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PREFACE

THE present_work was originally published as a series of articles in

Aircraft Engineering between October 1954 and May 1955. The
purpose of these papers was two-fold. Firstly to generalize and extend
but at the same time also to unify the fundamental energy principles of
analysis of elastic structures. Although much of the corresponding
theory has been available for a number of years, to the best of the author's
knowledge it has not been given before in such generality. Asan example,
whilst kezping within the small deflection theory the arguments have been
developed ab initio to include non-linear elasticity and arbitrary initial
strains e.g. thermal strains. The first assumption introduces naturally
the twin concepts of work and complementary work first put forward
by Engesser. The author has attempted in this connexion to refer to all
relevant and historically important papers. Since the appearance of the
present articles, a few papers have been published which touch upon the
same subject but suffer, unfortunately, from a rather incomplete list of
references.

Secondly, the writer developed in considerable detail practical methods
of analysis of complex structures—in particular for acronautical engineer-
ing applications. The most important contributions are the matrix methods
of analysis. Since they are only cdrsorily referred to in the Introduction,
it may be appropriate here to describe their use and origin in greater
detail. The matrix formulation besides providing an elegant and concise
expression of the theory of such structures, is ideally suited for modern
automatic computation because of the systematic ordering of numerical
operation which the matrix calculus affords. The necessary programming
for the digital computer is simplified since it can be preprograpnmed to
carry out matrix operations with only simple orders as to location and
size of the matrix concerned and the operation to be performed. The
specific programming for a particular problem may therefore be written
comparatively quickly and easily and, moreover, follows closely the
algebraic analysis.

As developed here, the matrix methods of analysis follow from particular
forms of the two fundamental energy principles applicable to structures
made up as an assembly of discrete elements. The one principle leads to
an analysis in terms if displacements as unknowns (displacement method),
while the second leads to an analysis in terms of forces (force method).
Besides revealing more clearly the duality of the two methods, this
derivation shows also the close connexion between the aproximate
methods (like the Rayleigh-Ritz method) for continuous systems and the
matrix methods for finite assemblies. This is particularly valuable in
providing suitable techniques for establishing the basic properties—
stiffness and flexibility—of the individual elements of a complex structure
where these elements have to be assigned simplified stress or strain
patterns.

But in stressing the advantages of a unified approach to these diverse
problems, a word of caution is necessary against carrying over into the
modern methods too many ideas associated with practical calculations

by the established or classical methods. The ability to tackle successfully
problems in which the number of unknowns is measured in hundreds
carries with it the necessity of rethinking one's practical approach if
maximum advantage is to be gained from modern computational tech-
niques. In the force method of analysis the choice of basic system and
of the redundant forces must be governed primarily by the requirements
of simplicity and standardization, in order to reduce the manual
preparation of data to a minimum, and reduce the probability of errors.

At the time of publication of the original articles it was intended to
reprint them as a single volume and to follow up the Parts I and 11,
contained here, with further parts dealing specifically with the practical
application of the matrix methods. Unfortunately it was not possible, for
a number of reasons, to complete this plan and the articles have for some
time teen unavailable. Sirce there appears to be a persistent interest in
them the present reprint has been produced to meet the deficiency.
Grateful thanks and acknowledgment are due to the Editor of Aircraft
Engineering for permission to reprint the articles in this form. The method
of reproduction has not permitted complete rearrangement of the text
into book form, so that the divisions into monthly instalments are still
marked by blank spaces. However, errors in the text have been corrected
as far as possible, and the pages have been renumbered consecutively
to make for easier reference. Grateful thanks are due to Miss J. A. Bergg
for her care and skill in effecting these changes. The author would also
like to thank here those correspondents who have written to point out
textual errors and misprints.

A list of references to further work is also appended. These are all
concerned with the matrix methods of analysis whose basic theory is
developed here. In particular, Ref. 6 is an expanded and developed
form of part of the work which was initially planned for the original
series.
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Part I. General Theory

By J. H. Argyris

1. INTRODUCTION

HE increasing complexity of aircraft structures and the many exact

or approximate methods available for their analysis demand an

integrated view of the whole subject, not only in order to simplify
their applications but also to discover some more general truths and
methods. There are also other reasons demanding a more comprehensive
discussion of the basic theory. We mention only the increasing attention
paid to temperature stresses and the realization of the importance of non-
linear effects. When viewed from all these aspects the idea of presenting a
unified analysis appears more than necessary.

With this present paper we set out to develop a comprehensive system
for the determination of stresses and deformations in elastic structures
based on two fundamental energy principles. Although much of the theory
given has naturally been known for many years we believe that some of the
theorems and the generality of the results are new. The loading systems
considered are of an arbitrary nature and include ab initio the effect of
temperature or other initial strains. Neither do we restrict ourselves to
elastic bodies obeying Hooke's law but take account of purely elastic non-
linear stress-strain laws. This is possibly not of very great importance at
present but may have wider applications in the future. No problems of sta-
bility will be touched upon in the present series of articles and any other
considerations of large-deflexion theory are, in general, omitted. Thus the
purpose is to investigate, within the small-deflexion theory, the stresses
and deformations in elastic bodies not necessarily obeying a linear stress-
strain law and under any load and temperature distribution. Dynamic
effects are initially not considered and hence it is assumed for the present
that the loads and temperature are of the quasi-static type. When in-
vestigating thermal strain effects we ought strictly to base the analysis on
thermodynamic considerations. These are, however, on ly slightly touched
upon here.

As in all theoretical work, we start by discussing the exact implications
and equations derived from the initial assumptions, but we do not restrict
ourselves here to this aspect. On the contrary, we pay close attention to
approximate methods of analysis based on the physical concepts of work
and strain energy. In particular we attempt to give upper and lower bounds
to overall properties of the structure such as its stiffness. No attempt is
made to estimate the error of stress and deformations at any particular
point,

This series of papers originally arose!?:'® from lectures given by the
author since 1949-50 at the Imperial College, University of London.
Naturally, the scope of the present work has grown beyond the narrower
concept of undergraduate teaching, but the basis of the analysis dates back
to that time. It is appropriate here to point out that certain of the basic
ideas originate with Engesser® who unfortunately does not seem to have
followed them up. We refer, of course, to the two complementary con-
cepts of work and complementary work. If we consider an ordinary load
displacement diagram, then, even if we restrict ourselves to small dis-
placements, this may be curvilinear, if the material follows a non-linear
stress-strain law, Work is the area between the displacement axis and the
curve, while complementary work is that included between the force axis
and the curve. Thus, the two areas complement each other in the rec-
tangular area (force) x (displacement) which would be the work if the
ultimate force were acting with its full intensity from the beginning of the
displacement. Naturally, in the case of a body following Hooke's law, the
two complementary areas are equal, but it is still useful for the purpose of
analysis to keep them apart. Since writing a previous paper'® on the
subject the author has had the opportunity of consulting the most in-
teresting latest book ? of Stephen Timoshenko. There a reference is made
to the work of Westergaard,!! who indeed has developed further the basic
ideas of Engesser, but not on quite such a general basis as here. Since
approximate methods figure prominently in this paper reference ought to
be made to the work of Prager and Synge. They too set out to develop
systematically the determination of upper and lower limits to strain
energy, restricting themselves, however, to Hooke's law and excluding
temperature effects. Moreover, it appears that although many of their
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results are identical with existing ideas they clothed them in a language not
too familiar to engineers. This discussion of past authors® work brings us
to a few points which are preferably stated now. In much of present day
structural analysis there seems to be an unfortunate tendency to over-
emphasize certain methods of analysing redundant structures and to
neglest more useful ideas readily available for many years. This refers
particularly to Castigliano's principles which are so often set out as the
basis of all ‘considerations, not only in theory, but also in the actual
methods of calculation. This is, in our opinion, unfortunate, even though
all methods naturally lead to the same results if based on the same
assumptions. For example, if we select forces as redundancies then much
the best means of obtaining the basic equations for their determination is
the long established &, method of Mueller-Breslau based on the Unit
Load idea. We do not need, in fact, even the concept of strain energy for
this purpose. All we require is the idea of work and kinematics as used in
rigid-body mechanics. From such ideas we can write down immediately
our equations in the unknowns without bothering about strain energy.
These methods have been in use by civil engineers for the past sixty years
and it is surely time that we accepted them in the aeronautical world as
standard analytical equipment. Actually, the basic principles go much
farther back than Mueller-Breslau and were, in fact, developed independ-
ently by Maxwell* and Mohr?® nearly a hundred years ago. The first SYys-
tematic application of the 3,, method to stressed skin structures was given
in the classical investigations of Ebner.* Regrettably enough this lucid
work was occasionally referred to in the past as obscure, a lack of compre-
hension, no doubt, at least partly due to the too narrow understanding of
redundant structures arising from a concentration on Castigliano’s
methods. However, the limitations of Castigliano’s formulation of the
problem are being at last increasingly recognized in aeronautical circles
due to the demands of calculations for highly redundant systems. Natur-
ally, most of the alternative methods suggested are really nothing more
than a transcription of the Mueller-Breslau and Ebner technique.

We start our investigation in Section 3 with a discussion on work and
complementary work in the presence of temperature effects and for non-
linear stress-strain laws. With this basic knowledge we then proceed to the
standard principle of virtual displacements or virtual work in Section 4.
This is very similar to the currently used principle in rigid-body mechanics.
Thus, we consider a state of equilibrium, apply virtual displacements to it
and develop hence the classical principle of virtual work which sub-
stitutes, of course, for the equations of equilibrium. Since virtual dis-
placements are kinematically possible ones this theorem starts from the
assumption of inherent compatibility to find the necessary and sufficient
condition for equilibrium. It is, of course, well known that the theorem
applies also to large displacements but this aspect is ignored here. How-
ever, temperature effects and an arbitrary law of elasticity are considered
as long as the latter is monotonically increasing, Having established this
principle we deduce easily some important theorems and applications.

* See e.g. H. Ebner and H. Koeller, ‘Zur Berechnung des Kraitverlaufes in versteiften Zylinder-
schalen.” Lufifuhrtforschung, Vol. 14, No. 12, December 1937.



Firstly the principle of virtual displacements may always be used to
derive, for any particular structural problem, the governing differential
equations and the appropriate static boundary conditions in terms of the
displacements. This method, however, is not recommended in general as a
substitute for the derivation from consideration of equilibrium and elastic
compatibility.

Next the principle of virtual work is used to derive Castigliano’s theorem
Part I, generalized for thermal effects. As is well known, this principle
applies not only for non-linear stress-strain laws but also for large dis-
placements. Our line of argument leads us then naturaily to the principle
of minimum strain energy for a fixed set of displacements and a given
temperature distribution. This theorem applies also for non-linear stress-
strain laws and is of great interest for approximate calculations in terms
of assumed forms of displacements. It shows us that, while the strain
energy-is for a given set of displacements a minimum when the compatible
state is also one of equilibrium, it is on the other hand a maximum for a
given set of forces under the same conditions. These theorems were first
developed for linearly elastic bodies by Lord Rayleigh more than seventy-
five years ago. They are shown to apply also in the presence of thermal
strain and for non-linear elasticity. In the remainder of the chapter we in-
vestigate in more detail approximate methods of analysis using the
Rayleigh-Ritz procedure and it is in such applications that the principle
of virtual displacements shows its greatest power. The particular form of
the Rayleigh-Ritz procedure known as the Galerkin method is also dis-
cussed. It is of importance when the assumed deformations satisfy all
boundary conditions. The methods indicated apply again in the presence
of thermal strains and non-linear stress-strain laws. The next, Section 5,
gives simple illustrations to the method of virtual displacements.

The second fundamental principle is developed in Section 6. We call it
the principle of virtual forces or compiementary virtual work. Here we
consider a state of equilibrium, apply a statically consistent and infinitely
small virtual force and stress system and find, by using the idea of com-
plementary work, the second principle. This is a necessary and sufficient
condition that the position of equilibrium is also one of elastic com-
patibility. Again this theorem may be used to derive the differential
equations of any particular problem, this time in terms of stresses or stress
resultants. However, our comments on the parallel method in the case of
the virtual displacements are equally applicable here. It should never be
used as a substitute for more physical and geometric reasoning.

Next, we derive what is essentially a generalization of Castigliano’s
Part IT theorem. Contrary to what is generally believed this theorem does
apply for non-linear stress-strain laws as long as we replace strain energy
by complementary strain energy, which is defined in the same way as
complementary work. It is extended to include temperature effects. We
proceed then with the generalization of Castigliano's principle of minimum
strain energy (or least work) for non-linear stress-strain laws and thermal
strains. Some interesting developments derive from this and are given in
the form of maximum and minimum theorems complementary to those
developed under the virtual displacement method. They do not seem to
have been given previously in this form and provide a useful background
to approximate methods. They show us that any assumed statically equi-
valent stress distribution must always under-estimate the stiffness. This is
most valuable for practical purposes and is exactly opposite to the effect
of assumed displacement distributions which always overestimate the
stifiness. The two in conjunction give us hence lower and upper bounds
to overall characteristics of the structure such as its stiffness. In this
section we discuss also the Unit Load Method which, as mentioned
previously, provides the basis for one of the more convenient methods for
the calculation of displacements and of redundant forces. It is shown to
be applicable to structures with non-linear stress-strain laws. Section 7
presents some simple illustrations of the principle of virtual forces.

In the last section we develop a slightly more generalized version of the
34 method of Mueller-Breslau. These equations lend themselves readily
to presentation in matrix form. Next we obtain the corresponding equations
when displacements and not forces are introduced as the unknowns.

A Note on the Mathematics

The mathematics used in this paper is, in general, elementary and
should be familiar to any university graduate. We have avoided the more
formal application of the calculus of variations which can be singularly
unattractive to those more physically inspired. Chapter 3 and parts ol
Chapters 4 and 6 may prove, at first, rather difficult for a student. How-
ever, it is always possible to gain an understanding of the basic ideas by
substituting simple examples (e.g. frameworks) for the necessarily more
general proofs given here.

The later parts of this series of papers will present a number of applica-
tions of the basic methods developed here.

2. BASIC EQUATIONS AND NOTATION

body forces (e.g. gravity forces) per unit’
volume
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Ormy Ouyy Oz direct stresses As shown in

Oy =0yg, Oy; =0z, 03=0;, shear stresses Fics. 1 and 2

du oy ow . .
Yee=3z YwT3y V=3 total direct strains

ou  dv ov 0 ow 2 . 1
7H=a_;+$r’ 7"‘:D_z+5%/}’ yz,=a—y;+b—l; total shear strains M
&=Yrz YtV
Nows Ny Naz initial direct strains (e.g. thermal strains)

Tays Nyzs Nzz initial shear strains
€::=Yr:—Ts €tC. elastic direct strains
€,y =Yy —Tay €tc.  elastic shear strains

e =e€nteyTes:

} @

dV=dxdydz element of volume

as element of surface

a linear coefficient of thermal expansion (may vary
with ©)

® rise of temperature

E Young’s modulus

G shear modulus }May vary with ©

v Poisson's ratio

OY =0 rsVsr T 0sYuu +02:Y 22 +O’W‘yz|, +0'],,‘yyz +UzzYzz ................ (3)
The corresponding explicit expressions for on and oe
are obtained by substituting the strains 7)., etc. and
€.+ etc. respectively for y.. etc.

w work of external forces

U,= — W+-const. potential (energy) of external forces

U; strain energy (or potential energy of elastic de-
formation)

w*, U*, U* complementary work, complementary potential of ex-

ternal forces and complementary potential energy of
elastic deformation

Us* complementary potsntial energy of total deformation
From a consideration of equilibrium on an element dV=dxdydz, illus-
trated for the x-direction in FIG. 3 ]
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Fig. 3.—Internal equilibrium conditions

From a consideration of equilibrium on the surface (see FiG. 2)
IO'_E; +ma'va+ "a'z.c=¢z w
mo,,+ no,+ Io,,=¢, b i - (3

no+ log, +moﬂz=¢z

Over part of the surface the boundary conditions may be expressed in
terms of stresses or forces (static boundary conditions) and over the re-
mainder in terms of displacements or strains (kinematic or geometric
boundary conditions). Naturally, the boundary conditions may be of
both types over the same part of the surface. Consider, for example, the
tube shown in FIG. 4. It is assumed fully built in at the root (z=0) and free
at the tip (z=/). Ribs rigid in their own plane but freely flexible to deflexions
out of their plane are assumed at z=0 and z=/. The boundary conditions
are: at z=0, u=v=w=0, i.e. pure kinematic conditions; at z=/, .. =0,

2’)2 ‘=0 for the vertical walls and (g—';)

7 =0 for the horizontal

z=l

walls, i.e. both static and kinematic conditions.

To denote infinitesimal elements of geometric properties of the structure
(e.g. co-ordinates, area, volume) we use the standard symbol 4.

To denote infinitesimal increments of forces, stresses, displacements,
strains and work we use the symbol 8.

Thus, dV=infinitesimal element of volume=dxdydz, 3P infinitesimal
increment of force P.

The symbols

denote integrations over a volume and surface respectively.

The formal mathematical proof of some of the basic theorems in this
paper is shortened by using Green’s theorem.* Let ¢ and ¢ be two con-
tinuous functions and let also the first partial derivatives of ¢ and the first
and second partial derivatives of ¢ be also continuous. Green’s theorem
states:

= —I¢A¢/JdV+ I(ﬁ[/ g—‘ﬁ+mg—‘ﬁ+ng—f]ds .......... 6)

14 S

* See Courant, Differentiul and Integral Calculus, translated by J. E, McShane, Blackie and Son
Ltd., London and Glasgow, 1949, Vol. II.
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Fig. 4—Kinematic and static boun-

Fig. 5.—Stress-strain diagram
dary conditions

where

Alp:b"/’ bz'/’ Wi

35t Dy.l-l-b——zz and /, m, n are the direction cosines on the surface,

This theorem can be proved by integration by parts.
Examples of application:

ke deg s W
take p=o,,, D—x_Su, Sy ™3z =0
Then
00,
I 5% 'Su-dV—*J.UM-Bym-dV—!—J.lo,,,'Su'dS
v v o8
where &y, =62 2 5 s the i rement of the strai i
ee=85 =5 8u increment of the strain y.,, corresponding
to ou. ’ ’ 59
. b} d
Similarly take ¢=a,,, D—x=5v, Ty:&" 52 =0
Then
0, do,
.[ bx”3v+ by"Bu]dV= —"[ozyﬁy,ya'l’{—law[mb‘u—l—[Sv]dS
where

du dv 20u by

BY‘”ZS[D—y+D_Jc =3 Tax
Note that although Green's theorem is helpful for the mathematical under-
standing of the present theory it is not really necessary for the physical

understanding; a reader unfamiliar with these aspects of the integral
calculus may omit the relevant parts.

3. WORK AND COMPLEMENTARY WORK—STRAIN ENERGY
AND COMPLEMENTARY STRAIN ENERGY

The analysis of the present paper is restricted to small strains which can
be expressed by the linear formulae given in the notation. Such displace-
ments and corresponding strains are obviously additive (algebraically).
Thus, if 4y, ¥,, and w,, ¥, are displacements and strains in a deformed
state | and 2 respectively, then w; --u,, y, +y, represent also a compatible
state of deformation of the body. Our assumption does not impose,
however, a linear stress-strain relationship: hence if Py, o, and Py, a,
are the forces and stresses corresponding to the above two states of
deformation of the body, the forces and stresses corresponding to the
deformed state u, +u, are not P, + P, and o, +0, except in the case of a
linearly elastic body. In all cases, however, the stress-strain law is assumed
to increase monotonically as shown in F1G. 5. In conclusion we can state
that the law of superposition is assumed to hold for strains and displace-
ments but not necessarily for the stresses.

In general, we assume also that the displacements are so small that the
equilibrium conditions can be written down for the undeformed body. 1t
follows then that the question of stability or instability of equilibrium does
not enter in the analysis of this paper and there is a unique solution to
every problem.

Consider a three-dimensional deformable body (not necessarily elastic)
in equilibrium subjected to a self-equilibrating system of body forces w,
etc., surface forces ¢, etc. and a temperature . These forces and tem.
perature may vary with time but the variations are assumed so slow that
the dynamic effects are negligible. Let, in a time interval ¢, the forces
increase by dw,, 8¢, etc. and the temperature by 8@. The displacements
increase at the same time by Su etc. There arises hence an increment of
work (see FIG. 6)

SW=[lwdu+w,dv+w,Sw)dV

v

+SI [.0u+¢,8v+¢.8wldS

+ terms of higher order.
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Fig. 6.—Work and complementary work; strain energy and comple-
mentary strain energy
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The terms of higher order involve expressions +8w, " 8u, $8¢,- du etc,
and may be neglected to the first order of magnitude considered here. Thus.

SW=[lw,0u+w,dv+wdwldV )
v
+J;[¢35u +¢,8v+¢.5wldS

Note that Eq. (7) does not presume any specific force-displacement law,
be it elastic or non-elastic.

It is simple to derive an alternative expression by considering the
additive effect of the work done by the stress resultants on each volume
element d¥. A perusal of F1G. (7) shows that the deformation Su, dv, dw
gives rise to an increment of work for an element &V

(0‘1;8’)/;:‘*‘0“8‘)/” +02z8}’u+0:u8'}’:y+‘7v28'}’yz +0'z18}’u)dV=0'8'}’ dV
again neglecting terms of higher order.

The incremental (infinitesimal) strains 3}/” etc. are those due to the dis-
placements du etc. Thus,

...................... @)

du du dv du Dav}
BYIIZSD_X etc., 8’)’”=3 b_,;’+—b—:\'} = b_y +—D_x' .......... (8)
It follows that the increment of work 8W may also be expressed as
DW=JOV)AY o ®
v

LY
The formal equivalence of Egs. (7) and (9) may be proved without difficulty
by using Green's theorem. To this effect muitiply each of the internal
equilibrium conditions (4) by Su-dV, dv-dV, dw-dV respectively, and
integrate over the body. We obtain,

00, 00, 00, 00,, 00 00,y
,J/-{ m“i‘ e + S5z +w,:|5u+[—37+ 3 +m‘+wy:|8v

0,; 00, 00, :I }
+ _E—*— o + Sy 4w, [dw pdV=0
Applying now Green's theorem to the terms involving the stresses, as
shown in the previous section, we find, using the surface equilibrium con-
ditions, Egs. (5),

lJ’[aS‘y]dV=I[w,3u +w,Sv+w SwldV+[[$.0u+,dv+$.0wldS=8W
v S

where the 8y's satisfy Eqs. (8) and are hence compatible strains. Note that
where ¢, is unknown but the displacement (say u) fixed, the corresponding
Su is zero and hence the relevant terms in the last relation vanish. In-
tegrating Eq. (9) from the initial unstressed state O to a final state / we
find the total work

W=JI('){ lJ,'[wJSM +wy5v+w,5w]dV+£[¢£5u +¢,8v+¢.8wldS)=[WdV
; v

.................................. (10)
where A=

1
w=g (00207200 + 00,070y + 028y 1+ 00,8y + 0,28y +028y) .. (1)

Note that, in general, the work W done to reach a state / starting from
a state O depends on the path chosen due to say plasticity, viscous effects,
etc. In such cases W is not the total differential* of the right-hand side
of Eq. (10).

In what follows we assume that the body is fully elastic and isotropict

* We say that W =dW is a total differential of Wil‘fch=0. where the integration istaken around
a closed curve; il this applies W is obviously independent of the path of deformation taken between
states O and 1.

t The isotropy need only be assumed at cach point; the properties of the body may vary from
point to point.

and that it is subjected both to external loads and thermal effects. In view
of our initial assumption about the smallness of the strains we can write

SYH: = 85:.: + 87’ }

8yy=8¢,,+ 87 |}- ................................ (12)
8y..=8€,.+3n )
where J¢,, . . . ., 6n are the increments of the true elastic strains and the

thermal strains

o
Naz =Ny ="2:=7) =ga5® ................................ (13)
a is the linear coefficient of thermal expansion which may vary with ©.
In view of the local isotropy of the body, thermal expansion does not give
rise to any angular displacements.

Hence

T (14)
Substituting Egs. (13) and (14) into (11) we obtain

S =0U,4+501 oot e (15)
and :

o

W=U.-+g’s8-q ......................................... (16)
where

Dl T e SRR an
and

08 =006+ v v v ... 40Ot ... F00e,, =80 ...... (17a)

Note that the second term in (16) and thus also the work depend on the
sequence of application of loads and temperature.

We assume now that the elastic properties of the material depend only
on the instantaneous temperature © but not on the previous history of
deformation, e.g. i adiabatic or isothermal; the error involved in this
assumption is indeed negligible. Thus, the expression U, is only a single
valued function of the instantaneous state of elastic straining. In a closed
cycle of deformation U, is zero and 8U;=dU, is a total differential. The
function U, is commonly called the strain energy per unit volume; other
names are strain energy function or density of strain energy.

It follows from Eq. (17a) that

_ U; U,
83U =0,0€ 4+ ... .. +01286u=5€—‘m8€u+ ..... +3Tn5€”
Hence
D U.‘ a Ui
Ors=Fg torot" , U‘”:bs,,, ................................ (_18)_

We conclude that the stress-strain law is uniquely determined by the strain-
energy function and vice versa. Note that the law of elasticity is arbitrary
in Eqgs. (12) to (18).

