]
Wn :2 CrVir

SU, =Y, ;.50
8V, = ;.8 -[3]
W, =Z Yi-0C,;

The total energy can be expressed as variations in a; b; and ¢, means variations in energy.

ou ou ou
=Y {a—%.aai + 30, e, [ =0 4]

+
b] ) ack

This gives 3n equations as:

8£=0=8£=8£ .[5]
o4, db;  dgy

a;, b; and ¢ can be solved from these equations. Figure 1.26 shows the type of approximations
it follows:

>~

u(x, y, z) is the actual function
uy, u,, uy etc. are the approximated ones depending upon definition

Fig. 1.26 Ritz's Approximation
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IMustration:
We know that
82 82
X, Y) = 1
2 o *fxy) (1]
is a Poisson’s equation. Its solution can be approximated in the form:
q(x, y) = TM;(x, ) 4; ~[2]

where g; are the parameters defined at only some selected points i (i = 1, 2, 3, ... n), M, are the
functions to be designed/chosen in a way to satisfy all the boundary conditions related to the
problem.

The governing functional can be expressed as

1 aqY (aq)
D=5]] Ka—fﬂ +[£J - 2f(x, y)q}dx dy -13]

In order that J(g) is minimum,

i

_=0

99

a] dqg 9 dq 99 (9dq g
Therefore, —flx,y). = |dxdy=0 - [4
TEIE 5, ”[ax 8%( j dy 9q; \ oy Jey) ag; | 4l

The equation [4] yields n equations for the unknowns giving approximate solution to g (x, y) as
q'(x, y), if Mi = Ni

p) o ([oN P) )
OR, [ {a“\” (q);q{b} {q}ﬂ oy M (q%a—qﬂ y}{ }]

- {f(x/ y). ai [N] {q}}dx .dy=0 ..[5]
ON| . 9N, [oN N,
OR, JJ[{g_{q}.a—xl+{gD(4).a—yl—‘[(x,y).Ni]dx.dy=0 ..[6]
ON] oN;, [oN]oN
OR, ”ﬂg_'W{ay B_yj dx . dy . {q}+” - f(x,y) . N;.dx .dy=0 7]
OR, [K] {q} - {F} = {0} I8]
[ON'] oN; [aN] aN;
e =[S SR 5o

{F}=JJf(x,y).Ni.dx.dy