Integrating Eq. (16) over the body we find,

WAy =[0dV+] [?sSn]dV
14 4 v O

or
WUt T LISSIIAY eeeeeieee e eeeeee e (19)
Vv O
where
Ui=fOaV=[ LJoSeldV v eeeeiearaiiiianenn (19a)
14 v 0

For ®=0 Eq. (19) reduces to the well-known equality

Wm Uy o e (20)

U, is the strain energy or the internal elastic potential (or potential energy
of elastic deformation) of the body.
If we now assume that the law of elasticity is a linear one then

1
€s=Yo: N=F [Oz—V(O,+02)] o e 2n

and similar expressions for ¢,, and €,,. Also
oy =Gy e eeee ettt (22)
Expressing (21) in terms of stresses,

4

v En
Uuzzc[eu.;_ 5 _zve] zza[y”-}- l——2vg] {3y e (23)
and two similar expressions for o,, and o,,. The moduli £and G and the
ratio v may vary with .
Substitution of the stresses given by Egs. (22) and (23) into Eq. (15)
yields

8W=8L7.-+f182’7v ........................................ 24)

and il temperature and loads are increased together from zero




_ Een

w=U; +2(T2V) ........................................ (25)
where

U,;=G { IIT_ZI:,eZ eyt et €rntar— Hen? 6.2 46, 2) } (26)

is the strain energy as a function of the elastic strains.
The following relations hold only for linear elasticity,

20; VU,

Yo, =V ... P30, Eme s e 27)

For two-dimensional stress distributions substitute the factor /(1 —v)
for 1/(1 —2v) in Egs. (24), (25) and (26). The corresponding strain energy
function U is,

_ 1
Ui = G[(T_—V)(E:z + Euy) 2 _251:€yy + ’}6;” 2]

Parallel to the conceptions of work and strain energy two further ideas
essentially due to Engesser?, are of particular importance to our investiga-
tions. Consider to that effect a one-dimensional force-displacement and a
stress-elastic strain diagram (Fic. 6). The vertically shaded areas are
obviously those of work and strain energy respectively. It is natural to
inquire if the horizontally shaded areas complementing the previous areas
in the rectangular areas Pu and oe respectively are of any importance (see
FIG. 6). In fact, as is shown farther on, the introduction of these new'ton-
ceptions is proved a particularly happy one when generalizing some
theorems, currently assumed to be valid only for linear elasticity, to bodies
with non-linear stress-strain relations. Although the complementary areas
are equal for linear elasticity it is still useful in such cases to differentiate
between them.

It is interesting to note that in thermodynamics two similar comple-
mentary functions are used : the free energy function 4 of von Helmholtz
and the function G of Gibbs.* In what follows we call the horizontally
shaded areas complementary work and complementary ‘strain energy and
denote them by W* and U* respectively.

We generalize next our new conceptions by considering the three-
dimensional case. Let the actual displacements in a body subjected to body
forces w, surface forces ¢ and temperature © be u, ¥, w, The increment of
the complementary work as these displacements increase to u+Ou,
v+8v, w+8w due to load increments T S etc. is given by

SWr= J[ﬂS{uz + 18w, +wdw. )¢V + g[«&,ﬁ, +v8¢, +wde.1dS

.................. (26a)

+terms of higher order
or
Sw* =J[u8w, +viw, + w3w,]dV+§{[u8¢, +v8,+wdd.1dS .... (28)

since terms of higher order like $8¢h.+ Bu can be neglected. It is simple,
as in the case of work, to derive an alternative expression to Eq. (28) in
terms of stresses and total strains. To find it, note that the increments
80, etc. of the stresses must be in equilibrium with the corres onding
increments of the body forces 8w, ... and surface forces 20 o e
There are thus six relations of the type of Eqgs. (4) and (5). We write here
only the two for equilibrium in the x-direction

3805) | 380, | A(Se..)
et 7 T oz F8We=0 i e s e s (29
and
Bo,,+ mdo,,+nda,, = L E e 30

Multiplying now each of the first set of equations by the displacements
u, v, w respectively, summing and integrating over the body we obtain by
applying Green's Theorem similarly to when we derived Eq. (9), and
using Eq. (30)

;[[uSw, +v8w, +wdw,JdV+ | [udp, +vS¢h, + wd¢.1dS
3

=£[‘yr.1-80'n: +'}'w 8O’yu +y::80u +‘yzu802y +'}’vzsav2 +'y:z8022] dv

.................................. (€1}

where y.. etc. are the total strains. Note that where the forces, for example,
#., have fixed values 8¢, =0. Thus ultimately

SWr=jySadV ..........- e (32)
v
where
Y00 =980+ ... ... .. R (32a)

Integrating Eq. (32) between the initial unstressed state O and a final
state / we find the total complementary work

WASIHA Y cisiosssss sl mmmpmmns s s s s (33)
14
where
J The. sign of the latter function is taken as that fixed by the C i of the Inter ional Union
of Physics.,

6

_ 1
W"'=df'y30 ............................................ 34)
Note that as in the case of work W the complementary work depends, in
general, on the chosen path of stressing between O and /.

We assume now the body is fully elastic and isotropic as described
previously and find from Eq. (34)

BW*=8U* 485 .o (35
and
!
WE=US+1m8s oo 35a)
0
where
Ut =80 vveieeeiiiee e (36)
o
and
€00=6€,.80,+ ....... +edog,+ .. ... =380;*

Note that the second term in (354) depends on the sequence ofapplication
of loads and temperature.

Under the same assumptions as for the internal potential energy, U,*
depends now only on the instantaneous state of stress. In a closed cycle of
deformation U,* is zero and SU,* is a total differential of the right-hand
side of Eg. (36). Hence

A0+ AU+

..................... 37
(see also Egs. (18)). Note that the law of elasticity is arbitrary in Egs. (37).
If Up* is given in terms of the stresses Egs. (37) show that this determines
uniquely the strain-stress laws and vice versa. It is natural hence to call
U;* the complementary strain energy function.

Integrating over the body we find

Wr=U*+f[ _fr)Bs]dV ............................... (38)
VvV o
where
Ur=[02dV={ [ [e30JdV  ............. . (384)
1 4 Vv o0

where U;* is called the complementary strain energy or complementary
elastic potential energy. When ©® =0 then _
BRSTRY covadssttsiatt o v v e e e e 39
In the case of linear elasticity W*= W and Ui*=U,, but it is useful to
differentiate still between them. For the linear stress-strain laws of Egs. (21)
and (22), Eq. (35a) becomes, if temperature and loads are increased to-
gether from zero,

Fr=TF 450 i (386)
and

—_— 2 2 2

Ui =E[m_2(oz:a'w+cwau+azzaz:—a.w —0y; —0::) (40)
which for two-dimensional stress distributions reduces to

= 1 [(Omtoy,)?

U‘*=E (ITVW—Z(O’HUW —0,,2)] .................... (40a)

The above considerations on strain energy and complementary strain
energy may be used to derive all Castigliano theorems as generalized for
non-linear stress-strain relations. We postpone, however, these investiga-
tions to subsequent chapters.

When the body obeys linear stress-strain relations the principle of super-
position applies also to forces and corresponding stresses. Some important
theorems derive from this property.

Thus, if the forces on a body are increased from zero to their final value
then

W= W'=‘1’.f[wz"+wvv+wzw]dV+i’f[¢z”+¢yv+¢zw]ds )

14 $ o
U=U“'=}J(ae)dV

where all symbols in the brackets refer to final values. Egs. (41) are known
as Clapeyron’s theorem. Another very useful theorem is due to Betti.*
Assume that the body is subjected to two force systems P, and P, Let
the deflexions due to system P, alone be «, and due to P, alone u,. By
applying first system P, and subsequently P 5 and then reversing the pro-
cess we prove easily—noting that the final state is in each case the same—

that

W=t e 42)
where
Wi=ZPuuy and Wy=3Pat; .....oiiieiiiiiiin, (42q)

* See Nuavoa Cimento (2), Vols. 7, 8, 1872.



are the work done by the system of forces P,(P,) over the displacements
uy(u,) respectively. Relation (42) is known as the generalized reciprocal
theorem of Betti.

A special form of Eq. (42) is Maxwell's reciprocal theorem. Thus, if
systems I and 2 consist each of one force (or moment) only then

.......................................... (43)

where u;,(15,) is the displacement or rotation in the direction of force or
moment P,(P,) due to force or moment Py(P)).

1. uyp=1. uy

4. THE PRINCIPLE OF VIRTUAL DISPLACEMENTS OR VIRTUAL
WORK

We assumed in the previous section when discussing work and strain
energy that the displacements 8w, 8v, 8w arise from an actual variation
of the applied forces and/or temperature distribution. However, this is an
unnecessary restriction. We need only remember that to the first order of
magnitude considered 8W and dU; are independent of the 8P’s and
corresponding 8¢'s since we ignore terms of the order 8P-8u. Also for
the purpose in hand no variation in the temperature is called for. Hence,
when finding 3W and 3U; we can assume that forces, stresses and tem-
perature remain constant while the displacements are varied to u-+du,
v+08v, w-+dw. It is only necessary that the du, v, dw's are compatible
infinitesimal displacements (see Section 3, p. 4); thus they must be piece-
wise continuous in the interior and satisfy the kinematic boundary con-
ditions. For example, if the u, v, w are prescribed on part of the boundary
then the selected variations du, dv, 8w must be zero there too. Similar
arguments apply if the derivatives of any of the displacements are fixed.
However, where the forces and stresses are prescribed the variation of the
du’s is necessarily free. Note that there are cases when it is useful to relax
even the kinematic boundary conditions when selecting the du’s.

Such geometrically possible infinitesimal displacements are used ex-
tensively in rigid body mechanics and are called virtual displacements.
Noting that the temperature and hence thermal strains remain constant
we can restate now Egs. (15), (19) and (194) more generally as follows:

An elastic body is in equilibrium under a given system of loads and
temperature distribution if for any virtual displacements du, v, dw from
a compatible state of deformation considered

SW=8U; ..ot 44)

which is the standard principle of virtual displacements or virtual work.
As stated here it is valid for an elastic body subjected both to loads and
temperature effects.

Note that Eq. (44) is also valid for large displacements but the formula-
tion of U; is in such cases more complicated since the strain expressions
are not any longer linear-jn the displacements and the equilibrium con-
ditions have to be considered on the deformed element.

The point made above that the virtual displacements are arbitrary as
long as they are infinitesimal and satisfy the internal compatibility con-
ditions and kinematic boundary conditions is worth emphasizing. To fix
ideas consider the statically determinate framework shown in FIG. (8)
subjected to a transverse force P. We apply to the system a virtual dis-
placement 8u in the form shown in the figure which allows only an elastic
deformation of the upper flange 1, 2. This virtual displacement satisfies
the kinematic boundary conditions

du=0at A and B

but bears obviously no relation to the actual displacements of the frame-
work due to the force P.

We find easily:
forcein member [,2: Ny,= —Plasz
virtual displacement of force P: du'=0u-a/b,

virtual elongation of member 1,2: Al,=— iy e
1

Fig. 8.—Example of an arbitrary virtual displacement

Thus,
a Pab, Sulh a
; 8= PSuj- and su,=(—"abs) x(_[m) ~ Pbuj.
ence

as indicated by the principle of virtual displacements or virtual work.

In order to realize best some of the implications of the principle of
virtual displacements let us consider again the derivation of Eq. (44)
which applies when 8n=0. In accordance with the analysis of p. 5, if
we multiply the internal equilibrium Egs. (4) with the virtual displace-
ments du, dv, dw, sum the three expressions, integrate over the body,
apply Green’s theorem Eq. (6), and note the boundary conditions (5) we
obtain Eq. (44). Again if we start from Eq. (44) we can apply Green’s
theorem in the opposite direction and are led to

J'{ D;’;z+3$x+b§:+w,]8u+[ ...... Bv+l..... ]SW}dV
14
=:[{[Io,z+moyz+na.z—¢z]8u+[ ...... Bv+L . ... .]Sw}ds

For arbitrary virtual displacements du, v, dw this relation can only be
true if each of the brackets vanishes separately; thus, starting from the
principle of virtual work we have re-established the conditions of equili-
brium. An exception occurs, of course, where a displacement (say «) is
fixed on the surface and du is automatically zero there.

We conclude that the principle of virtual displacements Eq. (44) is a
necessary and sufficient condition for the existence of equilibrium of an
elastic body. Or otherwise we can state that by using virtual, i.e. kinema-
tically possible compatible displacements, we substitute Eq. (44) for the
internal and external equilibrium conditions. Note that the idea of strain
energy is not necessary to the establishment of the principle of virtual
work.

Since the forces are assumed to be applied on the undistorted system
and to remain constant during the virtual displacements we can regard
S W as the variation of a potential — U,. Thus

S = — U, ottt e e e 45)
and
U,= —Vf[w,u+w!,v+w,w]dV—SJ'[¢,u+¢,,v+<ﬁ,w]dS .......... 46)
Thus
2,
Wr="Ju

which is the usual definition of a potential of forces. Note that 8U, is a
total differential of the elastic displacement increments du. U, is denoted
as potential of external forces.

We can write now Eq. (44) in the concise form

7 %))

where the suffix € indicates that only elastic strains'and displacements are
varied.

U=U;i4 U, 4CoNnst. ..oiuiiiiit ittt iiiiatsnaiacnans (47a)

is the total potential energy of the system. Eq. (47) states that a position
of elastic compatibility of an elastic body is also one of equilibrium
(i.e. the body is at the true position of equilibrium) if any virtual variation
of the displacements and strains whilst forces, stresses and temperature
remain constant does not give rise to any (first order) variation of the total
potential energy. The particular form (47) is known as the principle of a
stationary value of total potential energy, if the latter is expressed in
terms of displacements. Note that U; itself may be calculated from
formula (19a).

Actually the stationary value of U is in our case always a minimum
and this confirms our previous assertion that with the assumptions of our
analysis all systems are stable. The mathematical proof that U is a minimum
at the true position of equilibrium is straightforward*; the point is dis-
cussed in greater detail under (C) below.

We have assumed until now that the initial strains % are due to a tem-
perature variation. However, this is an unnecessary restriction and there
may be strains arising from any source of self-straining. For example, in a
framework they may be due to manufacturing-errors in the lengths of the
bars. In the more general cases of self-straining not only may the 7.,
7,» and 7., be different, but there may also arise initial shear strains 7,,,
7. and 7). In such problems substitute

087]=0::87’:: +UWS7]W +U=zsnu +va87]rv +U'v:87’vz +012877:x LR (48)
for s&7 in Egs. (15) and (19) and in the other related expressions.
Equations (44) or (47) may be used to derive the results which follow.

(A) The differential equations of the theory of elasticity for arbitrary loading

and temperature distribution or any particular structural problem in
terms of the displacements; the appropriate static boundary conditions

* See Biezeno and Grammel (1), p. 74.



in terms of the displacements follow also from this analysis. Tt is im-
portant to note that in all applications it is best to form directly

SU;=[[abeluaV
v
and not to evaluate first U; and then to take its increment S.

(B) Castigliano’s* theorem Part 1 generalized for thermal effects

I PR SRS “9)

where P, is the force (moment) applied in the direation of the deflexion
(rotation) w,. This relation may be obtained immediately if we apply a
virtual elastic displacement 8u, solely to one external load P,. Note that
Eq. (49) applies also for non-linear stress-strain laws and may also be
generalized for large displacements.

(C) The Principle of Minimum Strain Energy when U; is expressed in
terms of the displacements and the temperature is not varied.

We arrive immediately at this theorem if we select only such virtual
displacements 8u which are zero at the applied forces. Then

SW=0
and we conclude from Eq. (44) that e
8 Ui=0and Us=min. .........c..coooviien . (44a)

at true position of equilibrium if only such virtual deformations are
allowed that no external work is done.

Hence, if we compare all possible compatible states of deformation of a
body associated with a given set of displacements (not sufficient by them-
selves to fix completely the deformed shape of the body) then the true
position of equilibrium has the minimum strain energy. This is still true
if the body is subjected to temperature loading,

The point is of sufficient interest to warrant some elaboration. First it
may be helpful to point out that when we state that at the position of
equilibrium the total potential energy has a stationary value and that this
is a minimum we do not compare physically possible adjoining states.
For, in stating that the potential energy has a stationary value, i.e. §U=0,
we compare the true position u, with a position «-+8u assuming in both
cases that forces and stresses are the same. This can obviously not be true
for the second position since for given forces there is a unique position of
equilibrium. In fact, we mentioned that this arises due to our legitimate
neglect of the higher order terms in 8¢ and 5P. Also, when we go a step
farther and state that the stationary value is a minimum we prove this by
considering the influence of terms like 180, 8¢, in U, arising from the
variation 8o associated with e,., but we still keep the forces constant—
although this cannot, in general, be true.

Having pointed out these aspects of the virtual displacements approach
we shall, in what follows, discuss the question of the extremum of U, from
a more physical point of view. Again we prescribe certain displacements
on the body and do not allow any forces P other than those arising due
to and in the direction of the given displacements. The structure takes up
its natural position of equilibrium from which we can deduce the value
of the forces P. If we want to force the body to assume a position «--8u,
v-+8v, w+8w while keeping the set of prescribed displacements constant
we must apply certain additional body and surface forces to push the
system away from its natural configuration. The work done by these
constraint forces ($Z8P-du, obviously positive), produces by reason of
equilibrium in the new position an equal increase in the strain energy
stored. Thus, the strain energy in any neighbouring compatible configura-
tion is greater than that for the unconstrained original position and hence
the strain energy there is a minimum.

An alternative way of producing a state of equilibrium different from the
natural one in an elastic body under a prescribed set of displacements is
the introduction (prior to the imposition of the displacements) of internal
or external constraints that do no work. For example, in a shell or plate
analysis, we may assume that the middle surface is inextensible and the
transverse shear strains are zero; thus, in this case we impose infinite
values for Eand G in the middle surface and an infinite value for G in the

* See A. Castigliano, Théorie de {"équiltbre des systémes élastiquzs, Turin 1879.
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Fig. 9.—Stiffening and relaxation
of stress-strain curve

transverse direction. Another type of constraint may be achieved by the
introduction of a rigid support. Also the stress-strain diagram may be
taken locally to be /7 instead of / (FiG. 9). In all such cases the arguments
of the previous paragraph show that the strain energy of the constrained
body for the given prescribed set of displacements is greater than for the
unconstrained body. Conversely, if we relax any existing constraints whilst
again keeping constant the prescribed displacements the strain energy is
decreased. The relaxation of constraints may take the form of a stress-
strain line //I instead of /. Alternatively we may introduce a hinge in the
structure. Another example is the case of a shell where we ignore the
bending stiffness and admit only a membrane state of stress; a current
procedure in wing stressing.

Thus we conclude: the sirain energy of an elastic body for a given set of
displacements is increased (reduced) by the imposition (relaxation) of con-
straints that do no work. An exception occurs if the effect of imposition or
removal of a constraint is nil. For example, in an infinitely long, thin
circular shell under internal pressure it is immaterial whether we take
account of or ignore the bending stiffness of the walls.

Also since the constraints do no work it follows that the increase
(reduction) of the strain energy can only be produced by the forces P,

us: the force system P which is set up at the and in the direction of the
prescribed displacements and hence also the stiffness of the structure is
:’ucr}c:ased (reduced) by the imposition (relaxation) of constraints that do no
WOrK,

If we consider now the case of an elastic body under a given set of forces
instead of displacements then we conclude immediately from the last
theorem : the displacements and hence also the strain energy in a body under
a given set of forces are reduced (increased) by the imposition (relaxation)
of constraints that do no work.

Both the last two theorems illustrate two complementary effects of the
action of constraints on the stiffness of a structure. The last theorem may
also be expressed as follows: the strain energy of an elastic body under a
given set of forces is a maximum when it is subjected to the least number
of constraints that do no work.

The immediate application of the above considerations is, of course, to
the effect of actual constraints on elastic structures as illustrated in the
examples mentioned. A more important application appears in connexion
with approximate analyses of deformations. Thus, if we reduce the free-
dom of deformation as we do in the Rayleigh-Ritz and related methods we
always over-estimate the stiffness of the structure. Hence for a given set
of forces (displacements) we under-estimate (over-estimate) the corre-
sponding displacements and strain energy (forces and strain energy).

The above theorems on the effects of constraints on strain energy and
stiffness appear to have been given first by Rayleigh* in 1875 for linearly
elastic bodies and no temperature effects. Our arguments indicate, how-
ever, that they apply also to elastic bodies with non-linear stress-strain
relationship and under thermal loading. The original principles are
occasionally referred to as the static analogues of Bertrand's and Kelvin's
theorems in dynamics.

(D) The Unit Displacement method. This method will be developed
in Section 8.

(E) Approximate methods of displacement analysis, using the Rayleigh-
Ritzf procedure. In this method we assume for the displacements approxi-
mate functions or series of functions satisfying the geometric but not
necessarily the static boundary conditions. For example, in a three-
dimensional elastic continuum we may express the total displacements
u, v, win a finite series as follows:

u=ux, y, z) +Zaulx, v,z
re|
n
v=v(x, ¥, z)+2?.v,(x, »2)

n
w=w,(x, ¥, z) + Xe.wilx, y, 2)
el

where u,, v,, w, satisfy the kinematic conditions where these are prescribed
and u,, v, w, are linearly independent functions which vanish there.
a,, b,, ¢, are unknown constants to be determined by the Rayleigh-Ritz
procedure. The elastic strains corresponding to (50) are (see Egs. (1) and (2))

- du dv dw
Eu:=b_x_7’) eyu=b— -7 ezz=b_z -
P e e s1)
oy v dw  dw Ddu
EI”—Dy-l—bx' E"‘_bz+3y' e“_bx""b—gJ

The chosen series satisfy the displacement boundary conditions and the
infinitesimal deformations

du="08a, tty, Sy=8b,"v,, Sw=8c,-w, ... . ... (52)

*See Ref. 3, Vol.'ll, p. 94, and also ‘General Theorems Relating to Equilibrium and TInitial and
Steady Motion', Phil. Mag., March 1875, They have been discussed more recently by D, Williams in
Phil. Mag. Ser. 7, Vol. 26, 1938, p. 617.

T W. Ritz, ‘Theorie der Transversalschwingungen einer quadratischen Platte,’ Ann. d. Physik,
Yol, 28.911. 737.91909; see also J. reine u. angew. Math., Vol. 135, p. 1, and Gesammelte Werke,
Paris, 1911, p. 192.



obtained by variation of a,, b,, ¢, while the other coefficients and the tem-
perature are kept constant are hence virtual elastic displacements. Note
again that the chosen «, v, w functions need not satisfy the given static
boundary conditions. Naturally, the accuracy of the analysis is enhanced
if the latter are also satisfied.

To determine the coefficients a,, b,, c, we use the condition of the
stationary value of the total potential energy in the forms

SU=0or dU,=6W

There are also cases when the theorem of minimum strain-energy, U; =min.,
is useful, see for example Part Il of this series example 4. The applica-
tion of 6U=0 ensures the average satisfaction of the equilibrium con-
ditions:

If we evaluate U in terms of (50) then for a linearly elastic body we
obtain a quadratic function in a,, b,, ¢,. Condition U =0 which in this
case becomes

W_ U v )
= =S e =52, =

hy W Y

oDy s SRp T e =5E-—_-0 e, (53)
w_ oo v

Dy e TIGEET By e,

leads to a set of 3n linear equations in the 3# unknowns a,.b,, ¢,. It is,
however, superfluous to evaluate first U/ and then to differentiate with
respect to the unknown coefficients. We can obtain directly the final
equations by forming the 3 expressions

8l Ui+ U)=0, 8 ( Ui+ U,)=0, 8. (U; +U)=0 .............. (54)
where the suffices ar, br, cr indicate that the virtual displacements are
chosen respectively as in Egs. (52).

Using the first of Eqgs. (52) in the first of Eqs. (54) we obtain the more
explicit form

{foe,dV—ZPi}da,=0
v

or since da, is arbitrary
JoedV—Pia=0 ... ... .. (55)
4

where ¢, are the elastic strains due to u,, o the stress due to the elastic
strains given by Egs. (51), P the applied forces and # the displacements
in their directions due to the set (x,). There are in all 3n equations in
a,, b,, ¢, which are non-linear if the stress-strain relations are non-linear.

By a judicious choice of the u, v, w functions it is possible to obtain
very good approximations to the deformations of the body. The number
of necessary functions for a good estimate depends on the problem and on
the choice of these component functions. The proof of the convergence
to the exact solution with increasing » is a difficult question which cannot
be considered here, see Trefftz1, p. 130. We note only, referring to the
previous paragraph, that the Rayleigh-Ritz method always over-estimates
the stiffness.

Whilst the Rayleigh-Ritz method can provide a good approximation
to the deformations, the accuracy of the associated stresses is, in general,
not as good. This is obvious if we remember that the accuracy of any
approximate function is decreased with every differentiation.

In two- or three-dimensional problems it is possible to improve upon
the original Rayleigh-Ritz procedure by adopting a mixed technique of
(A) and this paragraph. Thus, in a two-dimensional problem it is often
possible to guess accurately the variation of the displacements parallel to
one axis, say the x-axis, while it is much more difficult to make an in-
telligent assumption about the variation parallel to the other direction.
We may then write the displacements « and v in the form

u=uy(x)* $(»)
.............. (56)
V= Vl(x) 1 l/’(}’)
where u,, v, are assumed crosswise distributions. of the «, v displacements
and &, ¢ are unknown non-dimensional functions of y. Substituting
Egs. (56) into (55) one obtains after some transformations the differential
equations in ¢ and i together with the necessary boundary conditions.
Such an analysis can yield a very accurate result. It will be illustrated on
a number of examples of some complexity in Part I to this report.

Note that the Rayleigh-Ritz procedure as presented here is also valid for

non-linear stress-strain relations.

(F) Galerkin’s method of approximate stress analysis. Consider the
internal equilibrium Egs. (4) which we write here in the by now familiar
form ;

)

30z, | 30y, | 0., AT
ox T oy T2 +w’]8u ave=9 |

l
I 00y | 3G:z | 004y
v
l

W Tz Tx +,J8v-av=0

90,
oy

00:: |, 00y

az+bx+

+w,:|SW‘dV=0

where the du's are virtual, i.e. kinematically possible infinitesimal displace-
ments. Egs. (57) lead to the principle of virtual work Eq. (44) if the o’s
satisfy not only the internal but also the boundary equilibrium conditions
Eqgs. (5).

Assume now that the displacements u, v, w are written in the approxi-
mate form of Eqs. (50) where the a,, b,, ¢, are unknown coeSicients. How-
ever, contrary to what we assumed in paragraph (4), series (50) are taken
here to satisfy not only the kinematic conditions where prescribed on the
surface but also by substitution into the stress-strain relations the equili-
brium conditions where prescribed.

Expressing now the stresses in the brackets of (57) in terms of the dis-
placements and temperature @ and selecting as virtual elastic displace-
ments one of the 3x possibilities (52) we obtain the # equations in the 3n
unknowns a,, b,, ¢,

J‘ 004y | 30y; | 30,

dx Dy’_l—vr-'_wz

] u,dV=0
v

DO'J,,, DU’;,/ DG.HI —
Ra '*"H +35% T v dV=0

DU;; bar,z Day:
3z + ox + ox

l
j- +w,:| w,dV =0
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This is the Galerkin*} procedure usually only given for linear elasticity. To

fix ideas take the case of linear elasticity and write o, etc. in terms of
u, v, w. We find easily three equations, the first of which is

I dg w, 2(1+v) 30
‘J:[Au-l-l_zv D_x+6_ T—2v 3% udV=0 .............. (59)
where
D2 D% dW du dv dw
Au=5—x2+b-yz+b——z2 and g=b—x+a—)‘,+b—z .................... (60)

The bracket in Eq. (59) is, of course, the equilibrium equation in the
x-direction expressed in terms of displacements.

The procedure in any particular structural problem is to form the
equilibrium conditions in the stresses or stress resultants and express each
in terms of the displacements. Next we multiply each by the corresponding
u, (which may be a deflexion, slope, twist) and then integrate over the
body. Thus, for a beam subjected to a distributed loading p in the y-direc-
tion, the equilibrium equation in terms of the deflexion v is, assuming
engineers’ theory of bending to hold

d? %y
d—zz(ﬂ‘?)—ko ...................................... 61

and the Galerkin form of the virtual work equation is

{
d? d*v
I @(E[a;g) —p}BV'dZZO

v

It is easy to see that for displacement functions (50) satisfying a// boundary
conditions the Galerkin and Rayleigh-Ritz methods must yield the same
equations for a,, b,, ¢, and hence also the same deformations. We need
only realize that in this case Eqs. (57) are indeed equivalent to the principle
of virtual work. Hence substitution of u, v, w in Egs. (57) must give the
same result as substitution into
dU=0

The advantage of Galerkin's method lies in a more direct derivation of
the equations in a, b,, ¢.. However, contrary to what is usually assumed,
this advantage is small if we calculate 6U directly. We note also that
Galerkin’s method allows only such approximate functions as satisfy all
boundary conditions, while the Rayleigh-Ritz procedure requires only the
satisfaction of the kinematic boundary conditions.

* Timoshenko® mentions on p. 159 that equations of this type appear already in W. Ritz's work.
See references on p. 353 and also Gesammelte Werke, p. 228.

+ B. G. Galerkin, ‘Series Solutions of Some Problems of Elastic Equilibrium of Rods and Plates,’
Wijestnik Ingenerow Petrograd (1915). No. 19, p. 879; see also W. J. Duncan, 'Application of the
Galerkin Method to the Torsion and Flexure of Cylinders and Prisms,’ Phif. Mag., Ser. 7, Yol. 25,

1938, p. 636.
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Fig. 10.—Cantilever beam



Consider the cantilever under transverse load shown in FIG. 10. To
obtain an approximate expression for the deflexions v by the Rayleigh-
Ritz procedure we need only select a function or sequence of functions
giving

d\
v=‘7;=0 at z=0

However, when applying the Galerkin method Eq. (61a) must satisfy also
the static conditions at z=/, i.e.

Shear force=Bending moment =0
2.~(2)..o
or 423/ et T\dZ2) ™

5. ILLUSTRATIONS OF THE METHOD OF VIRTUAL DISPLACE-
MENTS
In this section we present a number of applications of the principle of
virtual work. These are not meant to give the shortest possible solutions
to the problems considered but merely to illustrate the way in which the
method can be applied in some simple cases. More complicated problems
are investigated in Part 1

(a) Continuous Beam with Non-Linear Spring Support

The uniform beam of bending stiffness EI shown in FIG. [l carries a
uniformly distributed load p and is simply supported at the ends. At the
centre an additional support consists of a spring with the load displace-
ment law

a
P=kV[l +TV/V,,)] ............................ P (al)
Thus £ is the initial spring stiffness and V, is the displacement at which
the spring becomes solid.

With the assumption of the Engineers’ Theory of Bending, establish by
means of the Principle of Virtual Displacements the differential equation
for the deflexion v of the beam and the boundary conditions. Find also
the deflexion ¥ at the spring.

|
|
[}
|
i
|
i
1
i

T

> v v
Fig. 1l.—Virtual displacements: Example (a) Simply supported beam
with non-linear spring

o

The first part of the problem is, of course, trivial and the result known
to any undergraduate, but we want to show here how the Virtual Displace-
ments method can be applied in such a case.

We consider virtual displacements consisting of small arbitrary addi-
tional, deflexions (8v) of the beam from its equilibrium position. The
Principle of Virtual Displacements then expresses the equilibrium con-
dition in the form

QU—SW=0 ... @2)

The virtual displacements must satisfy certain kinematic boundary con-
ditions, namely :

dv=0for z=0and z=2/ ............ooiii (a3)

and since both structure and loading are symmetrical we need only con-
sider symmetrical virtual displacements. Hence

d(3v)[dz=(8v)' =0 for z=/ .......... AR e (a4)
Strains and stresses in beam due to bending:

€= =— YV, 0=0,=—FEpv" (a5)
and therefore the virtual strain due to 8v is

Se=—J(V ) =—J(OV)" .. (a6)

The increment of strain energy in the beam due to bending is thus

/ ! !
2[ Jo-8e dA-dz=2E[ { Iy2-dAW " (8v) ' dz=2EI[v"(8v)"dz . ... @7
oA 0 A o .
which becomes, on integrating twice by parts,
i [
2EIV QW | =V (BW) | v 8vdz) i (a8)
[ [} o

The increment of strain energy in the spring is

POV (a9)
and the increment of work done by the distributed load is

1
OW=2yp 8V dz v (al0)
o

10

Hence the complete virtual work Eg. (a2) becomes
! ! !

2 {EWY —p)8v-dz+2EIv"(8v)' | —2EIv"(Sv) | +P8V=0 .... (I
o o o

But
(8v),"=0, (8v),=0 and (Sv), =8V

Since otherwise v is arbitrary we conclude that to satisfy Eq. (al 1)
we must have

(ED")emg=0, 20EV""),.y—P=0 ... (al2)
and v must satisfy the differential equation

EWV—p=0 ... (al3)

Egs. (al2) and (al3) together with the kinematic conditions

emp=0and (V)eey=0 ........... ... ... (al4)

give all the necessary information for the determination of v,
Integrating Eq. (al3) and using the boundary conditions (al2) and (al4)
we find finally for ¥ the quadratic equation

A+PVIVR — [+l +a)+ VIV IV + 1, V=0 ... .. (als)
where
y=kIBI6EI, V,=5pi*/24 .

(b) Plane Redundant Framework

A plane framework consisting of a single joint connected by a number
of hinged bars to a rigid foundation is loaded by forces X and Y along the
axes Ox, Oy respectively (r1G. 12). In addition, the bars are heated to
arbitrary temperatures and have also initial strains due to errors in
manufacture.

Find by application of the Principle of Virtual Displacements the forces
in the bars.

Let u, v be the displacements of the loaded hinge, measured from the
position for which all bars have the correct length and are at zero tem-
perature. Then the total direct strain in the rth bar for these displacements
is

u cos 8,4 v sin 6,
,=+ .................................... (bl)

The total strain is made up of the elastic strain e, together with the
thermal strain 9, =a@® and the initial strain Nor, Where the initial strain is

Mor=ALll ot (b2)
Al, being the additional length of bar (in excess of the correct length) due
to manufacturing errors or other causes. Hence the elastic strain due to
u, vis

€ =Yr—Nr~Nor
cos 8,4v sin 6,
= “_/§ et Ner) s R e (b3)
and the direct stress in the bar is
- cos 8, +v sin 8,
1= =Ee,=E[M+ —(n,+77,,,)] ............ (b4)

If we now impose on the joint the virtual displacements du, 8v there
arises an increment of strain energy 3U;, and an increment of work S W
of the applied forces, where

Area A., Length (.

Fig. 12.—Virtual displacements: Example (b) Redundant
system of bars



8 U(=éArU,-Ir8'yr
r=1

n u cos 8,+vsin 8, Su cos 0, +38v sin 6,
=S [ LRI | [ sn E]
................................. (bS)
S = XUt YOV i e (b6)
By the Principle of Virtual Displacements

SU—dw=0
and therefore

n n n
BM[MZEIA'c0520r+ VZE%' sin 0, cos 0, — z EA (0, +7.r) cOs 0,—X:| +
r=1 r r r=1

r=

n n n
SV[MZ% sin 8, cos 0,+VZEI—A' sin26, — ZEAr(v;,-}-n,,,)sinﬁ,— Y] =0
r=1 d 1 T r=1

r=

.................................. (b7)

If Eq. (b7) is to be satisfied, since du, dv are arbitrary, the two expres-
sions in brackets must separately be equal to zero and hence we have two
equations in the displacements «, v. Solving for , v the stresses and forces
in the bars can be calculated from Eq. (b4).

The two equations are, of course, the equilibrium conditions in the
xand y directions and could be derived directly by statics without recourse
to the Principle of Virtual Displacements.

Note that there are always only two unknowns in this approach, regard-
less of the number » of bars. Hence it is preferable to operate with the dis-
placements «, v as unknowns than with forces in the bars when n>4.

(¢) The Open Tube Under Torque

A uniform, open tube of length / is subjected to a distributed torque
m,, per unit length and end torques 7, and T,

With the assumption that shear strains due to restrained warping are
zero (Wagner assumption) establish the differential equation for the angle
of twist # and the static boundary conditions. Give also a series solution
for the case when the ends z=0, z=/ are prevented from twisting but are
free to warp.

Fig. 13.—Virtual displacements: Example (c) The open tube

The warping displacement w of the cross-section is given by*
w=w(d/dD)=wl e (cl)

where w is the warping per unit rate of twist. The direct strain ¢,, and
stress o,, due to non-constant rate of twist are

dw

€x=3; =W, 0s=Fe,,=Ewl" ciuiivemirrivovasnti (c2)
The torque due to the St Venant torsional shear stresses is
T =GO (c3)

We obtain now virtual displacements by giving to the twist § an incre-
ment 89. The corresponding virtual strain de¢ is given by

O =W ) =w(B0) . s (c4)

and the'increment of strain energy due to the direct (torsion-bending)
stresses is

I S { 5 !
I 1 08¢ tdsldz=1E0"(80)" [ fwitdsldz=[ET0"(88)'dz .... (c5)

where F is the torsion-bending constant.*
The increment of strain energy due to the St Venant shear stresses is

]
(GOS0 dz=1GIO SO e oo (c6)

* See Argyris, 'The Open Tube', AIRCRAFT EN ) i
1050, {05 s,eq ‘ube A GINEERING, Vol. XXVI, No. 302, April

and the work done by the distributed torque and the end torques
W= J'Im,SOdz—i— TN =T, oo, (c?)
Apply(i;ng the Principle of Virtual Work
Ui~ 8 =0={(ET8"(30)" +GJ0'(30) ~m.(3O)dz ~T30 L e

Integrating by parts the first term twice and the second once, we finally
obtain

}[EFBIV—GJB”—mZ]Sde+[GJH’—EFB"’_1']59 |’ +EFO"(50)’ f -0

.................................. (c9)

For the integral to vanish, since 86 is arbitrary, § must satisfy the dif-
ferential equation

ELOV—GJO —m,=0 .. i (cl0)
which is recognized as the usual Wagner equation differentiated with
respect to z. i

If the twist at both ends of the tube is specified then 38 must there be
taken zero and the first bracketed term in (c9) vanishes also. If in addition
the warping (and hence 8') is specified (e.g. built-in end) then (88)" is also
zero at z=0 and z=/and the remaining term also vanishes.

If, however, the end z=/is free to twist and warp, (86), and (36)," are
arbitrary and we have as further conditions from (¢9)

GJ(§),—ET(8)y"”,—T,=0
and

ET(6),=0
which are the necessary static boundary conditions at the free end. The
first is of course the condition for equality of external and internal torque
and the second the condition for zero direct stress.

For the series solution, we represent the twisted shape by the Fourier
series

B:Za,, sin ('—”[T—-Z) .................................... (cl2)

n=1

and take for virtual displacements the increments of twist produced by a
small variation 8a,, of the coefficient a,.
Using Eq. (c8) we find

!
mmwz nmZ

* ‘]
2
SU,-—3W=5a.,,[G‘JZ::.-,”—?,E I cos —— €os Td.’. |
n=] a ; } [C|3)

* i
— 242 = - .
-!-EFL(:,,("—?; ISin T%sin "i&dz—J.m: sin ’-'-T—"dz]J
n=1 @ o
which gives on integrating
I

. mmz
jm; sin =7 dz
Uy — 3 2” eI (Cl4)
mem mm
"o Los+("7) er]
If m, is constant
" 4° m, )
" = 2
mPmd [GJ+ ("%r) EF] formodd . (cl5)
and - )r
a,, =0 for m even
which gives for the twist distribution
]
4/2m sin (nmz/l)
g—=——2= ey e - L T (cl6)
z AN GAR
GJm? e [I+( I) G/

odd

In this case, since the assumed form of solution satisfies also the static
boundary conditions 6 =0 for z=0 and / we can alternatively use the
Galerkin form of the Virtual Work equation, which is in this case

HEDOY—GI0” —mJ80dz=0 .., 17

and is given immediately from Eq. (c9).

If we approximate our solution for & by retaining only the first term in
(¢16) we underestimate the average angle of twist. This ties up with our
statements on p. 8;  for, by putting #=a, sin (7z/!) we apply constraints
on the tube and hence overestimate the stiffness.

11



6. THE PRINCIPLE OF VIRTUAL FORCES OR COMPLEMEN-
TARY VIRTUAL WORK

T is natural in reviewing the developments of Sections 3 and 4 to inquire
Iif it is possible to enlarge upon the conception of complementary work
and strain energy in a similar way as accomplished for work and strain
energy by the introduction of virtual displacements. In fact, if we consider
Eqs. (28) and (36) we realize immediately that the functions 8 W* and
SU;* are independent of the variations du and Se associated with the force
and stress increments, just as 8 and 8U, are independent of the varia-
tions 8P and 8o associated with the chosen Su and S¢'s. Hence, when
finding 3W* and 8U,* we may assume that displacements and strains
remain constant. Also, the infinitesimal increments 8o, 8w, 8¢ are arbi-
trary as long as they satisfy the equilibrium conditions in the interior and,
where such are prescribed, on the surface. Thus, il we fix that the surface
forces are not to be varied over part of the boundary we must have there
$=0; however, where kinematic conditions are preseribed on the
boundary the 8¢ variation cannot be assigned. It is apparent that our
incremental stress system need not even be an elastically compatible one.
It is only restricted by the condition that it must be statically equivalent
to the load increments 8w and 3¢b. While these increments are applied it is
assumed as in Section 4 that the temperature remains constant.

Such infinitesimal variations of forces and stresses which are arbitrary
as long as they satisfy the prescribed equilibrium conditions we call virtual
forces and stresses. -

Before restating theorem (35) for the more general conceptions intro-
duced here let us consider again its derivation in the light of our new ideas.
Thus, if we multiply the rrue displacements u, v, w by the internal equili-
brium conditions (29) which the virtual stresses o and 8w must satisfy,
sum, integrate over the body, apply Green's Theorem and note the
boundary conditions (30) we obtain Eq. (35) where y,, etc. are the total
strains associated with the displacements «, v, w, Next let us apply Green’s
Theorem in the opposite direction by starting from the right-hand side
of Eq. (35). We find that this function can only be equal to the left-hand
side if the terms vy, etc. are indeed the expressions for the strains (3) and
(12) and satisfy the kinematic boundary conditions.

Thus, we conclude that an elastic body is in an elastically compatible
state under a given system of forces and temperature distribution if for any
virtual increments of forces and stresses from a position of equilibrium

3W*=8U¢'+_f7)8xdl/ .................................... (62)
where v
dU*=[edo-dV and N8s=2(85,,+80,,+80..) .........e.... (63)
v

See also Egs. (35) and (38q).

Eq. (62) is, in fact, a necessary and sufficient condition for elastic com-
patibility of the equilibrium.

Theorem (62) we call the principle of virtual forces or virtual comple-
mentary work for elastic bodies subjected to loads and temperature dis-
tribution. Note that (62) applies for non-linear stress-strain laws.

The above discussion indicates that there is a close parallel between the
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14.—Example of an arbitrary virtual force
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principles of virtual displacements and virtual forces. Thus, by substituting
virtual forces (stresses) for virtual elastic displacements (strains), actual
total displacements (strains) for forces (stresses), and invariant state of
straining for invariant state of forces we obtain Eq. (62) from Eq. (44).
However, this duality is only complete for continuous structures which
are infinitely redundant. If, on the other hand, we consider a statically
determinate structure we find that while it is still possible to describe an
infinite set of virtual displacements 8« associated with a prescribed set of
certain of the displacements, only one stress system can exist for given
external forces; hence no 8o can be assigned in the latter case and the
principle of virtual forces has no application. A more fundamental
limitation of the principle of virtual forces appears if we want to extend
our theorems to finite displacements. Here we find that it is, in general,
impossible to achieve this for the principle of virtual forces while, as
mentioned in Section 4, no basic difficulty arises in the case of the prin-
ciple of virtual displacements. However, for the usual analyses of redundant
systems involving small displacement theory the principle of virtual forces
with its many particular forms is the most useful one since the standard
procedure introduces forces as unknowns. Naturally, there are many cases,
especially in multi-redundant structures, where it is advantageous to in-
troduce displacements as unknowns; here the principle of virtual displace-
ments is the indicated method as shown in Example (b) of Section 5.

We return now to Eq. (62) and will illustrate its validity on a very
simple example. Consider to that effect the redundant beam of uniform
flexural stiffness £/ built-in at z=0, simply supported at z—/, and subjected
to a uniform load p (see FIG. 14). Under the assumption that the ordinary
engineers’ theory of bending holds and that the shear deflexions are
negligible the deflexion v is given by

ga(5) [-5()+2()’]
v=ase\1) L3-3\7)+2
As a virtual force we select 8P at the centre of the beam as shown in
FIG. |4(a). However, since we require only a statically equivalent stress
system to equilibrate the applied virtual load we may eliminate the one
redundancy and select a statically determinate beam. The two alternative
choices leading to a simply supported beam and a cantilever are seen in
FIGS. [4(b) and [4(c). Denoting the true deflexion at the centre v, we have

Swr=5p-v,—5p 2L
TN =095 ET

Also since the Engineers’ theory of bending applies (Yu:=0)
!
2
SUM= 'f Ue:Saz:dA:ldzz - Ij—Z;BMz/z
o A 0

where the. integral in the square bracket refers to the integration over the
cross-section. For the case shown in FiG. 14(c).

M= VSP(jl——z) for O~ z<0//2

SM=0 for I2<z</
Also since,

=t iG]

SU* =8P§’—ZT (i/~z)[l -57z+4<-lz-)2]dz:8P%l —SW* geed.

o
If we apply now a force — %3P at the free end our virtual system () is trans-
formed into (a). No additional & W* arises since v=0 at z=/. The additional
bending moment M produced by — &8P is

T%(|—§)8P./

and this is easily found not to create an additional 8U;*. By relaxing the
moment restraint at 4 we may finally prove without difficulty that
SU*=38w= applies also for the virtual system (b).

We return now to Eq. (62) and note that since the displacements are
assumed constant when the virtual forces are applied we may regard S W*
as the variation of a potential — U,* where

Ue*=—J(uw, +vw, +ww ldV —[(ud,+ v, + wd.1dS  ........ (64)
v $

Thus, 8W*=—8U,* and U,* may be termed the complementary
potential of the external forces. Note, however, that W* is nor —U,*
since in obtaining W* from SW* we must, naturally, perform the in-
tegration for displacements varying with load. In fact, for a linear system
and no temperature effects W*= — U/, */2; compare also Eqs. (64) and (46).

Also, since the thermal strains are kept constant we may write the right-
hand side of (62) as

UM +mBsdV=8(U*+[nsdVy - 8U,*
v 3

where
SU*—[ ydadV
v



but

Us* U HnsdV - [[[edaldV+[nsdV  iiiiiiiiiaiinns (66)
12 v o v
since ¢ ==const. U,* we term the complementary potential energy of total
deformation. Note that it is always simpler to calculate directly dU,*
from Eq. (65). Particular care is necessary in evaluating U,* for as Eq. (66)
shows in the first integral € is taken to vary with ¢ from the initial to the
final state while 7, s in the second integral refer only to the final values.
Physically speaking we may consider U,* as the complementary work
necessary to reach the final true state of deformation from an initial state
in which we allowed free thermal expansion and destroyed compatibility.
Formulae (65) and (66) may be extended immediately to the case of
arbitrary initial straining by substituting

NOMNeGust oo n A NGt oo IMos, for ms
Eq. (62) can now be written more concisely
SalU*=8u(Us* t U M)~ 0 ot i i e (67)
where the suffix o indicates that only forces and stresses are varied and
Ur=U*+U* i e F- . B-E (67a)

is defined as the total complementary potential energy of the system.
Eq. (67) states that a state of equilibrium of an elastic body is also on€ of
elastic compatibility (i.e. the body is at the true position of equilibrium)
if any virtual variation of the stresses and forces, while displacements
remain constant, does not give rise to any (first order) variation of the total
complementary potential energy. This theorem we call the principle of a
stationary value of total complementary potential energy if the latter is
expressed in terms of forces and stresses. Actually the stationary value of
U* is 2 minimum as we may prove without difficulty.* This point is dis-
cussed in more detail under (C) below. .
Egs. (62) or (67) may be used to derive the results which follow.

(A). The differential equations of the theory of elasticity (for arbitrary
loading and temperature distribution), or any particular structural
problem, in terms of stresses or stress-resultants; the appropriate
kinematic conditions in terms of forces and stresses follow also from this
analysis. It is important to note that in ail applications it is best to form
directly

dU*=[[ydaldV
v

and not to evaluate first U,* and then to take its increment SU,*.

(B). Castigliano’st Theorem Part II generalized for Thermal Effects and
nou-linear elasticity »
DU,,*]
VP,
where u, is the deflexion (rotation) in the direction of the force (moment)

P,. This relation may be obtained immediately if we apply one virtual
external force 6P, in the direction of the displacement u,.

el « e R v v v o s A[EEr v v e e K e e e+ o o G (68)

O =const.

(C). The Principle of Stationary (Minimum) value of Complementary
potential energy of total deformation for internally redundant
structures

This may be derived from (62) if we do not apply any external virtual
forces, i.e.

8, =8¢, = 8¢h, = Baw, = B, = Sew, =0

while varying the stresses o.
Then

Ol ) =0 i e e (69)

which is our generalization of the standard principle of Castigliano of
Minimum Strain Energy to include temperature effects and non-linear
stress-strain laws. Note again that Principle (69) necessarily applies only to
internally redundant structures, since for given external loads only one
stress distribution can exist in statically determinate structures.

Eq. (69) itself only indicates that U,* has a stationary value in that
particular state of equilibrium in which all the elastic and kinematic com-
patibility conditions are satisfied. Note, as mentioned before, that with the
limitations of the present assumptions, i.e. small displacements and
monotonically increasing stress-strain diagram, there is only one position
possible where both the equilibrium and compatibility conditions are
satisfied. We now investigate the nature of the extremum of U,*, which
naturally requires the consideration of second order terms as in Section 4.

Consider an elastic body under given loads and temperature distribution
in its compatible equilibrium position. We make a series of cuts in the
body but at the same time apply stresses o, acting across and along the
cuts of the same magnitude as in the uncut body ; these are obviously the
stresses required to maintain the compatibility condition of perfect fit at

* See Biezeno and Grammel', p. 75.

t A. Castigliano, Théorie de I'équilibre des systémes élastiques, Turin 1879,

the cuts. If we impose the virtual stresses do, it is apparent that since
these produce corresponding deformations 8u,. on the cut faces the latter
are not any longer compatible. It is important to realize that the do,
systems are self-equilibrating since the external loads P remain constant.
Thus, in a framework we may obtain a system 8a . by cutting a redundant
bar and applying a variation 8N to the true force N in the bar.

We now investigate the differences in complementary work W* and
U, * between the original equilibrium position of the uncut body and the
new enforced equilibrium position of the cut body. Comparing Eqs. (38)
and (66) we find

I

WE=U—[s—MB)dV oo (70)

v o
In moving from the uncut (compatible) equilibrium state to the cut one we
note first that the integral does not vary since 7 is constant in this step.
Also the first order increment, dU,*, of U,* is zero since this is the con-
dition for compatible equilibrium of the original body and no first order
increment 8 W* can arise since the loads P remain constant. We are then
left only with second order increments.

For the complementary work this is

S = U 00 S o e (70a)
c

(where the integral is taken over the cut faces) which is the work of the
virtual stresses 8o, over the displacements Su, they themselves produce.
This is clearly positive. The second order increment of U,* is merely

S2U*=4[80-8edV . e (706)
v

since ) remains constant ; 3o and e are the stresses and strains due to 8a..
Terms (70a) and (70b) are equal and both positive.

We conclude that the complementary potential energy of total deforma-
tion U,* and the complementary work W* have for given forces and tem-
perature distribution a minimum at that position of equilibrium of the uncut
body at which compatibility is satisfied.

1t follows that if U,* is overestimated by assuming a statically equivalent
stress system which does not satisly all compatibility conditions and we,
ignoring the latter fact, equate U,* to W* of the applied loads P alone
we cannot but overestimate the magnitude of the displacement system
under the loads P. Conversely to achieve a given displacement system our
calculations based on a non-compatible stress system must underestimate
the corresponding load system P. Thus, the latter has its maximum for the
unique equilibrium position which is also truly compatible. This may be
expressed also as follows:

For given displacements and temperature distribution the complementary
potential energy of total deformation has a maximum when the state of
equilibrium satisfies also the compatibility conditions.

The above theorems may be combined to give:

The stiffness of an elastic body in which the equilibrium conditions are
satisfied is a maximum when the elastic compatibility conditions are all met.

Thus we see that the effect of introducing assumed forms of stress dis-
tribution for the purpose of approximate solutions is the opposite to that
of the method of Virtual Displacements and therefore application of both
methods to a given problem yields upper and lower bounds to such
aggregate quantities as stiffness. No general conclusion as to bounds can,
of course, be drawn for the details of the stress distribution.

The above theorems which apply also in the presence of initial strains
other than those due to temperature do not appear to have been given
before with this degree of generality.

(D). The Unit Load Method

Assume that we require the deformation (deflexion or slope) «, at a
given point and direction of an elastic redundant body subjected to given
forces and thermal effects. Let the acrual fotal strains in the structure be
known and given by*

Yez=€extN), You=6zy
Applying a load (force or moment), 8P, in the direction of «, and using
Eq. (62) we find
3P, u,=[ydadV
v

=[[Yee000at .. ... + Y00+ <o o JdV an
v

where 8c,; . ... 80, . . .. are the virtual stresses due to 8P,. In a linearly

elastic system 3o, etc., are proportional to 3P, and Eq. (69) can be written

[-u, = VI [VrBretVuiGutV2:0 22 +VorOoy +VueOyz +yosecldV oo (7a)

where Gzr .. .. 0xy . . . . are the stresses due to a unit load. Since g, . . ..
G.,.... need only satisfy the internal equilibrium conditions and the
external one for 8P,=1 it is obviously advantageous to determine
Gz« v o 0zy ... in the most simple statically determinate basic system.
For a non-linear system Eq. (71a) is still applicable as long as o... etc.
are calculated in a statically determinate basic system. For only in the

* Naturally, this method may.also be applied in the case of an initial strain system with shear strains.
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15.—Unit load method for displacement of redundant framework

latter case will

80,./8P,=3aG,,/0P,
be the stresses corresponding to a unit Joad.

The Unit Load Method is the most suitable tool in the calculation of
structures with a finite number of redundancies expressed as stresses or

stress resultants.
This will be shown in some detail in Section 8. -

Example of the application of Eq. (71a).

Consider the plane framework with a redundant support as shown in
FIG. 15(a). We seek the deflexion v at joint 2 for the loading case shown.
Let the actual elongation of the members due to loads P Py, tem-
perature and manufacturing errors be denoted by A/ Next we apply a
unit load at 2 in the direction of v and find the forces /v in the bars. Since
we need only consider a statically determinate case we ignore the support
at C and are left with the very simple problem of finding N in the left-hand
span only. Application of Eq. (71a) yields the simple formula

Fv=ENAL (71b)

where the summation extends only over the continuously drawn bars. The
formula given is due essentially to Maxwell* and Mohrf who applied it to
statically determinate framéworks. Actually Mohr derived this type of
equation by using the principle of virtual displacements with the actual
elongations taken as virtual ones and the unit load system as the actual
one. Although such a procedure is in the present case of small displace-
ments permissible, it should nevertheless be avoided since Eq. (714)
follows more naturally from the principle of virtual forces.

(E). Approximate method of stress analysis

Consider an elastic body{ subjected to external loads (body and surface
forces) and a temperature distribution . The boundary conditions are
assumed to be both of the static and kinematic kind ; however, where the
latter are prescribed they are taken to be of the rigid kind, e.g. rigidly
built-in or sliding in a rigid groove (see FIG. 16). To limit the present
analysis we restrict our investigation to a state of plane stress. The solution
of such problems is often expedited by the use of the Airy stress function F,
Then, the stresses are given by§

SR PR & S j
o'zz—byz_ wzdx, a"’—_bxby’ va“bxz“

which satisfy automatically the internal equilibrium conditions ).

Eliminating the displacements from the strain expressions (1) we obtain
the compatibility condition for the strains, ™

32‘}’3:.- Dz’}’vv azyiﬂl_ (73)
T2 Tk Ty S ERREETE LI L PR SRR REPEPPRTPRRY

where y,, etc. are the foral strains e,.+7 etc. For a given stress-strain law
we can express y.. in terms of the stresses (72) and the temperature ©.
Hence by substituting into (73) we obtain the differential equation in the
unknown £, which will, in general, be non-linear. However, in the case
of bodies obeying Hooke's law we obtain for a=const. the simple linear
result

* J. C. Maxwell, Phil. Mag., vol. 27, p. 294, 1864

1 O. Mohr, Zeit. Architek. u. Ing. Ver. Hannover, 1874, p. 509; 1875, p. 17.
t The presentation is restricted 1o singly connected domains.

§ Sec Timoshenko 8, p. 26.
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16.—Two-dimensional stress case, static and kinematic boundary
conditions

diF V4F J4F dw, dw 00 0
W“a—xzayﬁﬁﬁ—“—”>(a—x+a—y”)—05(w+ay—z (74)

F must, of course, also satisfy the given boundary conditions. In fact,
where surface forces are prescribed we have (see Eqs. (5) and FIG. 16)

d(IF dF ]

a—y(la—y—mﬁ)=q§,

S/ O RN [ e (75)
a}(’"a_x_’iv =4

An approximate method may proceed as follows. Assume that the stress
function F is expressed in the form of a finite series

FmFobSboFy oo (76)
r=1

where F,, Fy, .. ... F, are known functions of which F, satisfies the static
boundary conditions (75) where these are prescribed and the functions
F, vanish there. b, to b, are constants to ‘be determined by the virtual
forces principle. The system (76) satisfies by definition all given equili-
brium conditions and the increment

SF=0b, Fr et e an
may be regarded as a virtual stress system corresponding to zero incre-
ments of external loads where the latter are fixed.

Since 3W*=0 (either forces are given or displacements are zero) the
principle of minimum complementary potential energy of total deforma-
tion is applicable here and takes the form

SU4* =Aj' (Y2280 2+ 1000y + 725, 00,)dA=0 . ... ... ........ (78)
We use here [(....)d4 to denote the integration [J(...... ) dxdy over’
A

the area of the two dimensional continuum.
Substituting 8o, etc. in terms of (77) we find

VEF dEF, d2F,
_[ ‘)’HWE +‘y,,,,b7 —yﬂbx_by]%"“ =0 csuesnmeiadTieRes (79)
A
and since 8b, is arbitrary.
d%F, V2, R,
I[Y"D_yz +7“"—D_F —y”'bx_by]dA =0 . (79a)

A

If the total strains are expressed in terms of the stresses (72) and tem-
perature distribution @ we obtain from (79a) n equations for the un-
knowns b, to b,. These are only linear if the body follows a linear stress
strain law. In the latter case and for constant body forces Eq. (74) shows
that the solution must be independent of the Poisson’s ratio v if all
boundary conditions are of the static type. Hence we may take v=0 and
(79a) becomes

U D, 2'F 3, O D, v ) e
J.{ xt b_y_2+D_yT et 0Xdy Xy +E7][3,?f+by2] dA=0

.................................. (79b)

from which we may obtain without difficulty the n linear equations for
b, to b,.

The case when all prescribed boundary conditions are static is interesting
for all surface conditions are then exactly satisfied by (76). This indicates
that it should be possible to express (794) in a form similar to that given
as Galerkin’s method under the virtual displacement principle. In fact, if
we integratc (794) twice by parts, or better, if we apply Green’s Theorem
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17.—Virtual Forces: Example (a) Diffusion problem

we find
VU, V%, 0%z Vs %y,
| [7255% +7oszs —Ywax—ay]"*"y:I W ok ‘mr‘y"]F 4
a A
M | s e, Dyn)
[ eme (T ome) I
c
! OF, ( m D,
+_[[('"Yn_§‘y:'v ‘D—}-’+ I’y.u.u_z_‘yzu)ﬁ]ds
c
| P )ds denotes the line integral along the boundary of the two-

dimensional continuum.

But, on the boundary F,=0 and also
VF, OF,
5% =0 and Sy =0

(see Egs. (75)).
Hence Eq. (79a) reduces to the slightly simpler form,

Dz‘}’z: Dz'}’uv Dz'}’zu
f SESh —W]F,dA=0 for r=1to i
A

which shows clearly how the method of virtual forces satisfies in the
average the compatibility condition (73). When the body is linearly elastic
Eq. (80) may be written as (a=const.)

J‘[(D4F+D4F+2 IF )+Ea(g%)+a2®

AT ATy w2
+(1 —v)(bb—u:—l—aa—a;')]FrdA =0forr=1ton ...... (80a)

the expression in the bracket being of course Eq. (74). Note again the in-
dependence of the solution from v when body forces are constant.

The above application of the principle of virtual forces is a generaliza-
tion of a method developed by Timoshenko?, p. 167. A thermal stress
example of the above analysis is given in Part 11.

Naturally, the method can be extended to three-dimensional cases.

W. Ritz* proposed as early as 1908 a similar procedure for the solution
of St. Venant's torsion problem ; this method is illustrated on an example
of considerable complexity in Part II.

A slightly more refined approach than that shown above may be
adopted when it is possible to estimate accurately the variation f of F
parallel to one co-ordinate say y while the distribution parallel to the other
co-ordinate is more difficult to guess. Then, we may set

F=f(0) BX) oot e (81)

where ¢(x) is an unknown function of x. It is, of course, possible to formu-
late the analysis in any other suitable co-ordinate system. Substituting (81),
with 8F=/8¢ in place of F,, into (79a) or (80) (or related expressions),
we obtain after some simple integrations the differential equation in ¢;
when there are also kinematic boundary conditions the corresponding
boundary expressions for ¢ follow also from (79a).

Consider, for example, the case of linear elasticity, zero body forces and
pure static boundary conditions. Eq. (80a) takes here the simple form,

AI[A2F+EaAG)]f8¢dA=0 ................................ (806)

Using (81) in (80b), integrating with respect to y and noting that (805)
must be true for any virtual variation 8¢, we obtain the differential
equation in ¢

1909

* W. Ritz, J. reine angew. Math., vol. 135, 1908, and Ann. d. Physik, series 4, vol. 28, p. 737,

'yll yll yu yu
dig 7 d® d* d4
Xd:-Jfzdy+2£-Ifg);fzdy+¢jfd—y'f4dy+EaIA®fdy=o .. (80c)
! Y1 21 i’

where y, and y, are the extreme (boundary) values of y corresponding to
the same x (see FIG. 16). Thus, the coefficients of the homogeneous part
of (80c) are only constants in the case of a rectangular field.

This method can yield very accurate results and is actually the one
adopted in Part 1.

7. ILLUSTRATIONS OF THE PRINCIPLE OF VIRTUAL FORCES

In this section we present a number of applications of the principle of
virtual forces to quite simple problems. Again, it is not necessarily sug-
gested that the method is the most suitable one for the problems con-
sidered. It is only intended to show how it can be applied in these simple
cases. In subsequent parts of the paper some rather more complex pro-
blems will be dealt with. In all the examples of this section linear
elasticity is assumed.

(a) Diffusion Problem

The panel shown in F1G. 17 is subjected to loads P applied at the free
ends of the edge members. Assuming that the sheet carries only shear
stress which is constant across the width b of each half (usual diffusion
assumption) obtain by application of the principle of virtual forces the
differential equation for the load P, in the central stringer. Find also the
displacement w of the free end of the stringer.

From the equilibrium of an element of the stringer, we find for the
shear flow (¢ - ¢,.7) in the sheet

P,

"“_54173""%”-" ...................................... (al)
and from the equilibrium of the free end of the panel we find for the load
Py in the edge members

P

P};: P ——2‘! ............................................ (a2)

For the virtual forces we consider a variation 3P, in the stringer load.
The applied forces P are maintained constant and hence to satisfy the
equilibrium conditions on the free end (P,=0) we must take &P, to be
zero there

B (8P, =0 e (@3)

Otherwise the variation 8P, is arbitrary.
The virtual shear flow in the sheet is thus

8g=—48(P)=—4(8PsY i (a4)
and the virtual load in the edge members
BPB =— 8;’ ............................................ (a5)

Since the applied forces are not varied, the virtual forces principle (Eq. (62)
for ®@=0) reduces to

3U*=0

The virtual complementary energy due to 8P, is
i

[P, P
SU* =J [ E—ASP,+2F§8PB +26qrb3q]dz .................. (a6)

Substituting for Pg, 8Pp, g, 84 in terms of P,, 8P, and integrating the last
term by parts we find

I !
P/l 1 b d*P, P 1 rdp,
su=| [EGi+58) 26 T ~ g3 )oPedet Gor] =0
o
.................................. @7n
and therefore, since 8P, is arbitrary, we must have
d*P, 2Gi/1 1 2Gt
'd—zg —Ep (Z+2—B)P,+mp=0 ........................ (a8)
or
d?P,
TEH P = P i e (@9)
where
2Gi/1 1 2A4
}L2=ﬁ(2+2‘§), P,,,=A—_m1’ ........................ (al0)

which is the required differential equation in P,.

Since 8P, is zero for z=/, the remaining term in Eq. (a7) vanishes for
the upper limit z=/. At the lower limit z=0, however, 8P, is arbitrary
and hence
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18.—Virtual Forces: Example (b) Unit load method for twist of
multicell tube

dp, _

7Z=0 fOr 2=0 soniissries i s 4 0 0T 5 a s ialore e meaeesemrs oo (all)
which with the equilibrium conditions on the free end,

P=0forz=I .. ... ... . (al2)

gives the necessary boundary conditions.

The differential equation (a9) is, of course, alternatively derived by a
direct consideration of the deformations. In such case the kinematic
boundary condition (all) appears as the condition of zero shear strain
at the built-in end.

Solution of (a9) with the boundary conditions (all) and (al2) gives

cosh p(/—-z)

P"=P‘”['l " cosh

(al3)

To determine the displacement w of the free end of the stringer we apply
there a unit force and since we need only consider a statically determinate
system we assume the stringer alone loaded by the unit force. We find
then (see Eq. (71))

i
1'w=]0,.€,,Adz
a

and since

GA=unit load=1, ¢,,= P,/EA
/

Ps
w=JE2dz ..............................................

o

which is, of course, merely the extension of the stringer under the varying
end load P,.

(b) Rate of Twist of Multi-cell Tube

In thé uniform thin-walled tube whose cross-section is shown in
FIG. 18(a), q, is the known shear flow distribution in the walls of the tube
due to a given loading. Using the unit load method, find the rate of
twist d8/dz of the tube.

We consider unit length of the tube and apply a unit torque 7=1.
Since we only need consider a statically determinate system for the unit
load stresses we select the single cell (1, 2, 3, 4) shown by full lines in
FIG. 18(h). The unit torque gives then merely a constant shear low

1

ql=m ............. F (bl)
around the single cell and the rate of twist is given immediately as
df_ (4. 1 (g,
o =Iaq1ds=m [eds o ®2)
c c

where the integral is obviously taken only around the single cell (1, 2, 3, 4).
Eq. (b2) is, of course, a well-known result in the theory of closed thin-
walled tubes.

(¢c) Plan. Stress-Strain Relations for Oblique Co-ordinates

In a uniform isotropic plate, the stresses a,,, oy, O =0, are referred to
the oblique co-ordinates Oa, Ob (riG. 19). Using the principle of virtual
forces and assuming the stress-strain relations for rectilinear stresses, find
expressions for the strains €., e, and e, in terms of the stresses.

The oblique strains €,., €, €., are defined as the elongations in the direc-
tions Oa and Ob and the decrease in the angle 0 respectively of the unit
parallelogram (sec FiG. 19).

For the stresses o,,, 0,,, 0., equivalent to the oblique stresses, we find

16

T Top -
€,,dbcosd /f'

db e ‘1/
G
ﬂn " o 5
f/ da / Ehda

= qyfz/g

X

19.—Virtual Forces: Example (¢) Stresses and strains for oblique
coordinates

easily from statics
Cp=0yq Sin 0

02y =04 +0, cOs §

............ (cl)
04y =(04 +04e €O828+20,, cos 8)/sin §
The rectilinear strains are
| | 2(1
exx:E(Uzz‘Voyy)- Ew:E(gw_"VUn-)y GJUZ% Ty veennn.. (c2)

and hence the virtual complementary energy per unit thickness of the
element dxdy is
5U¢*=dxdy[:~uSO'u—f—ey,,BO'y,,—I—eJ.,BU,y]
dxdy
=% [0::80.:+0,,80,,—v 0280y, +0,,80..) +2(1 +v)o,00,,]

................................. (c3)

Substituting for .., a,,, oy, from (cl) we can now express SU;* in terms

of the oblique stresses and virtual stresses. Thus for the virtual stress

3ay, we find for the virtual complementary energy

dadb
SU;* =E—;ﬂ'0[o,,¢, —AGua+200 €05 81801 (c4)
where
A=vsin®0—cos20 ... (c5)

From ri1G. (19) the virtual complementary work of da,, is seen to be

SW*=dadow €ndb ... (c6)
and therefore from the Virtual forces principle
SWH*=8U* . (c?)
we find, using Eqgs. (c4) and (c6) in ()]
1
e»:E—Sin—g[a,,,,—Ao'M+20,,,, cos Bl oo i, (c8)

Applying a virtual stress 8o, in the same way we obtain for the strain
€qa the corresponding expression

........................ (c9)

Consider now the virtual shear stress 804. From Eq. (c3) we find for the
virtual complementary strain energy due to do,,

1
€a2™= Fgin 80 —ATw +20,, cos 6]

da-db
SU*= ,%8{2[(1 +) 8in20+2 052002 +2(Cos +03) €08 8}z
........................ (c10)

Calculating the complementary work of the virtual shear stress O
we find (see FIG. 19)

SW * =80l cOS B+, cos B-tc,y sin 0)da- db (cll)

Thus the virtual shear stress do,, does work not only due to the shear
strain €, but also due to the strains ¢,, and «,. .

Substituting from Eqs. (c8) and (c9) for the strains €0, € and equating
8U;* and 3W* of Egs. (c10) and (cI1) respectively we finally obtain for
the shear strain:

21 +v cos §

w=""F )[0""+2 sin 9(0““"_0"")]

Note that with the strains defined as above the increment of com-
plementary energy is

OU* ={€,a001a+ €301 + [(€0 +€1) COS B+e.p sin O150uidadp .. (c13)
as compared with the simple result for rectilinear axes in Eq. (c3).

(c12)




8. METHODS OF ANALYSIS OF STRUCTURES WITH A FINITE
NUMBER OF REDUNDANCIES

HE general theorems given in Sections 4 and 6 include, from the

fundamental point of view, all that is required for the analysis of

redundant structures. However, to facilitate practical calculations it
is helpful to develop more explicit methods and formulae. To find these
is the purpose of this Section.

A structure is by common definition redundant if there are not sufficient
conditions of equilibrium to obtain all internal forces (stresses or stress-
resultants) and reactions; the number of redundancies is the difference
between the number of unknown forces (or stresses) and the number of
independent equilibrium conditions. Strictly all actual structures are in-
finitely redundant but for practical purposes it is, in general, necessary
and justified to simplify and idealize the structure and/or stress distribution
in order to obtain a system with a finite (or even zero) number of redun-
dancies. Such typical processes of simplification are, for example, the
assumption of pin-joints in frameworks and the assumption of the engin-
eers’ theory of bending in the analysis of beams. Note, moreover, that the
Rayleigh-Ritz procedure discussed in Section 6F amounts also, in fact,
to the substitution of a finitely redundant structure for the actual elastic
body.

All our considerations in this Section are restricted to linearly elastic
bodies but Example 2 in Pagt I shows how the present methods may be
extended to the analysis of non-linear redundant structures.

It is curious to note that, while the solution of problems in the theory of
elasticity is derived very often from the differential equations in the dis-

placements, the stress-deformation analysis of engineering structures was,
until a few years ago, generally based on the concept of force-redundancies.
Interestingly enough, Navier,* who was the first to evolve a general method
for the analysis of redundant systems, when investigating problem (b) in
Section 5 used also the displacement method. The analysis of indetermin-
ate structures on the basis of redundant forces goes back to Clerk Maxwellt
and Otto Mohr® and was ultimately developed by Mueller-Breslau.®f This
technique is, as mentioned in the introduction, more concise and physically
more illuminating than the Castigliano approach ; it derives most naturally
from the unit load method (see Section 6D, Eq. (71a)). Mueller-Breslau's
technique is generalized here and presented also in matrix form, The effect
of temperature or other initial strains is included ab initio.

Parallel to the rapid development of the force-redundant theory occa-
sional practical problems were solved by selecting deformations as un-
knowns. Fundamentally this method is equivalent to the virtual displace-
ment analysis given in Section 4. Mohr# was probably the first to use such
an approach in engineering structures when finding the secondary bending
stresses in frameworks of the type usually assumed to be pin-jointed.

* C. L. Navier. Résume des lecons sur 'application de la mécanique a l'érablissement des construc-
tions ¢t des machines, Paris 1826, 3 ed. par B. de St.-Venant 2 vols. Paris 1864, Sce also: A. Clebsch,
Theorie der Elasticitaet fester Kaerper, Leipzig, 1862; French edition by B. de 5t. Venant: A. Clebsch,
Theorie de ' élastivieé des mz: solides, avee de notes étendues de B, de 5t. Venant et A. Flamant, Paris,
1883, W. Thomson and D. G. Tait, Treatise on matural philosephy; 1 ed. Oxford, 1867,

t See also H. Mueller-Breslau, Die graphische Statik dg;r Baukonstruktionen, 2 ed., Koemer,
Leipzig, 1886.

1 O. Mohr, Zivilingenieur, Vol, 38, p. 577, 1892; see also, Abhandlungen aus dem Gebiete der
technischen Mechanik, 2 ed., Berlin, 1914, p. 407.

Additional Notation

R, O, P single, generalized, orthogonal force (moment)

R @ P  corresponding column matrices

rq,p single, generalized, orthogonal displacement (rotation)
rqp corresponding column matrices

0;, 0;  (true) stress and virtual (statically equivalent) stress due to
unit load at i

S;, S;  corresponding column matrices

€; strain due to unit load at §
e; corresponding column matrix
JLin fn  direct and cross-flexibility
F matrix of flexibilities f;,
B transformation matrix for forces
F., F, generalized and orthogonal flexibility matrices

qas

b rectangular transformation matrix for internal forces (stresses)
S column matrix of internal forces (stresses)

v column matrix of strains

f, flexibility matrix of g element

f flexibility matrix of all elements

¢ flexibility of element of unit length
€', €  true and virtual strain due to unit displacement at §

el stress due to unit displacement i
ky; ki direct and cross-stiffnesses
K matrix of stiffnesses &,
A transformation matrix for displacements
K., K, generalized and orthogonal stiffness matrices
a rectangular transformation matrix for strains

stiffness matrix of g element
stiffness matrix of all elements
stiffness of element of unit length
o, stress system of basic structure
o self-equilibrating stress systems
Xi, Yy, Z; redundant force (moment)

8i0r Lis  relative displacement at cut i-redundancy in basic system due to
external loads and initial strains :

8ir, Lir influence (flexibility) coefficients of basic system for the direc-
tions of redundant forces

D matrix of §;,

D,  column matrix of §,,

T triangular matrix

M elimination matrix

A prescribed relative displacement (linear or angular) either in-

side the structure (e.g. lack of fit) or at the supports (‘give’
of foundations)

Ci force or moment in the basic system due to X;=1 acting on an
element which experiences a A in the direction of this A

N (n), $(s), M (m) normal force, shear force, bending moment
O, 0 (rectangular) zero matrix

&

L o

I unit matrix
Ll ing e ho.o... m direction of external forces
| P founn. k.o.... n redundancies
ab,..... g s elements of structure

A’, A1 transpose and inverted (reciprocal) matrix of A
{..... } column matrix
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Following Mohr's analysis his ideas were applied to stiff-jointed frame-
works, the first systematic work being that of the Danish engineer Axel
Bendixen.* However, the great potentialities of the method were only dis-
covered by Ostenfeld,t a compatriot of Bendixen. He was the first to point
out the duality of the force and displacement apgroach. In fact, his equa-
tions for the unknown displacements in a structure complement Mueller-
Breslau's equations for the redundant forces. It is regrettable that Timo-
shenko in his fascinating History® does not mention Ostenfeld’s classical
book. We give here a considerable generalization of Ostenfeld’s ideas to
include any structures under any load and temperature distribution.

The *slope-defiexion” equations of Bendixen form the basis of the method
of successive approximation due to Calisevi and developed by Hardy-
Crossi| as the well-known moment distribution methed. The technique
used is essentially a particular example of the relaxation method of
Southwell§ which has been successfully applied to a wide range of prob-
lems. In its application to elasticity and structural problems this latter
method is particularly representative of the modern tendency in making
practical the numerical solution of highly redundant systems and has been
used in conjunction with both forces or stresses and displacements as
unknowns. Further discussion of this method is beyond the scope of the
present work which is not concerned with iteration methods but the reader
is referred to the original literature on the subject. -. _

In this Section we make use, where appropriate, of the matrix notation.
Although the complete analysis could be developed ab initio in this form
it is thought preferable to give first most of the basic principles in the more
familiar ‘long-hand’ notation. Only the most elementary properties of the
matrix algebra like matrix partition, multiplication, transposition and
inversion are necessary for the understanding of our theory. The reader
may consult the classical work of Frazer, Duncan and Collar% for these
and more advanced matrix operations. Another modern and readable
account is given in the recent book of Zurmuehl.** The most comprehen-
sive work to date on the formulation of aircraft structural analysis in
matrix notation,anyhow on this side ofthe Atlantic,isthatof B. Langefors.tt
D. Williams}1 presented recently an interesting account of some aspects of
matrix operations in static and dynamic elastic problems.

Before proceeding to a discussion of the general methods for the analysis
of redundant structures we introduce some concepts helpful to the under-
standing of the following theories and their subsequent matrix formulation.

A. Flexibilities

Consider a cantilever beam with a plane of symmetry yz consisting of
three connected segments @, b and ¢ with bending stiffnesses for deflexions
in the yz-plane (E1)4, (El), and (EI), respectively (see FIG. 20). Let the cor-
responding shear stiffnesses|lil be (GA’),, (GA’), and (GA’).. Transverse
forces R,, R, and Ry are applied in the yz plane at the joints B, C and D.
Since the system is assumed to be linear the principle of superposition
holds and we can express the defiexions ry, r, and r; in terms of the loads
as follows:

rn=fu Rit/is Re+/f13 Ry
ra=fo Ri+/foe Rot+/o Ry
r3=fy Ritfse Ro+fsa Ry

where f;;, fin are, of course, the well-known influence coefficients.§§ In fact,
Jfin is the displacement in the j-direction due to a unit force R,=1 in the
h-direction. We call also f}; and f; the direct- and cross-flexibilities re-
spectively and deduce immediately from Maxwell’s reciprocality theorem
(Eq. (43), Section 3) that

L=l s o (83)

To find the flexibilities £in any linearly elastic body we may use the unit
load method developed in Section 6D. Thus, from Eq. (71a),

l'_/:,‘,'_: IU',‘E,‘dV
v

U fin= [oi6dV= [ore;dVe=1"f;;
v 12

* Axel Bendixen, Die Methde der Alpha-Gleichungen zur Bercchnung von Ruhmenkonstruktionen,
Springer, Berlin, 1914.

1 A. Ostenleld, Di¢ Defurmationsmethode, Springer, Berlin, 1926.

t Calisev. K. A., Techniski List No. 1-2, 1922, Nos. 17-21, 1923. Sce also Timoshenko and
Young, Theory of Structures, McGraw-Hill, New York, 1945,

|| Hardy Cross, 'Analysis of continuous [rames by distributing fixed end moments’, Paper No.
1793, Vol. 96, Trans. A.S.C., 1932, pp. 1-10,

§ R. V. Southwell, Relaxation methods in engineering science. Oxford Univ. Press, 1940. R. V.
Southwell, Relaxation methods in theoretical physics, Oxford Univ. Press, 1946.

© R. A. Frazer, W. J. Duncan, A. R. Collar, Elementary Matrices, Cambridge Univ. Press,
Cambridge, 1938, ‘

** R. Zurmuehl, Matrizen, Springer, Berlin, 1950.

+t B. Langefors, ‘Analysis of Elastic Structures by Matrix Transformation with special regard to

Monocoque Structures’. Journ. of Aero. Sei., Vol, 13, No. 7, 1952, Structural Analysis of Swept-
Buck Wings by Matrix Transformation, Saah. T.N. 3, August, 1951.

13 D. Williams, ‘Recent Developments in the Structural Approach to Aerozlastic Proklen's'.
J.R.Ae.S. Vol. 58, No. 522, June. 1954,

il Th_ese shear stiflnesses in bending are commonly based on the assumption of the Engineers’ theory
of hendmg shear stresses. See Argyris and Dunne, Structural Analysis (Handbook of Aeronautics.
Vol. 1), Pitman 1952, for a derivation of the area A4°,

$§ The influence coefficients were discovered indep=ndently by E. Winkler. Mitr. Architek. u. Ing.
Ver. Boehmen 1868, p. 6 and O. Mahr, Zeir. drchitek. u. Ing. Ver. Hannover. 1868, p. 19.
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Fig. 20.—Flexibilities and stiffnesses of a cantilever

where (see also Eq. (3))

06, =0Cpri€czitoovneiinnnn. 40 i€i )

OJEN=0zzi€zoht oo v invvnnnn, +0,zi€een )

€;, 0; (€4, 0y) are the strains and stresses corresponding to a unit load at
and in the direction of j (). Under load we understand either force or
moment. Similarly the flexibilities may represent either displacements or
rotations. Naturally, formulae (84) yield also linear (angular) flexibilities
due to moments (forces) respectively. Note that while ¢;, €, must be the
true strains due to unit loads at j and / respectively, o;, o, need only be
virtual, i.e. statically equivaleni, stresses due to the same loads. This is of
great importance in redundant structures. Thus, denoting by &;, &, any
statically equivalent stress system due to unit loads at j and 4 respectively
in a redundant structure we can write Egs. (84) also in the form,

1 fi;=[Gse;,dV W
v
|- fin= 'j’/&,-e,,a’V= ;J:&ne,del “fri

It is, of course, possible to substitute in the above formulae true stresses
and virtual strains for true strains and virtual stresses but for reasons of
logical consistency this is best avoided.*

Assuming in the case of the beam shown in FiG. 20 that the Engineers’
theory of bending stresses is true we find, noting that the system is statically
determinate and hence =g,

!
MM, S;S,

(2]

* Sce Section 6D, p. 14,



where M;, S; (M,, Sy) are the moments and shear forces corresponding to
R;=1 (R,=1). Egs. (85) yield easily the following set of influence co-
efficients,
(@+b+cP—(b+c)® (b+e)Pd—c
fuo="""3(ED, NED, T NED,

a b 4
e, TG, TG, .
b2
Jop=frz= 6(1;—1) [(a +5)*(2a+2b+3c)—b¥2b +3c):l +5ED; 2639

a b
G4y, T GAY,

2
fa=fu=5En, l)a[2a+3(b+c‘)] +En,

To obtain f;, and £, from the expression for f;; omit in the latter the
terms c and b, ¢ respectively. Also to find fi, =/;; omit the terms involving ¢
in the last of Egs. (86). Naturally, we can also derive the influence coeffi-
cients (86) by direct integration of the differential equation for the de-
flected beam when shear deformations are included. A systematic method
for deriving the flexibility coefficients for compound engineering structures
is given later.

Influence or flexibility coefficients are of great importance in the static
and dynamic analysis of linearly elastic engineering structures. In this
connexion it is most appropriate to make use of the matrix notation not
only for conciseness of presentation but also for the systematic program-
ming of the considerable computational work usually involved in practical
problems. The matrix algebra is, in fact, ideally suited for the automatic
digital computers now available.

The matrix form of Egs. (82) is,

r=FR......... i 8D
where r and R are the column matrices of the displacements and forces
_ .
n | Ry
r=|ry| ={ryrarsh R=| R, | ={Ry Ry Ry} .... (83)
s R
[
and
S fe S
|28 F PO T | I R e (89)
a1 Joe Jas
L |

is the so-called flexibility matrix; note that F is a symmetrical square
matrix. The relation (87) is, of course, valid for any number m of displace-
ments and rotations in any linearly elastic body. To each displacement or
rotation r; there corresponds a force or moment R;. Thus, in such a case
the matrices are

and P={rry. .. Fye.ntady R={Ry Ry ... Ry i R} (90)
Sufigee o hse fim

B | Fawnwn Figomenodonl]]  sossonmmmenssmrgas ©1)
il fopoesi= fio

where the fj, can be calculated always from Egs. (84). The flexibilities in
(91) need not necessarily refer to m different points. For example, we may
choose three directions x, y, z at a particular point of a three dimensional
body and define six flexibilities
fz:v fvw fzz
fzv=fvzy fv z=fszu:=fzz

corresponding to the three forces R.=1, R,=1, R,=1 at the same point.
Similarly for a beam in which we assume that the engineers’ theory of
bending is true we may require the slope and the deflexion at a cross-
section under transverse force and moment applied there. Three fexi-
bilities are required for this information; note, however, that if shear
deformations are included we must specify that the bending moment is
applied as engineers' theory direct stresses at the particular cross-section.
A characteristic property of the influence coefficients is that any f;, in a
given elastic body depends only on the points and directions j and / but
not on any other directions selected for the calculation of a flexibility
matrix (91).

A perusal of the flexibilities of Eqs. (86) shows that it is possible to split
the complete flexibility matrix F into two additive and distinctly different
matrices. Thus,

F=FatFs i i (92)
where Fz and Fg are the flexibilities corresponding to pure bending and

shear deformations respectively. The first contains only terms involving
EI and the second only terms involving GA’. For example,

a® a b
Sy =T s =, Gy (92a)

Such a splitting of the flexibility matrix is extremely useful in numerical
calculations, particularly when obtaining first approximations in which we
neglect certain flexibilities. Thus, in a first approximate wing analysis we
may neglect the rib deformability; at a later stage we can ascertain its
influence by adding the corresponding flexibility matrix to the original
flexibility (see Example (b) of Section 9). The method is, of course, quite
general as Eqs. (84) and (84b) show, for it is always possible to write

L fin =£ [(Orri€cntOuui€omntT22i€:n) +(Tryi€emt 0,56t
au,-e”,.)]dV ............ (93)

where the first expression in round brackets gives the contribution of the
direct strains to fj, whilst the second expression gives the contribution of
the shear strains. Eq. (93) shows also that the splitting may be carried a
step farther by considering separately, for instance, the effect of the
strains €,, or of the three shear strains €.,, €,,, €. Similarly, in fuselage
ring analysis where we usually neglect the deformations due to shear and
normal forces we can check their influence by adding the corresponding
flexibility Fy and Fy to the matrix Fyz for pure bending deformations.
These matrices are,

F,,:UAQ'—,Mds] : FA\~=['[I\2Z"ds] Ry =U%ds] ............ (94)

where M;, N, S, (M,, N, S;) are the bending moment, normal and shear
forces due to a unit load at j (4).

1t is often convenient not to operate in single loads (or moments) but in
groups of loads (or moments), which are known as generalized forces. To
fix ideas, consider that in the example of FiG. 20 we select as applied
generalized forces the three loads Q,, @, and Q5 given by,

Q=G R +GpR +G 3Ry 1
0y Gy Ry -+GogRy +Gog Ry } ................ ©5)
Q3=Gy R +G Ry +Gy3Ry J

‘or in matrix form

Q=GR ... (96)

where G is the square matrix, in general not symmetrical, of the coeffi-
cients G;,. We call G a load transformation matrix and assume that it is
non-singular, i.e. that the determinant | G | of the coefficients is different
from zero. We may solve Eq. (96) for R by premultiplying with G~! and
obtain

R=B@ 3
where j ................ ON*

B=G1
is the so-cailed reciprocal or inverse matrix of G. Its determination is
equivalent to solving Eqs. (95) and therefore involves considerable numer-
ical labour if the number of equations is large. In such cases approximate
methods may have to be used. However, with the advent of the automatic
digital computers this difficulty is no longer insuperable. We give later in
this Section a systematic procedure suitable for punch-card machines for
computing the reciprocal matrix but hope to return in greater detail to this
and similar questions in Part 111, Next we have to determine the general-
ized displacements q corresponding to the generalized forces @. By defini-
tion q are obtained from the equality of the two expressions for work in the
two sets of variables R, r and @, q. Thus, in matrix notation

W=irR=1q'@ ............. ... . 98)

where r’ and q’ are the transposed matrices of the column matrices r and
q and are hence the row matrices

r=[rnrarl, =g gqs] .- v 99)
Using the first of Eqs. (97) in (98) we obtain

q'=r'B
or

g=B'r e (100)

where B’ is the transpose of the matrix B, i.e.

r 7
, I By; By By |
B’= By By By

........................ (101)
| Biz Bog Bas
[ _
Substituting (87) into (100) we find,
q=B'FR=B'FBQ=FQ@ ........................ (102)

Eq. (102) shows that
F,=B'FB.... . (103)
is the fexibility matrix corresponding to the generalized forces and dis-

placements @, qf.
We illustrate now the application of generalized forces on a simple

* In practice the generalized [orces are more naturally defined directly by the matrix B of Eq. (97).

+ Formula (103) is also given by W. J. Duacan, Mechanical Admittances and their Applications 1o
Oscillation Problems, A.R.Ci, R. & M. 2000, 1947.
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Fig. 21.—Generalized force and displacements

example. FIG. (21) shows a uniform cantilever of bending stiffness E7 and
negligible shear deformability. The flexibility F for forces Ry, Ry, Ry atthe
equidistant points B, C, D is easily found from formulae (86) to be,

D 1
2 5 8
F=a 51628 | ... it ... (104)
8 28 54
L |
where
ad
L 7 S (104a)

We seek now the components of forces and the generalized displacements
corresponding to the generalized force,

Q=1

for the assumed load transformation matrix,

Using Eq. (97),
R=BQ=B {0 1 0}
we deduce immediately,
R={R; R, Rg}={1 0-5 —0-5}
Hence,
r=FR={a/2 —a -—5a}
The values of R and r are shown in FiG. 21).

Next we find the generalized flexibility F, by straightforward matrix
multiplication from Eq. (103),

f
126 —6 10
F,=BFB=o | —625 —1| .................... (106)
10 —11-5
L _

We calculate now the generalized displacements from Eq. (102) as,
q=F.@=F.{0 1 0}

or ="

q={—6a 2:5a —a}

Finally, we analyse the three generalized displacements ¢ in their r-com-

ponents. From Eq. (100),
r=G'q=(B-1)q=(B~Y)’ {—6a 2:5a —a}

For the inverted and transposed matrix of B we obtain from Eq. (105),

-4
(B-1)y=G'= - '3' ................ o7

-

-1 o
-4 Q-
6 —0-

r—OOO
L =Y
ooo

20

and therefore

[~ ] ~ 7
—0-6a+1-5a0—0"4a a/2
r=| —24a+1'00+04a | = | —qa
—3-6a—1-0a—~0-4a —5a

L _ L

in agreement with the previously given values of r. Each of the three
columns of the intermediate expressions represents obviously the r-
components of the corresponding g-coordinate. Fic. (21) illustrates in
detail the three g-modes.

Naturally, Eqgs. (97), (100) and (103) are valid for any linearly elastic
body and any number m of forces (moments) R and displacements (rota-
tions) r. The load transformation matrix takes then the form

-
By...... Biy.ooo.. Bim

B=Gl=|B, ...... By i o s B || e (108)
Buy oo Brij.inan, Bum

and is not, in general, symmetrical. However, the transformation (103),
called a congruent transformation, ensures that the flexibility matrix F, is
still symmetrical.

Attention is drawn to the dual relationship (97) and (100). Thus, if we
transform a load system R by the transformation

R=B@

the corresponding displacements r are transformed as
.............................. (109)

It is often required to find the set of forces and displacements P, p for which
all cross-flexibilities /5, (when j#h) are zero. These are, of course, the
elastic eigenmodes corresponding to the set of displacements ry to rp. The
load-displacements law is then given by

p=F»P
where F, is the diagonal matrix,

q=B'r

Sor 0 ..., 0 ...... 0
0 PO e e 0o ...... 0
F,=10 0 s Saihe siiad 0 | ... (110)
0 0 ...... " R
[ _
Thus,
p1=f,,uP1, ...... 5] p,'=fw'jpj, ...... N pm=fmm Pm . B (111)

It is always possible to find the unique load transformation matrix B,
which transforms our system R, r into the orthogonal system P, p. We do
not enter here into its detailed derivation since the reader can consult a
number of textbooks on this subject.*

Our above considerations and in particular Eqgs. (84) and (84b) show that
the flexibilities are particularly simple to derive for a statically determinate
structure, e.g. the beam of FiG. 20. For a redundant structure we must first
find the forces or stresses in the redundant members before we can obtain
the true strains e; for the unit loads. The necessary analysis is developed
later but it is helpful to give here a formal matrix derivation of the flexi-
bility F of an engineering structure, the stress distribution of which is
known. To this effect we use again the unit load method given by Eq.
(71a). We denote by e,, s, two column matrices for the true strains and
stresses respectively, corresponding to a unit load R,=1 at the point and
direction 4. Thus,

eh={Ez:zhsvvhezzhezvhevzhezzh} }

Sp= {Uzzhav V40 2280 tunO y 2h 0 22n}

where the elements of these matrices may, of course, vary with x, y, z.
It is always possible to write

er=TySh (113)

where fy is the flexibility matrix of a unit cube at the point x, y, z. Thus for
an isotropic body

* Sce Frazer, Duncan, Collar, loc. ¢it. Zurmuehl, loc. cit.



r 1
\/E —v/E —v/[EO 0 0 \
| —v/E 1JE —v/EO O O
fy=| —v/iE —v/[E 1EO 0 0 | ...o.... (114)
0 0 0 1y¢go 0 |
0 0 0 0 1/GO |
0 0 0o 0 0 /G

e !
Let also §; be a column matrix for any statically equivalent stress system
corresponding to a unit load R;=1 at the point and direction j. Thus,
SJ': {a-.c.riawiazz:‘a’:w‘a“iaui} ...................... (115)

For a statically determinate system only one s; system can be given—the
true one, s;. We derive now the flexibility coefficients f;, from the unit load

method as,
1 fin=]{ §,~’e,,dV=if,§,-’fysth=£ syfpsdV=1-fi, A
1 4

1 'f:'i:J §5/fysdV

Hence the total flexibility matrix F for m points and directions is,

F=[fa]=[8TpsdV ... .o (117
14
where s, s are the partitioned row matrices .
s=[s;...... LTI S] ]

We shall apply now formula (117) to an engineering structure consisting
of any number s of simple elements joined together at their ends or bound-
aries. These elements may be plates, flanges, beams, rods, pin-jointed
trusses, etc., and take in such a structure the place of the volume element
dV in a continuum. Let the structure be subjected to the force (and/or

moment-) system
R={R,...... Ry...... S O (119)

where R; itself need not necessarily be a single force or moment but may be
a generalized force. Due to these loads the typical g member is subjected
at its ends or boundaries to a loading expressed as a column matrix 5,
whose elements are direct and shear stresses, or stress resultants, e.g.
torque, bending moment, shear force, normal force, etc. Now S, is ob-
viously linear in the R's. Thus, '
L N . P (119a)

where b, is a rectangular matrix with = columns, and corresponds, of
course, to the stress matrix s at a point (x, #, z) of a three-dimensional
continuum. If our structure Is redundant b, cannot be determined by
statics alone. However, for the present we assume that b, is known. It is
obvious that the relative displacements (shear angle, elongation, deflexion,
slope, twist, etc.) v, at the ends or boundaries of the g element can be
written as a column matrix

V=S, =Fb,R . (120

where f,, is the flexibility matrix of the g elemznt and has as many rows as
v,. Each element being assumed to have a simple geometry it is usually
casy to write down—often merely by inspection—the matrix f,. Since
there are, in general, alternative but equivalent ways of expressing the
loading S, on the element, there are also correspondingly alternative
expressions for the flexibility f,. This aspect is elaborated on in an example
at the end of our main argument. Note that f, represents all deformations
that are necessary to ensure the compatibility of the g element within the
complete structure.

The internal stress and deformation matrix of the aggregate structure
may now be expressed as

S=(S.Sp...... S, . ... S)=bR  ....eii.... (121
V={¥¥p ... .. L 22N vi=fbR .............. (122)
where S and v are single column partitioned matrices and
— iy ~ — —
b, f, o..... o ..... [
b, o f,..... o ..... o
|
b= |b, f-lo o0..... £, o | i, (123)
b, o o..... 0 inia: f.
L L _i
* The usual presentation of the strain and stress matrix as 2 3 > 3 square w IX 04 wnsor is ned e
ble for our derations herc. See aiso Sectivn v There too attention is drawn to the faci
that il need only be d ined in the most suitabl ically determinate svstem.
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The matrix b has submatrices with m columns. f is a partitioned diagonal
matrix whose elements are the flexibility matrices f,.

We denote now by b a matrix whose m columns are loading systems on
the s members statically equivalent to the external loads R, =1, R,=1,
..... , R..=1 respectively. If we choose these systems to be also elastically
compatible then, of course,

B=b i (124)

Applying now the unit load method and using Eq. (122) and ths transpose
matrix b’ we find by an argument similar to that leading to Eq. (117)
that the deflexions r at the points of application and in the directions of the
loads R are given by

r=bfbR uuicssmwvsasnmmasom e (125)

Therefore the flexibility matrix F for the prescribed m directions in the
complete structure is

F=bfb .. ... ... ... (126)

The matrix operations in (126) are again congruent and thus F is indeed
symmetrical. Egs. (123) show that Eq. (126) can also be written in the form

F=3,b' b, i " (126a)
Eq. (126) is the general expression for obtaining the flexibility of a
complete structure from the flexibilities of the constituent elements. The
configuration of the elements is said to be in series since the assembly con-
dition is expressed by the matrix b which derives from conditions of
equilibrium. Thus, Eq. (126) may be regarded as the most general formula-
tion of the flexibility matrix of a structure consisting of elastic elements in
series.

1t is also clear why Eq. (103) for the flexibility matrix ol generalized
forces has the same form as Eq. (126). In the first case we derive general-
ized forces from single forces and in the second internal forces from ex-
ternal forces but in both cases this entails a linear transformation matrix
B or b. Note also that F is in the first instance the flexibility matrix of the
complete structure for the single forces and f in the second instance the
flexibility matrix of the individual elements. It is seen, however. that
whereas B is always a square matrix b is, in general, rectangular.

Before illustrating the application of Eq. (126) we draw attention to an
interesting dual relationship (see also p. 20). Thus, Egs. (121) and (125)
prove that if the internal loads S are derived from the external load system
R with the relationship

S=BR it (121)

the deflexions r at the points of application of the R-loads are found from
the internal relative displacements (strains) v from the relationship

r=bv=bv e (125a)

Naturally, Eq. (125a) merely restates the unit load theorem. We stress
again the fact that b need only be the matrix of statically equivalent stress
systems.

Hlustration of Eq. (126).

We observe first that Eq. (126) includes as a particular case Eq. (92)
for the splitting of a flexibility matrix. This may be seen as follows.
Splitting the flexibility matrix is equivalent to considering the combined
effect of two or more geometrically identical structures (elements) to each
of which is assigned only part of the complete flexibility of the structure
(e.z. flexibility in bending or shear, or normal force). Thus, the constituent
elements are in this case geometrically identical and hence the load trans-
ference matrices b, etc. are merely unit matrices I. If then, flexibilities of
each of the elements are written as f,, f, etc., we find

f, 0..... O Wil o |
o fy..... O ..... o 1
T — ] {0 0.cfyon... o i
0o 0..... o....:f, 1
[ I

=f,+f+ ... A, +. 0+ (127)

g.e.d. The order of the unit matrices and the f matrices is 1, the number of
assigned directions in the structure.

Consider next a beam built-up by two uniform component beams @ and b
as shown in FIG. 22. We seek the fexibility matrix for the transverse forces
R,, R, and moments Ry, R, under the assumption that the E.T.B. holds
and shear deflexions are negligible. We analyse first each beam separately
as a cantilever built-in at the L.H.S. and subjected to transverse force and
bending moment at the tip, the signs of which are taken to be those of the
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Fig. 22.—Break-down of eantilever for calculation of flexibility matrix

corresponding +§ (shear force in the beam) and + M (bending moment in
the beam). The tip deflexion and slope are fixed as positive if they are in the
direction of the positive applied shear and end moment respectively. With
this sign convention,

SBu=R1+R3
Mg,=—Ry—R,—Ryl, M= —R,

The loading matrices S, and S, of the two elements are accordingly
So={SpaMpat=b.{R, Ry Ry R;}=b,R ]

Scs=Ry 1

sh={S(v;,M(,~,,}=b,,{R1 Ry, Ry R;}=b,R

where
I ] r 1
I 0 1 0 ‘ 001 O
b,= b= | (130)
0 —-1 =/ —1 |000 —1
L _ [ _J
and hence
7]
b,
b= ‘ .......................... (130a)
b, |
Lo=ld
The flexibility matrices f,, f, follow immediately from FiG. (22),
A
P 72|
‘ 3% —5¢
w b= P B PR (131)
|2t |
L |
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where

Bon=(G7 )y oo (132)

gives the flexibility per unit length of the cantilevers. The negative sign in
the cross-flexibilities arises from the sign convention. The total flexibility
follows as

Applying now Eq. (126) the flexibility F of the complete structure is
F=bfb=b’f.b,+b’f,b, ........... ... ... .. . .. .. (133)

In the present case b=b since the system is statically determinate. The

deformations of the structure may finally be obtained from
r=FR ... . 87

The expressions for the deflexions r, and ry derived from Eq. (133) agree
with those of Eq. (86) when the shear deformations are neglected.

An alternative approach to the problem is to express the loading on the
component beam by the end moments (see FiIG. 22b). The internal loading
matrix is now,

B 1

7 Mya

S,= |Se| - [ My |=bR ... (134)
S, | Mgy
L | M, [

where

- 7]
Lo =1 =l +1) —1]

b~ | O 7} ;j: }! .................... (135)
| 0 0 0 L
L ]

The internal flexibilities f, and f, derive in this case solely from the end
bending moments and to find them we have to consider only the end slopes
of the simply supported beams shown in FIG. 22b: thus, taking end slopes
positive in the direction of positive moments we find

F[ I_I
|§¢ &
fla.b=! P B ICRLIILEPTITIEPPPRITRIS (136)
|5 5|
L |
Hence,
F=b/fib, (137)
where,
[~ I
fia o |
fi= [ (136a)
[0 fin |
L _

It is easily seen that the flexibility matrix F of Eq. (137) is identical with
that of (133). We observe that the cantilever position of the constituent
elements is derived merely by a rigid body rotation from the simply sup-
ported beams shown in FiG. 22b. No additional total virtual work is asso-
ciated with such a linear transformation and the flexibility F is, hence the
same.

The form (136) of the flexibility of the element is important for it applies
to a linear variation of any deforming stress, force or moment as long as
we substitute for ¢ the appropriate unit flexibility. Thus, for a normal force
varying linearly in a beam with constant direct stiffness £A4. we can use
Eq. (136) with=1/EA.

B. Stiffnesses
We return now to Eqs. (87) and solve them for R, to R, to find
equations of the type

Ry=hkyri+kyre+...... ks Fhpntw )
Ry=koyri+koato+...... Fhorst o Fhgurn |
_________________________ 138
Ry=kyritkpra+...... e 0T o I bk st % ({IE)
Ry =Kty Kuarat .. .. .. Fhuta. i, +& it l

The coefficients &;; and &, are known as direct- and cross-stiffnesses in
the directions of the selected m displacements. In fact, it follows directly
from Eqs. (138) that the general stiffness &, is the force (or moment)
applied in the direction j il we displace the body by r,=1 whilst keeping
the remaining (m —1) r's at zero. Using matrix notation the solution (138)
of Egs. (87) may be written as

R-F-lr=Kr ... . (139)



where R and r are the column matrices defined by Egs. (90) and K is the
m X m stiffness matrix

-

Kigevnonn Koo oo kpw |
K= |ky...... ksse oo, L (140)

| kml kmi ------ k,,,,,,

_J
The stiffness matrix may be determined either directly or from the identity
K=F-1 (140a)
by inversion of the flexibility matrix F. Eq. (140a) shows that K is sym-

metrical, 1.e.

.3 B (141)

This may be seen also as follows :

Let o/, ¢/ and ¢®, €* be the stresses and strains corresponding to unit dis-
placements r;=1 and r,=1 respectively while all other r displacements are
kept at zero. Applying now the principle of virtual work or displacements
to the true state j (4) and virtual state /() we obtain

L kp=[oredV=[gietdV =1 k,,
v 14

Where o*¢ etc. stands for an expression analogous to Eq. (84a). This
application of the prnciple of virtual displacements, by an obvipus
analogy with Eq. 84, is called the ‘unit displacement method”.

We remarked on page 19 that the direct- or cross-flexibilities depend
for a given structure only on the points and directions to which they refer.
This is not so for the stiffnesses which by definition depend on the complete
set of points and directions selected to describe the stiffness of the body.
Thus, if we choose an additional direction m-+1 to augment our descrip-
tion of the elastic behaviour of the structure all the original &, will in
general change whilst the f;, remain unaffected.,

Consider again now the example of Fig. 20. A study of Egs. (86) and
(140a) shows that the stiffnzsses &,, corresponding to unit deflexions at
B, C and D are considerably more complicated than the expressions for
the flexibilities. However, this is not always the case. Naturally, we can
calculate the stiffnesses directly. For example, the k,; may be obtained by
analysing a continuous beam built-in at A and simply supported at B, C
and D at which last support there is a fixed ‘give” of unity. We may solve
this thrice redundant problem either with the three-moment equation or
by the slope-deflexion method.

Assume now that not only transverse forces but also moments are
applied at the junctions of the component beams and at the tip (F1G. 23).
To simplify the argument we ignore, moreover. the effect of shear deform-
ability. The modes and stiffnesses corresponding to unit displacements in
the directions, 1, 2, 3, 4 can now be determined very easily. For example,
for the modes ;=1 and r; =yl shown in fi6. 23 we find respectively,

EI El El |
’<u='2(ﬁ)"+‘2(ﬁ b 0 Km= "Z(W).. ‘
El EI El L """ (149
kg = _6(ﬁ u+6(—/_2_ b Ky - 6(—/? o JI
EIl Ef 3
k“=4(7)b ’ k24=2(7)b i
................ (144)

El El
k14=6<72 b’ k34=_6<ﬁ b

The important point about this example is that it shows how easy the
determination of the stiffnesses can be osnce we consider all possible modes
of deformation of joints connecting simple component elements of a structure.
Another example will help to clarify the argument further. Consider the
symmztrical framework of FiG. 24 and assume that we seek the flexibility
or stiffness at the central point 2 for vertical displacements. In the first
case we must solve a thrice redundant problem and in the second a four
times redundant problem with a central unit “give’. If, on the other hand,
we select the complete set of stiffnesses corresponding to vertical and hori-
zontal displacements at all movable joints then the calculations are most
simple. In fact, for the typical cases shown in FiG. 24 we find by inspection,
Kp

K | Kaf B2
k2.2=7+27(3) ’ .'km:—;,

K4 ha v, - KafIN\?
k7.2=—k11-2=71”72 , ks.zzklz.z:"_ﬁd(ﬁ

|

|

|
kl.z:ka.z:/‘5.2=k6.2=k9.2=k10.2=0 |l

and, > .. (145)
Ke  Kefa@\2

k1.1=2;+274(3) s k5.1=k91=—; ’

|

wy ha

Kafa\?
k7'1=ku'1=7’(3) , ks-lr_km.l:ﬁ(—/? |

k2.1=k3.1=k4.1=k5.1=k10.1:0 J
where
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Fig. 23.—Stiffnesses of a cantilever

is the stiffness per unit length of a bar.

The stiffnesses at a point associated with the unit displacements at the
same point are, in fact, already derived by the method of virtual displace-
ments in Example 56 where they appear as the coefficients to the displace-
ments u, v. Naturally, the problem of deriving the single stiffness Koo at
the point 2 from the set (145) still remains. A general method for solving

Btevem

untt  stiftness of all horizontal bars Yo

Unit shffmess of all vertical bars K,
Unit shitfness of all diagonal bars Ky

Fig. 24.—Stiffnesses of pin-jointed framework
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this and refated problems i given further below. It is characteristic that
the direct calculation of the flexibilities corresponding to (145) is us com-
plicated 4s that for the single flexibility at 2.

In both examples we see that the stifinesses are determined most straight-
forwardly, in fact, practically by inspection, once we find the set of unit
deformations for which it is simple to calculate the strains and hence
stresses and forces, The advantage of first deriving the stiffnesses may be
particularly marked in highly redundant structures but it requires, as the
example of FIG. 24 shows, the consideration of many degrees of freedom
which may also have its disadvantages. On the other hand flexibilities are
always easier 1o calculate if the stresses corresponding to unit forces can be
found without difficulty as in statically determinate structures.

We gave in Eq. (142) a general formula for the determination of the
stiffnesses. Let us consider it again in more detail. Observing first that,
while o/ and ¢* must be the true stresses corresponding to ri=1and ry=1
respectively, the strains € and ¢ need only be virtual strains & and &
(i.e., compatible but not necessarily statically consistent strains*). corres-
ponding to ry=1 and r;=1 respectively: this may contribute to a con-
siderable simplification of the calculations. However, the actual practical
use of Egs. (142) rewritten here in the form

/\'jjsziEidV 1
. v U (146)
kp=Jot&dV = [a &V =k, J
v 4

is somewhat limited. This follows from the previous discussion which
shows that stiffnesses are best found either by considering all possible
degrees of freedom at the joints, in which case the determination of the
ks is usually performed by inspection, or by inverting the flexibility
matrix F. Moreover, even if we calculate the stiffnesses & for a restricted
total number of degrees of freedom at the joints (e.g. example of fiG. 20)
Egs. (146) are really superfluous. Thus, in the example of FiG. 20 we have
to find the true stresses o fur a four times redundant structure, the analysis
of which includes the derivation of the forces &y, and the use of Eq. (146)
is hence unnecessary. Nevertheless, Eq. 146 is of considerable value when
the elements into which the structure is broken down are characterized,
not by simple loading systems (e.g. beam elements or bars) for which
the k's are determinable by inspection, but by simple (assumed) dis-
placement patterns. An example of this application is given in D of this
section. Also given later is the matrix formulation of Eq. 142, which is
most useful in practical cases.

We now find a generalization of the concept of stiffness corresponding
to the generalized flexibility given on page 19. Thus, following the argu-
ment there we introduce the generalized displacements q and forces @
defined by

r- Aq
where
A=G{=(B-ly .. ... ... (147a)
see also Egs. (96), (97) and (100). Substituting the expressions for r and R
in Eq. (139) we find immediately

Q=K. q ..o (148)

K=AKA ... ... . (149)
is the generalized stiffness corresponding to the m generalized displace-
ments g;. Eq. (149) may naturally also be derived by inversion from Eq.

(103), i.e.

Ke=(F) (149a)
The particular linear transformation B (or the corresponding matrix A)
which reduces the cross-flexibilities £;, to zero nullifies also the correspond-
ing cross-stiffness &,,. In fact, we obtain from Eq. (109)

where

P=K,p ... (150)
where K, is the diagonal matrix
[/ 50N ¢ I 0 ...... 0
0 hpgooonn.. 0 ...... 0
K,= S (151)
0 0 ..... Kthoinwinen 0
0 0 ...... (1 S K i
and -
1 I 1 1
kg = o Ko =pae oo K R ATEREERE s Kpmm -
.................... (152)

* Sce Section 4.
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Fig. 25.—Generalized displacement and forces

We illustrate now in FiG. (25) the application of formulae (147)-(149)
on the simple example of F1G. (21) and for the same load transformation
matrix B of Eq. (105), but seek here the components of forces correspond-
ing to a generalized displacement

g2=1
The displacement transformation matrix A of Eq. (147a) is given by Eq.
(107)

Hence
r-Aq=A{010}={06 0:4 —0-4

The generalized stiffness matrix K, is best obtained by inversion of F, in

Eq. (106) and is

i -
(| 0-0169 —0-00615 -0-117 |
K,,=—‘ —0:00615 0-548 0-406 | .......... (106a)
“ —o0-117 0-406 0-218 |
L _

where a is given by Eq. (104a). Hence,
Q:quzKa{O 1 0}

or
Q=}1{—0-00615 0-548 0-406}

We analyse finally the generalized forces Q in their R-components. From
Eq. (97) or (147)

r 1
| |o 1 | | —0-00615 |
R=B@=-1!1 05 —1] ]| 0-548 |
Sl ~0:50-S| | 0406 |
I 4o _l

I_ 1 r 71

1 | 0 ~+0-548 4+0-406 I +0:954/a |
R--| —0:006 +0-274 —0-406 | = | —0-138/a |
@] —0-006 —0-274 +-0-203 | | —0:077/a !

L L _

Each of the three columns of the intermediate expression represents ob-
viously the R components of Q,, Qg Q4 respectively. We can check now
the previously given result for r from
r=FR
where F is given in Eq. (104).
Next we derive a general formula for the stiffness K of a structure con-
sisting of a finite number of simple elements. The expression given is the
matrix formulation of Egs. (146) and corresponds to the flexibility matrix



F of Eq. (126). Since the analysis follows closely the arguments on page 21
we need present here only the outlines of the proof,

Consider again an assembly of s structural elements joined together
at their ends or boundaries. m displacements r are selected to describe the
stiffness K of the complete structure. Let k, be the stiffness matrix of the £
element due to the characteristic strains of the element arising from the
displacements v, at the boundaries. Naturally, there are usually several
different but equivalent possible ways of expressing the straining of the
element. Let a, be the matrix, in general rectangular, which transforms the
displacements r into the true strains v, of the element. i.e.

Vo=
Then

S,- vYg = K,ay (154)
is the matrix for the forces (moments, etc.) applied on the element due to
the displacements r. The internal force (or stress) matrix S of the aggregate
structure is now given by

S=kar ... (155)
where
S={S,S,...... S,...... S (156)
and
a={a,a,...... a,...... at (157)
k is the symmetrical diagonal partitioned matrix, -
- =
k., o ...... O HEFHEE o
o ky, ...... O i s o
k=| (158)
o o ...... oo o
o 0 ...... [ k,
_

Applying now the principle of virtual work, taking the internal forces S
and external forces R as the true state and selecting as virtual state the

internal strains corresponding to unit displacements =1, rg=l,...... s
rm= 1 respectively we find -,
R=akar ... ................... ... (159)

where a’ is the transpose of a. Thus, the stiffness matrix K of the compound
structure is
K=a’ka
Eq. (160) may also be written as
K=2a’k,a,
7]

Since the virtual strains need only satisfy the compatibility but not neces-
sarily the equilibrium conditions we may select for the virtual states a
simpler matrix a which satisfies only the former. Eq. (160) becomes then

K=aka . .......................... (1606)

However, the application of a possibly simplified matrix a is really not
required in practice. As mentioned on page 23 the stiffness matrix K is
best calculated for all degrees of freedom at the joints, yielding very simple
matrices.

The configuration of the elements of the compound structure is said to
be in parallel in Eq. (160) since the assembly condition is expressed by the
matrix a which derives from conditions of compatibility. Thus Eq. (160)
may be regarded as the most general formulation of the stiffness matrix
Sfor a structure with constituent elements in parallel. Tt is immediately
apparent why Eq. (149) which expresses the stiffness matrix for generalized
displacements must have the same form as Eq. (160). In the first case we
derive generalized displacements from single displacements and in the
second, internal strains from external displacements. In both applications
this entails a linear transformation matrix which, however, is a square
matrix in the former case. Also K is the stiffness of the complete structure
for the single displacements while k is the stiffness matrix of the individual
members.

Egs. (153) and (159) show that there is a most illuminating parallel
development to Egs. (121) and (125a). Thus, if the internal relative dis-
placements (strains) v derive from the external displacements r with the
relationship

VAl e e (153a)

Then the external forces R derive from the internal forces (stresses) S with

the relationship
R=a'S=a'S..........................

TABLE |
Duality of Force and Displacement Methods
(it is always possible to substitute a, b for 3, b respectively)

e it 80 R NI AU TR

Method of Forces Methoed of Displacements
Fv.m:t:'l R Displacement r
Flexibility F FK= KF Stiffness K
Displacement r Force R
Generalized Force Q |Generalized Displacement
R=BQ r=Aq
'S i
| |
4 ? ’ i
Generalized  Flexibility A B =I= BA Generalized Stitfness
’ ] [ ’
F.=BFB [|FK=I1=KF K= A KA
i v
Generalized Displacement Generalized Force
!
q:B'r:EQ Q:AR=qu

(for stresses S)

Flexibilily of complete structure

Generalized Series Assembly Generalized Parallel Assembly
Stress on elements S Strain  of elements v
S = bR v=ar
Strain of elemenis \ Stress on elements S
= bv R=&$
Flexibility of elements f Stiftness of elements k

(for strains V)

Stiffness of complete structure

— -
F=Dbfb K = 3ka
Addition of Flexibililies Addition ot Stiftnesses
(Special series assembly) (Special  parallel assembdiy)

ol rgia '/g ngd 7 @ _____ -
F. + E = F

. L]

K. +'1/K, =1 K

Before illustrating applications of Eq. (160) we draw attention to the
by now all too apparent complete parallel between the flexibility and
stiffness approach in the analysis of structures. We may express this con-
cisely by the tabular arrangement under the two headings: ‘Methods of
Forces’ and ‘Method of Displacements’,

The analogy between the two methods is developed considerably in
what follows and is shown in greater detail in TABLE 11

Ilustrations to Eq. (160).

Consider the beams I and II of r1G. (26) joined by inextensional bars
which connect the set of points B, C, D and B’, C*, D respectively, Let

and K;; be the stifiness matrices of the upper and |

defined for vertical displacements ry, ry and rg, From the definition of
stiffness it follows immediately that the stiffness K for the displacements
I, rg and ry in the compound structure is given by

K=K;+K;,

K;

ower beam respectively

the

. (161)

This simple result may also be derived from the general Eq. (160). For in
this special case the joint displacements r ete. of the complete structure
and the straining displacements v; and v;; of the component beams are

the same. Thus,
vy=a,r,
where

and

We conclude,

-
100
a;=a,=I= 8 (]) (1)
i
1

......................... (
........................ (1
|4|7
, | =K, +K;; ........ (16
L
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Fig. 26.—Parallel combination of cantilever. Addition of stiffnesses ~

Eq. (161) applies to any compound structure in which the stiffnesses are
defined for at least all common degrees of freedom associated with the
joining of structures I and II. Thus, in the example of FiG, (26) the common
degrees of freedom are the vertical displacements o ry and r;. Formula
(161) is, howaver, still true if we define the stiffnesses of the upper beam
and the complete structure for both the vertical displacements r,, ry and
rsand the slopes ry, ry, rg. Then K; can be calculated by the methods given
previously. K, is still only definable for vertical displacement, the corre-
sponding entries associated with r,, r, and r'y being zero. Naturally, we can
define the stiffness matrix K and say K, for points not connected to /1.
Again the corresponding terms of K, are zero. FiG. (27) shows the joining
of two arbitrary structures to give K=K;+K;;. Note that at a joint point
like (2) we must define the stiffnesses for two displacements, say the x and
y-directions.

Formula (161) may, of course, also be applied in obtaining the stiffness
matrix of the compound cantilever consisting of elements « and b, FrG.
(23). Again, we must define the stiffness for all common deflexions and
slopes at the joints, assuming the E.T.B. to be true and the shear deflexions
zero. The total stiffness K is then

K=K, +K, ................. e (1616)

where the elements of the split matrices may be found from Egs. (143)
and (144) for the displacements ry and ry and similar equations for ry and
rz. Thus,

B EI ET B
IZﬁ 0 _6F 0
0 0 O 0
K= | ° 5 7 Y% (164)
EI Er |
—6’13 0 4—/ 0 II
0 0 o [V
— —J a
ET EI El EI—'
IZﬁ —121—3 6'1—2‘ Gﬁ
EI EI El El
Ky=| B 12 6 -6 (164a)
EI El ET EI
6 —6E 47 27
EI El El EI
6-1-2‘ —6‘[—2 ZT 47
L s

where the columns and rows refer to displacements ry, ry, ry, 7, respectively,
Formula (1614) may be generalized for any numbers of component
beams, and for any structure in which the joint displacements r express
also the straining displacements v of the elements (i.e. a=1). In such cases
the stiffness matrix K can be written ]

K=K, +K,+...... +K, 4. ... .. +KeoooLL (165)
Note that the only non-zero coefficients in K, are the stiffnesses & corre-
sponding to the displacements at the ends or boundaries of the g-element.

The flexibility matrix F corresponding to (165) is
F=K—1=(K4+Kh'+ ------ +K.~)—1=(Fa_1+Fb—l+ ------ +Fs—1)-1(166)
The parallel between the displacement and force method is underlined
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Fig. 27.—Addition of stiffnesses for arbitrary structures

further by comparison of Egs. (92) and (161). The first shows the case of
additive partial flexibilities for series assembly and the second, the case of
additive partial stiffnesses for parallel assembly. A very simple application
of Eq. (160) is given by the pin-jointed framework shown in F1G. 12 of
e_xamip{re StI)" Thus, the stiffness k, of the bar corresponding to unit elonga-
tion Al,=1 is,

where x, =(EA), is the stiffness per unit length of the rth component bar.
The transformation matrix a, for displacements in the x- and y-directions

is,
a,=[cos 6, sin 0,] .................... (168)
Hence
a={aa,...,. Ay i N (168a)
and
[ “l
P . 0 ... 0
0 wglly.iO ol 0
K=a’|0 O ivew Kellows o 0 a
0 0 ... 0 vreiknll, |
= _
[~ ] [~ ]
Z:,i’ cos® 8, Z;& cos 8, sin 8, ,' koy ko #
K= : § | = [ e, (169)
2/& cos b, sin 6, Z? sin? §, ‘ kys k.,
L [ |

in agreement with Eq. (67).

We mentioned previously that the simplest method of calculating stiff-
nesses is to define them for as many degrees of freedom as are necessary
to obtain simple deformation patterns of the elements of the structure.
Having calculated such a stiffness matrix it will become necessary to
‘condense’ it—i.e. to refer it to the smaller number of displacements in
which we may be interested. This changes, of course, all the stiffness
coefficients, but the necessary analysis is easily arranged in matrix form
for automatic computation. Let the original stiffness matrix be of the order
m xmand denoted by K,. We want to find the matrix K referred to p-direc-
tions only, where p<m. We have,

R=K,r
where
R={R,...... RyRppy ool Ra}={R; R/} 3
> (17D
r={r...... Fulppg oo ean ra} ={r; r;) J

in which we write first the p-directions required for the condensed matrix
K. K, may be expressed as a partitioned matrix as follows,

* See p. 10.



[ ,
K, Kyl
Ko==| (172)
| Kir Ky |
_ _
where K, and K, are square matrices of order p and m-p respectively.
Eq. (170) can now be transformed to

R, =K;r;+K';yyry; )

Ry=Kpri+Kp
Also, by definition, in the structure with stiffness defined in p directions
only

R, = Kr, |
R PP ] (173a)
R; =0 i
Putting R;;=0 in Eq. (173) and eliminating r,; we find
Ry=(K;—~ K Ky e, i (174)
and hence comparing with Eq. (173q)
K=Ky =Ky Ky Ky (175

Eq. (175) gives naturally the solution to the particular problem of FiG. (24)
discussed on page 23. Another example illustrating the application of
Eq. (175) is discussed under D of this Section. <

The above method, is, of course, the basis of the solution of partly
homogeneous equations. A parallel relationship exists also in the “force-
method’ investigation of structures. Thus, in this case, we have to find the
flexibility F of a redundant structure in which we know the flexibility F, of
the basic structure. The analysis is given under C below.

C. The Calculation of Redundant Structures by the Force-Method

We develop now a generalization of the Mueller-Breslau®* technique
for the calculation of linearly elastic redundant structures. Following
our investigations under (A) we could easily formulate immediately the
complete analysis in matrix notation. However, since the basic ideas do
not appear to be generally known we think it preferable to develop them
first in the more standard form.

Consider a structure subject to arbitrary external loads R, temperature
strains «® and any other initial strains 7. We assume that the system has #
internal or external redundancies .

Xy Xy oo D X,

which may be stresses, forces, moments or linear combinations ol such
(generalized forces). By including the supporting body—assumed rigid—
in our structure we can denote all redundancies as internal. The stress
distribution in the body remains statically indeterminate until an elastic
analysisyields the nunknown Xs. If, irrespective of compatibility we assume
the X; to be zero, we obtain the ‘basic’ (principal or null) system which is
statically determinate. This procedure of obtaining the basic structure
may somstimes be identified with the process of an actual physical cut of
redundant members (e.g. of bars in a redundant pin-jointed framework).
However, the simple idea of a cut is not always applicable to continuous
structures typical of aircraft. We discuss this point later but for the sake
of linguistic simplicity continue to use the expression ‘cut redundancy’.
Let the stress-system in the basic system be denoted by
Ty

It must obviously be in equilibrium with the applied loads. We describe
it as a ‘statically equivalent stress system’, thus drawing attention to the

fact that in its determination only statical conditions enter. We find also
in the basic structure the stress systems

due to
Xi=1, Xo=1, ...... , Xi=1, ... ... , X, =1

respectively. The systems 01,09 cunnn. s Oy vvean. , 0, are obviously self-
equilibrating. Since our structure is by definition linearly elastic the true
stresses ¢ in the uncut original structure can be expressed as
O 0o +20 X (176)
=1
Similar equations may be written down for stress resultants (forces or
moments). Thus, the problem reduces to the determination of the X’s,
which as already mentioned, need not be simple forces or moments but can
be linear combinations of such (generalized forces).
The Equations in the unknown X.
We define the following set of deformations in the basic system.
So Relative movement of ends of cut ith redundancy due to all
external causes, i.e. loads, temperature changes, lack of fit, ‘give’
at the supports, etc.: i=1 to n.
81x=38; relative movement of ends of cut ith (kth) redundancy due to the
self-equilibrating load system X,=1 (X,=1): i and k take values
| to n. The 8-coefficients are taken positive il the relative move-
ments are in the positive direction of the X's.

* See also footnote, p. 17.

' a, I a,
L = a ~— | b

_ Force applied to support - D(“ﬂ)
by struclure due 1o X1 1. a,

Excess length of typical bar
over correct length |

N, = Tension in same bar due to Xal

Contribution to §,, due to give A at

support C and excess lengths Al of bars = 64 '.?..”‘“

Fig. 28.—Singly redundant, pin-jointed framework. Contribution tu St
from sinking or ‘give’ of support and excess lengths of bars

The §,, are, of course, the influence or flexibility coefficients of the basic
structure for the directions of the redundant forces. We use here the symbol
3 for these flexibilities since it is standard in the literature. To calculate the
8's we apply the unit load method of Section 6D.

Thus, using again the abbreviations

C€E=0,1r€pr +. o v .. +0,.€,, } Q)
07] =0 2Nz Taan.: +a'zx7]z: ..............
we find from Eq. (71a),
Sin= fode,AndV o (177
v
Sii=JoedV, 8= o€ dV = JoredV=8i ................ (178)
1 v v

where o, €; (o), €) are the stresses and strains corresponding to X;=1
(X,=1) and o,, €, are the stresses and strains due to the applied loads.
Eqgs. (178) reproduce, of course, merely Egs. (84) for the flexibility co-
efficients. The total initial strains 7 imposed upon the basic system may be
separated into thermal and other strains

Nee=00 FNezor oo v e e B P P (179)
where 7., etc. are initial strains due to say lack of fit, ‘give" at the supports.
The effect of the latter upon &,, is best considered separately and expressed
in terms of the imposed changes of length (rotations) and ‘gives’. Consider,
for example, the singly redundant framework of FiG. (28) and assume that
the manufactured length of the bars exceeds the correct length / by Al Let
also each bar be subjected to a different thermal straining a(®. We assume
furthermore that the intermediate support gives or sinks by the amount A.
As redundancy we select the force X, in the bar (1, 2) and denote by N,
and M the (tension) forces in the bars of the basic system due to the applie:
loadsand X, =1 respectively. The loading case X, =1, with the correspond-
ing force applied to support C by the structure is shown in FiG. (28).

We find immediately

2
811:21:/1_15[ ............................ (180)
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Applying now the unit load method to the state X;=1 and the true total
strains (e,+7) and displacements in the basic system we derive (see FIG.
(28) and Eq. (71a)),

SN, N, h a
1810 =ZNy(e, +mI =31 1+§:Nl(a(-)/+A1)+a(l+5)A .. (18D)

Naturally, we can alternatively deduce by kinematical reasoning the con-
tribution to 8y, of the initial elongatiops a® and A/ and the ‘give’ A.
However, the unit load method yields the results much more conveniently
and systematically.

More general formulae for the § -coefficients are given further below.

The condition of consistent deformations at the cut ends of the n re-
dundancies in the actual structure or application of the unit load method
yields the following # equations in the # unknown Y.

SnXi+d.X, +...... +3. X+ . ... +08,, X, +8,4=0
Xy +8uy +. o A8 X+ ... +850 X +83=0
duX +8uX, +...... +ouXi+. .. ... +8in Xa+8,p=0
8 Xy +8 X+, ..., 08Xt ... F8aXa+8,0=0 .. (182)

The solution of these equations determines the X and hence also the total
stress distribution after substitution into Eqgs. (176) -

To solve Eqgs. (182) by elimination* is particularly simple when they are
of the three-momznt or five moment type; see for example the tube analysis
in Section 9(b). In general, however, all unknowns may appear in each
equation and we need a systematic and mnemonic method for the deter-
mination of the .. The most convenient mathod for this purpose is the
shortened elimination process of Gausst (known also as Gaussian al-
gorithm). This method is so well known that we need not discuss its
formulation in the present ‘long-hand’ notation but may use immediately
the matrix notation. Accordingly, we write the system of Eqgs. (182) in
the form

DX+Dy=0 .......ooooiiii, (182a)
where D is the symmetrical square matrix of the §,.-cocfficients, D, the
column matrix of the §,,-coefficients, X the column matrix of the unknown
X:and O a zero column matrix. The Gaussian elimination process reduces
the system (182a) to

TX=T, (183)

where T is a triangular matrix, i.e. a matrix whose elements above (or
alternatively below) the principal diagonal are zero and T, is again a
column matrix. For example,

| ro
by O 0 to
P P 0 tso
LT [P —— N S 0 [, To=|ty | .. (184
L fun big
= L

The solution of Egs. (183) and

(184) is straightforward by substitution,

starting from the first of Eqgs. (183) or in matrix language it is simple to

find the inverse T-1 of T and writ
X=T-T,"
For the automatic computation tec
lar, for the punched card machi
slightly the Gaussian elimination
of D and hence also the column of
technique and we restrict here our

e
............................ (185)

hniques now available and, in particu-
nes it is usually preferable to modify
process and obtain directly the inverse
X. This method is known as the Jordan
discussion to this process.

* Naturally we may also use it ion techni
of papers.
t See: Simult

E;

but such hods are nst di. d in this series

N

National Bureau

Linear ions and the determination of the ig lues,
of Standards, Applied Math. Series 29 :;IQSJ). and O. Heck: ‘Ueb(e;r den Zeitaufwand fuer dags
a3 Anfl s Toroh

Berechnen von Determinanten und fuer

Hachsch, Darmstadi, 1946, Zurmuehl, foc. cit.
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Consider a system of n independent equations
aX=Z

.............................. (186)
where a is a square matrix and Z is a column matrix. Thus,
r -1
Ay ovinan Y ay, [
a= (@ ...... AT v viens s Qin | .............. (187)
(2 F T R {7 P Gy I
To eliminate in the first column of a all its elements but a;; and to reduce
the latter to 1 we premultiply a with the matrix
= N
Vay 0o . 0
ayfay L 0o 0
M= | —ay/ay 0........ 01 0........ 0] .... (188
—a@mlay 0................ . 0 1
L _

which square matrix has, but for the first column, unit diagonal and zero
cross-elements. We find,

| P by oo bra 1
0 by ...... IR byn
b=Ma= 1y " % 11 bi .o biw | s (187a)
0 byy...... bpi ... ban
(. ot
where
b _ Qg ,
1 =ap/a;; and b"‘_a“‘_a—u forisl ... ... ... (189)

Neg(t we eliminate the elements of the second column of b, except for &,
which we reduce to 1, by premultiplying with -

U —bufbyy O 0
[ O 0
M, = .
0 —bulby 0...0 1 o0... . 0f ....(186q)
0 —~bufby O................ 01
L _|

Y Y o — —



| —

We obtain
-
1 Cl3 cveeeeanann. |
0 1 ey ivvinnnnnn.. Con |
----- |
=0 0 ey ..., PP (187b)
----- l
0 0 cCngoveennnan... Con |
L _
where
Cox=bai/by and c,-,‘=b,-k-—b';b2" fori+2 .....o...o.... (189a)
22

The procedure will by now be clear. Thus, at the (g— 1) =f elimina-
tion step we obtain a matrix g of the form

=

where 1 is the unit matrix with f columns and © is a zero matrix With f
columns and (n—f) rows. G is a rectangular nx{n—f) matrix. For the
next step, i.e. to obtain the h matrix, we premultiply with M, which has a
' column

{—810/850— 820805 -+ - .. Vgogeovvnnnn —&nol8os) (1886)
and otherwise unit diagonal elements and zero cross-elements. The result-
ing h-matrix is of the form

QY PR, 0 hpen.. hus
0 Lo ivia 0 hz’. ...... ﬁ&n
h=Mg=| (187d)
0 O.neennn. 7 Pinm
0 O........... | S Ao
L |
where
_ _. 8xo8om
ham=8om/8es AN Higrn =gy — 5, fork+g .......... (1895)
e
and so on until the last premultiplication with
=y allan
[T
an :-—"I'FIJ’HIIII
O g,
(where | has (n—1) rows) gives
MM, ...... M,...... Ma=1 .................. (190)
Eq. (190) then yields the inverse matrix )
al=M M, ,...... Mi...... M. (19n*
From which we find our unknown
X=a"1lZ ... .. .. (192)

In practice it is usually preferable not to determine a—! explicitly but to
perform first the multiplication M, Z and continue then premultiplying to
find X directly.

It is apparent that if in the above procedure any h,, becomes zero the
elimination process cannot bz continusd. An interchange of rows is in-
dicated but this is obviously inconvenient for automatic computation.
Clearly, if

aii>>a;,
no Ax, can vanish. Moreover, the condition
L < (193)

* As a matter of interest we point out that the actual operations on the digital computer to obtain
a~! do not follow exactly the typical matrix multiplication rules as implied by formula (192).

$ = 1/EI
A5 B? T‘C ﬂ‘0
"- R ] ‘ a ‘ a ﬂ
Fa A (@)
Ix, I,
P 1 A (b)
I, X,
Y/2 Y/2
G ; (c)
~ I ]I a
K n
X, X,
5 Ale— A A @

Fig. 29.—Continuous beam. Good and bad choices of basic system and
redundancies

is necessary to avoid serious accumulation of round-off errors in the most
important digits. For if a,; <ax the limited number of digits of the machine
is not sufficient to ensure reliable computations. Thus, requirement (193)
is seen to be essential for well conditioned equations.
Our Eqgs. (186) are also ill-conditioned if two or more columns are
nearly linearly dependent, e.g.
{al.-az,- ...... Aije v oo a“.‘}&’c{alkazk ...... (27 T .ﬂ,,k} .. (194)
The one diagonal element g,, will inevitably become very small and grave
errors will again arise. Naturally, in actual structural problems two
columns could never be exactly linearly dependent for otherwise this
would indicate that we overestimated by one our number of redundancies.
Nevertheless, a bad choice of redundant forces or moments may give an
approximate linear dependence which would yield a result grossly in error.
If it is found that our initial choice of redundancies leads to an ill-
conditioned set of equations then we can always obtain more suitable
equations by introducing as unknowns appropriate linear combinations
Y of the initial unknown X. Such a transformation may bs represented
always by - - .
X=BY ... i (195)

where B is a non-singular square matrix nxn. If X are initially single
forces or moments then Y represents groups of forces or generalized forces.
Such groups of forces were first introduced by Mueller-Breslau® guided
by pure physical reasoning and this is still the best method of finding them.
Thedtransformation (195) may be introduced directly into Eqs. (186a)
yielding

DBY+D,=0
or _

DY+D=0 ... ..., (196)
where D is determin=d by matrix multiplication from

D=DB ..........iiiiiiiiiian, (196a)

Physically, Eqs. (196) express the compatibility conditions at the cuts
of the original unknowns X in terms of the new unknowns Y. If the trans-
formation matrix B is unsymmetrical then the resulting matrix will also be
unsymmetrical. Although, in general, the simple substitution of (195) into
(186) can lead to a slight improvement of ill-conditioned equations the
effect is usually small. The next obvious step is to express the compatibiity
condition (186) in terms of the generalized displacements at the cuts
corresponding to the generalized forces Y of (195). Following our dis-
cussion on generalized displacements and flexibilities on p. 19 the general-
ized compatibility equations are derived by premultiplying Eqs. (196) by

B’ as
B'DBY +B'D,=- O
or
DY+D,=0 .. ... ... (197)
where
D,=BDBand D,,=B'D, ...........c.covvvrvo... (197a)

It is evident that the column matrix Dy, and the symmetrical matrix D,
would be obtained directly by selecting ab initio the generalized forces Y
as redundancies and deriving the corresponding d;, and §,, from the
standard formulae given.

In many cases it is best, when the equations are ill conditioned, to select
a different basic system and corresponding redundancies Y. Naturally,
the latter are again statically related by a transformation matrix B with
any previous choice X of redundancies.

* Mueller-Breslau, foc. c¢it. p. 17,
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We illustrate the above considerations on ill-conditioned equations on a
very simple structural example. FiG. (29) shows a uniform, continuous
beam of three equal spans simply supported at A, B, C, D—a twice re-
dundant system. We discuss four alternative choices for the two redun-
dancies.

(@) X; and X, are taken as the reactions at the supports A and B. The
D matrix for this system is

S Oy " 24 9

a3
Dzs s, | © 9
4
g R L

A remarkably bad choice since 8;,> >3,
(b) Xy, X, taken as the reactions at the intermediate supports B and C.
Then,

-
8 7

7 8
_
Still a bad choice since all §’s are of the same order of magnitude.
(¢) Y and Y, are generalized redundancies formed from system (b) by
the transformation matrix

a’¢
p=%F

-
1 —0-5
B=| (198)
—-0-5 1
L. _J
The D, matrix may be obtained either directly or from Eq. (197a) and is
[~
3 4
a
D,,=2—4
1 4
L |

The improvement over (b) and (a) is immediately apparent.

(d) X, and X, are the bending moments at supports B and C. This
choice of unknowns is statically identical to Y; and Y, of (c), but the basic
system is different. The D matrix is

and clearly a scalar multiple of the D matrix of (c).

The final system (d) is recognized as a particular case of the well-known
Three-Moment Equation of C lapeyron. Since the basic system approxi-
mates more closely to the actual system than that of (c) it is clearly the most
suitable choice of all.

The differences between the above four systems become even more
pronounced when the number of spans is increased. Moreover, the Six-
coefficients of choices (a) and (b) tend, for a large number of spans, to
become linearly dependent.

This discussion shows how important the choice of the redundant
forces is for the convenient numerical solution of a problem. An extreme
case of simplicity is achieved if in all equations only one unknown appears.
The particular set of redundancies

le? Y27 Ya-"", Yl’v"" yn
for which this condition is satisfied is called orthogonal. Then all but the
corresponding direct influence coefficients are zero, i.e.

Can=O0ifitk ..o (199)
where we introduce the symbol { for & to emphasize the special nature of
this system. Eqs. (182) take now the simple form,
LaYitl=0fori=lton ......................_ (200)
and hence ;

i

Y.-;—g—_'f fori=ttonm..............oo . (200a)

This system Y; may always be obtained by a particular linear transforma-

tion )
X=B,Y .o (201)

However, the computations involved in determining B, are usually more
laborious than the direct solution of Egs. (182) if these are well conditioned.
Nevertheless there are structures in which it is simple and hence advan-
tageous to find the orthogonal set of redundancies. This is particularly so
if physical and not mathematical considerations indicate how to find them,

For example, this is so in arches and singly connected rings where, if
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Orthogonal redundancies

Non-orthogonal redundancies
System ¥, :=1: M1, N3 0

System Y, =1: M,= Y, N,z cosd, 5 z.sind

System ¥, =z1: M, =y, N,:=-sind, $,= -cosd

%
gu !al =] Er as

= 0 for elastic centre C.

yl
gl! s EJI B [‘E‘? ds

SV 1 1
§n= ;n= Tds Ofsin-acos'b(e—‘,-a)ds

= 0 for “principal axes” Cy,. Cy, .
Fig. 30.—Orthogonal and non-orthogonal redundancies—elastic centre of

singly connected ring

we restrict ourselves to bending deformations and assume the E.-T.B. to
hold, an orthogonal set of redundancies is obtained by referring them to
the principal axes (Cy, Cy;)of the ring neutral axis weighted with the ring
flexibility ¢=1/EI (see riG. 30). The origin C of this system which is, of
course, the centroid of the elastically weighted ring is known as the elastic
centre. The transformation matrix B relating the orthogonal set of re-
dundancies ¥ to a set X consisting of bending moment X,, normal force
X, and shear force X, at some point is in the notation of FIG. 30,

r _ _ 7
1L _  »n _ I

B=| o cos ¢ —sin §

0 —sinf —cos#h

In practice it is nearly always worthwhile to find the elastic centre and
eliminate two of the cross-flexibilities but determination of the principal
axes, unless possible by inspection, is not usually worth the trouble. A
further point is that the elastic centre concept is still valid if deformations
due to normal and shear forces are included whereas the principal axes
requirement becomes more complicated.

Interestingly enough this solution was first given by Mohr* more than
seventy years ago, but it appears not to be universally known, for otherwise
it would not have been necessary to rediscover it so many times. A more
recent derivation and application of an orthogonal set of redundancies
(in general infinite) is the system of self-equilibrating eigenloads developed
by Argyris and Dunne t for their general theory of tubes in bending and
torsion.

Farticular forms of the 8,, and 8:, coefficients

We return now to Egs. (177) and (178) for the S-coefficients and give,
following our expressions (180) and (181) for a pin-jointed framework,
some further explicit formulae for more complex structures.

Stiff-jointed plane framework. We assume the Engineers’ theory of
bending stresses to be true and introduce the special notation :
Ny S0y M, normal force, shear force, bending moment in basic system
due to applied loads.
Ni, Sty M; normal force, shear force, bending moment in basic system
due to X,=1 where i=] to n.
5 coordinate along axis of beam.
temperature at neutral line of cross-section.
A®/n  temperature gradient across depth / of beam ; positive if giving
rise to thermal bending strain of the same sign as that due to
positive bending moment M.

* 0. Mohr, Z. Architek u, Ing. Ver. Hannover, Vol. 27, 1881, p. 143, See also the generalization
and tabular presentation of this method in: J. H. Argyns P. C. . Structural Analysis
{Vol. 1 of Handbook of Aeronautics), Pitman, 1952, Table 17.1. Both the deformations due to normal

shear forces are included in the atter analysis.

t See J. H. Argyris, P. C. Dunne, ‘The General Theory’, etc., J.R.Ae.S., Vol. LI (1947), Feb.,
Sept., Nov. and Vol. LIII (1949), May, Juge.



LOADING X,z 1

LOADNG X, 3 1

N, Normal force in horizontal member due to X;=1
AA AI AD AN

Cu Cu Cp Cu

Prescribed deformation (“give”)

Force (moment), due to X, =1, acting on the element
which experiences a A, In the direction of this A

Contributions to 8, and 5, due to prescribed displacements 4
Sy ICA« LA+ 08,0 £4,404, e1a,. £a,

8t IGA LA, - (a+b)A,+ 328,414,

Fig. 31.—=9;, due to initial strains in rigid jointed frame and manufacturing
errors and ‘give’ at supports

A prescribed relative displacements (linear or angular) either
inside the structure (e.g. lack of fit) or at the supports (‘give’
of foundations).

C; force or moment in the basic system due to X;=1 acting on an
element which experiences a A in the direction of this A.

EA, GA’, EI direct, shear, bending stiffness of beam.
We deduce immediately from Eq. (178), see also Eq. (94),

N.N S.S MIM
Si= j' Tids+]ﬁds+j ET @5 wveesnensnsnnnnnnans (203)
Also from Eq. (177) or directly from the unit load method,
8= _[AL;Z °+ IN.a@ds + IM.-‘#) +ECA (204)

For pin-jointed frameworks we omit the terms involving M and S. On the
other hand in stiff-jointed frameworks we can, in general, omit the terms
involving S and often also the terms in N. F1G. (31) illustrates on a twice
redundant system how the contribution of the prescribed displacements
A to 8, is calculated. X, and X, are the chosen redundancies and 4A,, A,
A, and A, are linear or angular imposed displacements arising from errors
in the manufacture of the frame.

Two-dimensional stress distribution
We restrict ourselves here to a presentation in cartesian co-ordinates

x, y but the formulae are not restricted to stress distributions in flat plates.

They are applicable to stress-states in any curved membrane which, by

definition, does not allow for any variation of the stress over the thickness.

Hence, x, y are, in general, orthogonal curvilinear co-ordinates; for ex-

ample, in a cylindrical membrane y may be measured along the generator

and x along the periphery of the cross-section.
The following special notation applies.

AL A, prescribed direct (1) and tangential (¢) relative displacements
either inside the membrane (lack of fit of parts, slip of rivets)
or at the boundaries (‘give’ at supports).

3 distance along part which experiences A, and/or A,

x:
Xy
T
e T ]

(=]
&
.
=

"
.
=¥
e

F=71  Correct shape
Lot of panel

D Manufactured
shape of panel

X, X, X, Redundancies
A Prescribed shearing deformalion due to
incorrect manufacture
c, Shear flow, due to X,:l, acting on the element

which experiences the A, in the direction of this A

P .
e C,e0

1
A "

n 2

Contributions to 6,) due to A
h h
5., = fc,,Adg s A, By, /c,,Adg RE Y VR FEY
Fig. 32.—9;, due to initial shear strain arising from incorrect manufacture

direct and tangential forces per unit length ¢ in the basic
system due to X;=1 acting on the element which experiences
a A in the direction of this A.

t thickness.
We deduce from Eq. (178),

Criy Cui

1
ka =E‘[ J. [U'zzio'uk +0yyiCuk —WOrziTyuk +avyi0x:r,k) +2(1 +V)azvio':wk] tdxdy

Also from Eq. (177),

8|‘n =%I ]‘ I:U.:zia':zo +ovviayv0 _V(Uzzigwa +O'vv1'a::w) + 2( l +V)o':w‘0zva] ’dXdy

| [ [er+ 0 Ja®raixay+ [ [ €ttt Cu Jat

The immediate application of the above formulae is to major aircraft com-
ponents like wings and fuselages. Their matrix formulation is discussed
further below.

FiG. (32) illustrates how on a thrice redundant beam with shear carrying
web the contribution of a prescribed displacement A to §;, is calculated.
A is in this case an initial shearing displacement of a panel due to error of
manufacture.

It was assumed in all our above considerations that the basic or cut
system is statically determinate. However, nothing in the theory so far
given restricts us to such a choice. We can select in a structure with a total
number of redundancies n a statically indeterminate basic system with
(n—r)(r<n)redundancies by ‘cutting’ only r redundant members. Equations
of the type (182) can then be written down for the cut r unknowns, the
corresponding 8;.-coefficients being still defined as in our previous analysis
in the basic system. In fact, to calculate the 8;, we may apply again
Eqs. (178). Similarly, for 8,, we may use Eq. (177) if we substitute ¢, for
where ¢, is the true strain in the basic system due to the prescribed initia
strains. This modification is necessary since the basic system is now re-
dundant and the imposed initial strains % are not free to develop. However,
both formulae for 8;, and 8,, may be simplified considerably if we remem-
ber that in the unit load method from which they derive (see Eq. (71a)) only
the strains must be the true ones for the system considered—in the present
case the redundant basic system. The stresses corresponding to the unit
load may be any suitable statically equivalent stress system and may hence
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be found in the simplest statically determinate system. Thus, if we introduce
the notation

;= statically equivalent stress system in redundant basic system due
to X,'Z
we may write,
8,-,.=f&,-(e,,+e,,)dl/ .................. (177a)
v

Sii=JoicdV, 8= jocdV= fowedV=6, ................ (178a)
14 4 v

The introduction of &, instead of o, in Egs. (177) and (178) may shorten
the analysis greatly. Naturally, Eqs. (178a) are again identical with formu-
lae (93).

The above method presumes that the strains € and ¢, in the redundant
basic system are known. Such information may be available either from
previous calculations or the literature. Alternatively, we may have to
analyse first the basic system for the external loads (and'or imposed
strains) and the r X,=l| by the method given previously. From a
mathematical point of view the selection of a redundant basic system
means that we solve the problem of n equations with # unknowns in two
steps involving respectively the solution of » equations with r unknowns
and (n—r) equations with (# —r) unknowns. This method is particularly
useful if we have available information on the stress distribution of the
redundant basic system or if the number u is very high.

Consider, for example, FiG. (33) showing a fuselage ring with transverse
beam under uniform load p. The loading is equilibrated by tangential
shear flows ¢ applied by the fuselage to the ring. The structure is six times
redundant and as redundancies we select the two groups X,, Xu X; and
Xy X, Xy at the intersection of the axis of symmetry with the upper part
of the ring and the transverse beam. Due to symmetry of loading and
structure

Xy=X,=0
and hence the problem reduces to finding the remaining four redundancies.
We may solve the system by direct application of Eqs. (182), which in the
present case take the form,

811/"1*'512/"2*314/\/4""815 X5+810'_‘0 1

Oy X1 +85 Xa +8,4 Xy 8,5 X +800 =

841,\’1+3,2X._,+54,X4»~545X,-,+340:0 e (207)

3oy X 85Xy 185, 0 = 8,5 X, +85=0 I
where the 8, and 8,, are calculated with formulae (203) and (204) in which
the integrals extend over ring and transverse beam. Note that if the un-
knowns X, X,, X, are referred to the elastic centre of the ring the co-
>fficient &), vanishes. Having solved Egs. (207) we find N, S, M in the
actual structure from,

NNy NX ENp Xy =N X ANX, )

S= 8y 481X 5, X, + 5, X, 85X,

M= Mo+ M X MX, - M X MY,
where M, M, are definell on page 30. Alternatively to this standard
method we may solve the problem by cutting only the beam at the axis of
symmetry. Then the structure is only twice redundant (X, and X;) with a
basic system that is itsell twice redundant. We denote by

My Moy S,
my, n;, ;i (i=4 or 3)
the normal force, shear force and bending moment in the new basicsystem

due to p and X;=1 respectively and assume that they are known.
The stress distribution in the actual structure is then found from

M=my+mX,+m.X, 1
N=ng+n,X,+n;X; P i, (209)
S=SO+S4X4+55X5 J
The equation of compatibility in the unknowns X, and .X; are now of the
form
LaaXy+ 845 X5+ L44=0 } ................ (210)
Csaxﬁ'CsaX&"'Eso:O

where we write { instead of 8 to stress that these coefficients are different
from the corresponding §'s in Eqs. (207). To find the {’s we apply Eqgs.
(177a) and (178a) in the new basic system and remember that the virtual
stresses due to X;=| may be selected in a statically determinate system.
Thus, omitting the contributions of the normal and shear forces for
convenience of printing, we find

mm Mm m;M
Cilc=J‘T["ds?‘['_ﬁ'kdszj‘?kd‘f:Cki .......... (211)
L= [ 2o [ Moy i 212)

If, in addition, any initial strains % are imposed on our structure giv_ing
rise to moments m, in the basic system the corresponding contribution
to {;, becomes

L= P [Mrtags oo, (2124)

The effects of the normal and shear forces may be included without diffi-
culty, the terms following immediately from Eqgs. (203) and (204) and the
arguments leading to the contribution of the moments.
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Fig. 33.—Statically indeterminate basic system. Doubly connected ring

It is useful to write down the 8,; and §,, for a two-dimensional stress
distribution when the basic system-is redundant. Thus, with the definition
of &, given previously we find,

8y

E—I J [‘7,-”-0, kOO gk =G iG ke 0 40iG ) +2(1 +v)6,y.~a,,,k] tdxdy

............ (205a)
and a similar formula with o and & interchanged. Also,

| _ _ _ —
Sin=p J. J- [m i ern ™ 1T — WO 410 yun 0y iC ) +2(1 +V)0,,,.-cr,y,,] tdxdy

in ™ E
.................. (206a)

where @,,, etc., may be here not only the stresses due to external loads but
also due to the imposed initial strains 7. (Remember that the latter cannot
develop freely in the statically indeterminate basic system and give rise
to some strain-stress state €,, ¢,.)

The use of a redundant basic system arises continuously in wing theory.
Thus, following Ebner and Kdller* and Argyrisand Dunnet it is customary
in wing analysis to express the actual stresses in the form,

Lo o (213)

where the stress system o,—the choice of which is at our discretion—
satisfies both the external and internal equilibrium condition and is
therefore the statically equivalent stfess system, o, are the self-equilibrating
stress systems (in general, infinite in number), necessary to ensure external
and internal compatibility. In our present terminology o, is the basic
stress system and o. the redundant stress systems which for practical
purposes are approximated to a finite number. In fact,

FOXa=20Xs i (214)

o= X\ taX,+ . . ..
i=1

It is advantageous in the selection of the basic system o, to try and satisfy
the two, at times conflicting, requirements of simplicity and not too great
difference from the exact system o. For it is obvious that small o,-Systems
are highly desirable from both the theoretical and practical point of view.
Now for wings with not too small an aspect ratio an excellent choice for
the direct stresses of o, is given by the Engineers’ theory of bending for
beams since it combines simplicity with reasonable accuracy. If the wing
forms a single cell tube we deduce the shear stresses from the boom load
gradients, the undetermined constant of integration being found from the
overall torque equilibrium  thus, in this case the basic system o, is statically
determinate. If on the other hand the wing is an N-cell tube we see that
whereas there is still only one torque equilibrium condition there are N
undetermined constants of integration. To calculate them we must intro-
duce conditions of deformation and those are the equality of rate of twist
of all cells. Hence, our basic system is redundant, the degree of redun-
dancy being N —1. The solution to this problem is reproduced in Example
(a) of Section 9. General considerations on the calculation of the redun-
dant self-equilibrating stress systems o, are given later in this Section in
matrix form (see also Example (b) of Section 9).

The example of the tube is useful also to illustrate another point. We
stated on p. 27 that the basic structure is obtained by cutting redundant
members but mentioned that in continuous structures the idea of a physical

* Loc. cit. p. 1.
t Loc. cit. p. 30,



cut is not always applicable. Thus, in the case of the tube in the last
paragraph, when obtaining the basic stresses we do not actually cut any
redundant member but rather select the engineers’ theory of bending direct
stresses and the associated shear flows as statically equivalent to the
applied bending moment. In general, all members are found to be load
carrying. The stresses o, only exceptionally satisfy the elastic compati-
bility conditions—for example, due to warping varying parallel to the
axis of the tube and to rib deformability. We may give some physical reality
to the basic structure in which o, is true by releasing in the actual structure
the- warping restraints at every cross-section and by assuming the ribs as
rigid ; the former idealization does no doubt require a complicated mech-
anism for its realization. The idea of selecting o, as any suitable statically
equivalent stress system without reference to actual cuts may, of course,
also be applied to frameworks.

The use of a redundant basic structure is important also from a further
point of view. Consider the wing of F1G. (34) the main portion I of which is
swept and attached to some root structure II. It is assumed that the ribs
of I are taken perpendicular to a longitudinal axis approximately parallel
to the spars. The necessity may arise of investigating alternative angles of
sweep obtained merely by changing the root structure II. Thus, in FIG. (34)
we show two alternative arrangements. In such instances it is obviously
advantageous to have as much as possible of the stress analysis in common
in the two alternative calculations. To this purpose we release at the junc-
tion of I and II all redundant forces or groups of forces X, to X, appearing
there. The tube I is then connected to tube I1 by some statically determin-
ate arrangement and this new structure is taken as the basic system. The
scheme of the analysis is as follows. Analyse first Tube | for all external
forces and also for X;=1 to X,=1 respectively. This investigation in-
volves, of course, the solution of a highly redundant system. Irrespective,
however, of the form tube 11 takes the analysis of tube I remains unaffected.
Next we analyse tube 11 for the external forces (which include the statically
determinate reactions P from tube I), and also for X;=1 to X,=1 re-
spectively. Again this may involve the solution of a redundant problem.
Finally we can write down equations of the type (182) for the unknowns
X;=1to X,=1 and note that the 3-coefficients are in each case

S=8 0 v e (215)
Hence if we change structure II only 8,; but not 3, is altered—an obvious
advantage. The solution of Eqs. (182) yields ultimately the stress distribu-
tion in the actual wing.

Fig. 34.—Alternative root structures for swept-back wing. Redundant
basic systems
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ideas and methods for the calculation of redundant structures on the .

basis of forces as unknowns we now turn our attention to the Fia. (35a) shows a five times redundant structure, assumed symmetrical,
matrix formulation of the analysis. Consider a system consisting of s subjected to the loads R, and R,. Due to symmetry of loading and struc-
structural elements with a total number n of redundancies which may be ture the system is effectively three times redundant. For the basic system
forces (stresses), moments or any generalized forces. We select a basic we select the statically determinate structure of FiG. (35b). The by and b
system by ‘cutting’ a number r of redundancies where r<n. Thus, the matrices for half the structure including the central vertical mem?ber (Ili
simple idea of a statically determinate basic system (r=n) is but a particu- are found easily as
lar case of our investigations.

I IAVING discussed in the standard longhand notation the main Example for the by and b, matrices.

The structure is assumed subjected to a system of m loads (generalized _ _
forces) b= 0 —afh afh alh 0 0 —dk 0 o0 1 o
R={RR;........ R R S Imnesmmore (90) 0 —af2h af2h a/k 0 0 —d2h—d2k 0 172 1
We denote by X the column matrix of the r cut (unknown) redundancies, L 1 2 3 i 5 ; s s
X=(XX,........ Xiiivenns X} sessriecgugss Qo) e o u
The column matrix S of the stresses and forces in the actual (uncut)
structure can always be written in the simple form and
S=bR+b;X ... @217
where by and b, are rectangl;lar matn’;ei with m and r coluqusé respec- —ald 0 —a/d 0 10 1 0 —h/d—hjd 0
tively and the same number of rows as S. In fact, the elements of b, are or 7 — .
correspond to the stresses o; given previously (see Eq. (176)). If thle basic by 0 ald 0 a/d 0 1 0 1 0 —h/d—2h/d
system is statically determinate the two matrices b, and b, are found 0 0 -1 —1 00 o 0 0 0 o
merely by statical reasoning. L |
For a redundant basic system we may obtain the necessary data either 1 2 3__.4 56 7 8 9 10 U
by analysing it first for the loads R and the r forces Xi=1 or in many cases (219)

by using existing standard information. »
;vslg:re the numbers under the columns refer to the numbered bars of mig.

Additional Notation
X, Y, Z  column matrices of X,, Y;, Z; respectively.

H column matrix of initial strains (displacements).
c rectangular matrix of forces (moments) C; (see p. 31).
B, C areas of actual longitudinal and transverse flanges.
B, C, areas of effective longitudinal and transverse flanges.
! length of longitudinal flanges between nodal points,
d length of transverse flanges between nodal points.
h height of web.
Q area enclosed by cell.

0, areas of cover panel and web panel respectively.
L, L 2 X 2 matrices.
L=[L1A]1 l=[]!h]
P,Q effective longitudinal and transverse flange load respectively,
k,, ks, k,  Partial stiffnesses due to shear strains in sheet, direct strains

in sheet and direct strains in flanges respectively.

U w column matrix of kinematically indeterminate joint displace-
ments U, W respectively.

a, column matrix of strain of elements due to unit r’s and
a,a column matrix of actual and kinematically equivalent
(virtual) strain of elements due to unit U's when r=0 re-
spectively.
C=3a,’ka, =a, 'ka,
C,=a,'kajr=a,’ka,r 4
=3, 'ka,r=a, ‘ka, ) . Figs. 35 {(a and b).—Statically Indeterminate pin-jointed framework.
J column matrix of initial stresses, lustration of b, and b, matrices
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Following our previous analysis of structures when the basic system
is redundant we introduce now the matrix

By e (220)

to denote any suitable statically equivalent stress (force) matrix corres-
ponding to
X={1 1........ | (P 1}

Thus, Bl corresponds to the stress system &, introduced before. When the
basic system is statically determinate only one b, can be found,

Bi=b, (220a)
We define also by
By e (221)
any suitable matrix statically equivalent to
R={l 1l........ | I 1}

b, may, in fact, be determined in a different statically determinate system
from b,.

Next we derive the matrix equation for compatibility of deformation in
the actual structure. Denoting the relative displacements at the r cuts of
the basic system due to loads R and the r redundancies X; by v, the com-
patibility condition is -

V=0 e (222)

where v, is a column matrix with » elements. To express Eq (222) in terms
. of Rand X we note from Eq. (122) that the relative deformations v (these
may be elongations of bars or flanges, shearing angles of plates), at the
ends or boundaries of the s elements are,

v=fS=fbR+fb;X .............................. (223)

f, the flexibility matrix of the s elements, is the partitioned diagonal matrix
of Eq. (123). We find now v, directly from the argument leading to

Eq. (125) as
v, = El’v =0
and hence
b fb, X +bfbR=0 ...................ooeLl. (22¢)

These are the required equations in the r unknown X;, and are, in fact,
equivalent to formulae (182). The symmetrical square matrix

D=b,fh,
(to use the notation of Eq. (182)) is the flexibility matrix for the directions
of the r unknown X; in the basic system. Alse in the notation of Eq.(182a)
Do=b,fbR ... (225a)

Eqs. (224) are the most general formulation in matrix algebra of the equa-
tions for the » unknown X; in a structure with a redundant basic system.
Solving for X we find

X=—(bfb)) b fbeR .. ... .. .. (226)

Substituting (226) in (217) we determine S solely as a function of the R’s.
Thus,

S=[by—b, (b, fb)Tbfbg]R ...................... (227
Comparing (227) with Eq. (121) we can write
S=bR
where
b=b,—b,(b,"fb,) b, "fby ......... ..., (227a)

Naturally, it is always possible to substitute b,” for b,” in Egs. (224) to
(227a). However, the introduction of the statically determinate matrix b,
when the basic system is redundant simplifies the calculations, often
considerably.

We can apply now Eq. (227a) to derive the flexibility

F

of the actual structure for the m points and directions of the applied loads.
Eq. (126) gives

For b we may use
b=b, or even simpler b=b,
We obtain ’
F=by'f[by—b, (b, fb,)~1b, fb,]
or
F=Fy—by'fb,(b,'fb) 16, fby . ....................... (229)
where
Fo=by'fby=byfby ..............0vvvvrr.., (230)
is the flexibility of the basic system for the loads R.

Basic system
( twice redundant)

Complete structure

Ring element

R/ZHR/Z
A

beam

Cantilever elements

Fig. 36.—Doubly connected ring. Analysis with redundant basic system

Simple example of Eq. (224)

Consider the symmetrical fuselage ring with transverse beam and central
load R shown in FiG. 36. As in page 32 we select as a basic system the
structure with the beam cut at the centre. For the components s of the
basic system we take the two statically determinate cantilever beams and
the closed ring. It is assumed that we know the stress distribution and
hence the flexibilities due to the pairs of loads applied to the ring (F1G. 36).
The basic system is thrice redundant but due to symmetry Xy=0.

The load transformation matrices by and b, are

A
byp
=T 31
byr
L -
where
r
0 /]2
byg= | 1/2 | , bgp=| 0 | .veiiiiiininn. (231a)
0 1/2
_l L
and
bz
by=1 | (232)
bin
L
where
7 Iy
1 0 10
bu;=|0 0 big= 10 1| .covviiiniann. (232a)
|0 1' 0 0!
L L

Note that in the present case b, =b, since the loadings on the two elements
of the structure are statically determinate.

The flexibilities of the elements for the forces and moments may be
written as
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i P - fu S S
EI ~2EI
f 12 3 0 fr= f21 f2z fza
B= | —357 =57
2El 3EI 1 fu fu S
0 0 i L ]
e (233)
and hence
fz o
fimll T e (234)
[+] fR
-

It is now possible to write down the equation for X,
b,'fb, X +b,'fbR=0
Returning to the general argument we investigate now in a system with
a total number # of redundancies the effects ofinitial strains e.g. those due
to temperature rise, excess length of bars due to manufacturing errors,
‘give’ of foundation at supports. Assume that the column matrix of the
relative displacements at the ends or boundaries of the s elements due to

1s
! H .. < (235)

We assume first that the basic system is statically determinate: then the
elements of H are merely the integrated effect of the imposed . For exam-
Ple, in a pin-jointed framework subjected to temperature rise the elements
of H are

H={@®Da..c.coevven.... @®h) (235a)
If the bars are of an excess length A/ due to inaccurate manufacture, then
these form directly the elements of H. Independently of the nature of H,
however, the corresponding relative displacements at the cut redun-
dancies are simply

b/’H

and the equation for the n unknowns X is
bfbyX+b'H=0 ... ..............c.ccvuinl. (236)
Note that in the present case b, =b, since the basic system is taken to be

statically determinate. When the deformations arise from p ‘gives’ A at
the foundations it is advantageous to express H as

H={A................ Ay (235b)
Then for b;” we must substitute the matrix ¢’ where
C]_g ........ C1[ ........ C19
....... L SR
e=: | Cryiiiiiais Cap iovinas € | wewwwmies oy (237)
Clgranaiiiyi Catnassings Cop

the n rows of which are the forces due to X;=1, applied by the structure
to the foundations in the directions of the gives A. Eq. (236) becomes now,

byfb,X+cH=0 ................c..... (236a)

If we select a redundant basic system we cannot derive the elements of H
immediately from the prescribed initial strain since the latter are not free
to develop in a redundant structure. In this case unless we have the neces-
sary information from previous calculations we must first analyse the
basic system by the method of the previous paragraph. Having found the
column matrix H the r equations in the r unknowns take the form

B/fb,X+B/H=0 ...................... (236b)

where we may write b, for b, since the basic system is now redundant.

The systematic solution of (224) and related equations was discussed on
page 28 but there are a few further points arising in practical calculations
which are best investigated here. Thus, we mentioned on page 20 that it
is often possible and justified to neglect certain part flexibilities of the
elements; for example, in a ring analysis we can usually ignore the direct
and shear flexibility. This applies not only to the evaluation of the external
flexibility F but also to the determination of the internal redundancies X.
We write now the D and D, matrices in the split form

D=D,+Pyand D,=D,+Dyy ..evvvvivvnnennnnnn... (238)
where the suffices g and b refer to the two flexibilities into which we sepa-
rate the total flexibility of each element. An approximate solution X, to
the unknown column X is then obtained by ignoring the flexibility 4.
Then,

D.X,+D,=00r X,=—D,; D, ........curv..... (239)
Occasionally we may require subsequently the correction x to X, to find
the true column X,

X=XK,+X eiiiririiiiiiiannn, (239a)
Substituting (238) and (239a) into Eq. (224) we derive easily |
- x=—D-}(D,+D,X,)
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and since x is usually small in comparison with X approximate methods
may often be used in the evaluation of the right hand side. This technique
is immediately applicable to the correction of a completed stress analysis
when subsequent small changes in the flexibilities of some elements are
introduced by modifications to their cross-sectional dimensions.

When the number of equations is too large for performing the matrix
operation on a digital computer then we may apply the following method
which is basically identical with the idea of a redundant basic system.
Assume that in a structure with a number » of redundancies we select first
a basic system with r=n—r redundancies and that we write down the r
equations in X; in the standard form (224),

DX+D,=0 ..., (224)

If the number r is still too large for handling by the digital computer we

solve the problem in two steps. Eqs. (224) are first put in the partitioned

form . _ .

7 7
xl D ol

Xy
|

I ’_] "
D; Dy o ,

D Dy D.:r
_ |

where the number of rows in the matrices with suffices 7 and I/ is p and
r—p respectively and D, D/, are square matrices. Eq. (240) gives

D/ X;+D;/X;1+D, ;=0 )

................ (240a)
D X +Dy Xy 4Dy =0
We split next the column matrix X;; into matrices
Xir=X+Y i i (241)
where x satisfies the equation
an+Dou=° or X= —D_”_]'Do][ .............. (242)
Hence
D”,X,+D”y=0 or y=—D"‘1D”1X, ........ (2423.)

Substituting for x and y into the first of Eqs. (240a) we find
DX ;+Dy1/[—Dy Doy —D 1D X, ]+ Dy;=0

Xr=—(D;=Dy;'D1 D11y (Dor—Dy1' Dy Dyip) . . . .. (243)
from which we deduce y and hence X. Egs. (243) are identical with the
elastic compatibility equation for a basic system with n—p redundancies.

The matrix form (224) of the equation of compatibility is particularly
suitable to illustrate the transformation (see p. 29),

X=BY ...ttt (195)

when the equations are ill-conditioned. Thus, by substitution of (195) into
(224) we find

_b,/fb,BY +b,'fbR=0
and premultiplying by B’
B’b,'fb,BY +B'D,fbR=0O

or

or
By fb,Y +-ByfbR=0 ........cvivininniinnnnnss (244)



where (see also Eqs. (196) and (197)),
b,=bBand b,=b;B ................oii (245)

are merely the matrices for the true and statically equivalent stress systems
in the basic system due to

Y=(1 liiiiieriianens 1}

The form (244) of the equations of compatibility may, of course, be written
down directly when starting ab initio with the group unknowns Y.

Application to a typical aircraft structure

We present now a detailed investigation of a type of system characteristic
of aircraft wings. Consider to this purpose the structure shown in FIG. 37
which consists essentially of an orthogonal or nearly orthogonal grid of
spars and ribs covered with sheet material. Longitudinal and transverse
flanges may be placed at the intersections of spar and rib webs with the
covers. In addition the covers may be stiffened with further longitudinal
and/or transverse flanges. The cross-section is assumed arbitrary and the
spars may taper differently in plan view and elevation but the angle of
taper 20 is taken to be so small that cos 2021 and sin 26~+20. The analysis
is not restricted to structures with continuous rib and spar-webs, covers
and flanges and includes hence any kind of minor or major cut-out.

The geometry considered excludes swept-back wings with ribs parallel
to the line of flight. On the other hand swept back wings with ribs perpen-
dicular to the main wing axis can be analysed by the present method as
long as we are given the necessary information for the triangular root-
section. Delta wings may also be investigated by our theory as long as the
grid of ribs and spars conforms to the geometry stipulated here. Naturally,
many of the restrictions imposed limit the applicability of the-method.
Indeed we intend our analysis only as an exploratory and tentative first
attack on the more general problem. We hope to return to this and similar
points in later publications.

The problem of finding the stress distribution in the shell type of
structure considered is strictly infinitely redundant. Hence it is necessary
to introduce for practical calculations considerable simplifications. First
we adopt the standard assumption in wing stress analysis of a membrane
state of stress, i.e. we exclude any bending of covers and flanges normal to
the surface of the wing. For the very thin wings now coming into promin-
ence this idealization is open to grave doubts and will no doubt have to be
reconsidered in future. An essential characteristic of our theory is the
assumption that the longitudinal and direct stresses vary linearly between
the nodal points of a three-dimensional grid of lines traced on the wing
cover. This system of lines should, in general, be at least as fine as the grid
of spars and ribs whose intersection with the covers forms the best mini-
mum set of grid lines. The latter grid will often be sufficiently close if we
are dealing with a multi-web structure and ribs at not too great a distance.
However, many instances occur where it is necessary to select additional
nodal points between which the direct stress is taken to vary linearly.
For example, we may choose points intermediate between spar webs on
the rib stations if the spacing of the spars and the sheet thickness of the
cover are large. Similarly, if the structure has few ribs we may have to
introduce new transverse stations in order to reduce the spacing of the
grid in the longitudinal direction. In either case there need not be an actual
longitudinal or transverse reinforcement along the new grid lines. We call
the surface enclosed between two adjoining grid lines in the z- and s-
direction a field, and denote by *bay’ a part of the wing structure which
lies between two cross-sections taken through adjoining grid lines running
in the s-direction (see FiG. 37). The assumption of a linear direct stress
distribution along the edges of an orthogonal and flat field yields from
overall equilibrium conditions a parabolic shear flow distribution along
the edges. Naturally, nzither the linear direct stress nor the parabolic
shear flow variation are, in general, exact and violate the internal and
boundary compatibility conditions of the field. This is not serious as long
as we keep the spacing of the grid lines reasonably close. Moreover, we
simplify further the problem by neglecting the quadratic and linear terms
in the shear flow and considering it to be constant within each field. We
note that for non-orthogonal grid lines (tapered structure) the uniform
shear flow offends against the equilibriumconditions even if the direct stress
is constant between adjoining nodal points. The errors introduced by the
assumption of uniform shear flow are, however, practically insignificant
for the geometry of structure considered here when the nodal point dis-
tances are small.

If the direct stresses along the grid lines were known we could calculate
the fraction of sheet area to be added to the reinforcements to form the
equivalent or effective flanges. This applies to the cover, spar-webs and
rib-webs and yields an idealized structure in which the fields are only shear
carrying and the direct stress carrying ability is concentrated in fanges;
an assumption widely used in aircraft practice. Neglecting the Poisson's
ratio effect and assuming the same material for flanges and sheet material
cover, the fraction of sheet cross-sectional area to be added to the flanges
varies between 1/6 and /2 if the fields are flat; the former value applies
when the field is in pure bending in its own plane and the latter when it is
under uniform stress. Since the stress distribution is unknown we can at
best only estimate the effective areas of the flanges but may use an iteration
process if the first guess proves inadequate. However, the latter procedure
is really clumsy and lengthy and a direct method, obviating the guessing
of flange areas would evidently be useful, in particular at the root or other

Fig. 38.—Sign convention for flange loads and shear flows
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Fig. 39.—Geometry of typical bay for determination of number of
redundancies

structural or loading discontinuities where the stress distribution is more
difficult to estimate and the Poisson’s ratio effect more pronounced. Such
a method is given here at the end of this sub-section but at first wz dzvelop
the theory under the assumption that the effective flang2s areas’are known
and that they are constant between two adjoining nodal points.* For the
webs, when considering torqus and lift loads, it is always su Ticient to add
1/6 of the web cross sectional area to the longitudinal and transvarse
flanges at the intersection of the spars and ribs with the cover.

We summarize now the main assumptions underlying the idsalized
structure selected for analysis. Thus, our systém consists of an orthogonal
or nearly orthogonal grid of spars and ribs with top and bottom covers.
Effective flanges of constant area betwzen adjoining nodal points and carry-
ing only direct stresses are assumzd placzd along the grid lines in longi-
tudinal and transverse directions. For the timz bzing w2 assumz2 that the
flange areas are known. The direct stresses and hence also the flange loads
are taken to vary linearly between nodal points. All sheet material for
covers, spars and webs is assigned a purely shear carrying role and a con-
stant thickness within each field. The angles of taper of spars in plan view
and elevation are assumed to be small. The shear deformability of covers,
ribs and spars is included ab initio in the analysis. For the stresses and loads
in the various elemznts we adopt the sign convention illustrated in FIG. 38.
Naturally, the idealizations and simplifizations introduced are strictly only
necessary for the calculation of the redundancies. The basic or statically
equivalent stress system may and should preferably be dztermined in the
(cut) actual structure.

Degree of redundancy of idealized structure

We proceed next to the enumzration of the redundanciss in our idealized
structure. In addition to the simplifications introduczd previously we
ignore here the bending stiffness of the flangss for displacemznts tangzntial
to the wing surface. This is, no doubt, suficiently accurate for thz present
exploratory analysis. The wing structure supported at the root and free at

“ S|lrigtly. the latter issum ion is only y when finding the flexibilities of the flanges for the

the r
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the tip is assumed stiffened by ribs at least at the root and the tip. These
ribs need not necessarily consist of a web with flanges but may take the
form of a stiff-jointed frame or ring. However, independently of the design
of the ribs we may always substitute an equivalent shear web with flanges.
The wing structure is subdivided into a number of bays of which we show
a typical intermediate one in F1G. (39). The cross-section at the junction
nearer to the tip may be stiffened by a rib carried across some or all cells.
FIG. (39) indicates also those longitudinal flanges which are continuous
across the same junction. It should be noted that if there is a changeof
transverse slope of the cover at a longitudinal flange the latter must be
connected to a spar web.

We use the following notation:

B=number of longitudinal effective flanges which are continuous across
the junction, i.e. are not interrupted there.

N=number of closed cells stiffened by ribs at the tip end of the bay.
Then the number of redundancies arising from the geometry of the bay is
B—3+N—1
Hence, in a tubular structure of the type shown in FIG. 37, free at the tip

and either fully built-in at the root or with prescribed displacements there
at all longitudinal flanges, the total number of redundancies is

A= [(B=FINV=1] et (247)
bays

If certain of the flanges are not held at the root section the number of
redundancies reduces accordingly. For example, if the root-section is at
the aircraft centre line and the wing is subjected to anti-symmetrical
loading the number of unknowns reduces by 8, —3, B, being the number
of longitudinal flanges at the root. The number in the square brackets in
(247) can, of course, vary from bay to bay since effective flanges may be
interrupted at such stations. Also the number N of stiffened cells may be
made different in each bay by the addition or removal of spar webs.
However, when B and N are the same in all bays and all the flanges are
held at the root formula (247) becomes simply

n=a[B+N—4] ... (247a)

where a=number of bays. If the sheet cover is missing between two ad-
joining longitudinal flanges in a bay and the cut-out is not provided with a
stiff-jointed closed frame to restore partially the lost shear stiffness of the
sheet then the corresponding cell is open in this bay and by definition
is not included in N. Similarly, if there is no rib or equivalent frame in a
cell at the section considered this cell is excluded from the numbering
for N. Note that spar webs need not be continuous throughout the length
of the wing and may be discontinued at any junction. Formula (247) still
remains valid.

If the cross-section is singly symmetrical the n redundancies of Eq. (247)
split into two groups:

= Y[ B-1) ov-0]

bays

w3 6-)

bays

(248)

of which n, applies for the lift and torque loads and n, for the drag loads.
Ifall cells are closed, with the same number N in all bays and effective
flanges are only placed at the corners of the cells, then

B=2(N+1)
and from (247a) the total number of redundancies is
n=a(3N—2) ......vviiiii (249)

which formula again assumes that all the flanges are held at the root.

Of considerable importance in modern aircraft structural practice are
the multispar systems with few, often only two, end ribs. A typical wing
of the latter type is shown in FiG. (40). To analyse this structure we sub-
divide it into a number of bays whose length should not exceed say five
times the spar pitch. Effective flanges will by virtue of our idealization
process be acting at the junction of these bays although no ribs are pro-
vided there. For such a system the number n of redundancies when there
are no cut-outs in the sheet, when all spars are continuous for the full
length of the wing and all flanges are held at the root, is given by

n=(N—1D+1+aB—4)=N+aB—4) .............. (250)
The last system to be considered is a flat panel which is of special import-
ance for diffusion investigations (see F1G. 41). It is assumed built-in at z=0

or held with prescribed displacements and free at the other three edges.
Here the number # of redundancies when there are no unstiffened cut-outs

is simply
n=5(B=2) i (51)
ays

where B is defined as in the case of the wing. When M fields are removed
without being replaced by stiff-jointed frames the number of redundancies
reduces by M.

The next step in our investigations is the discussion of suitable self-
equilibrating systems which may be chosen as redundancies. Consider
first the simple case of a rectangular flat panel shown in FiG 41. For the
redundancies we may select # systems of the type X=1 illustrated in the
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Fig. 40.—Multi-web wing without intermediate ribs
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Fig. 41.—Rectangular stiffened panel. Unit self-equilibrating stress system
of type X=1

figure. All information as to flange loads and shear flows is given there.
The corresponding equations (182) or (224) for the unknown X; are easily
seen to be reasonably well conditioned. Naturally, we can further improve
the conditioning by introducing group loads

X=BX .. (252)

where B is a suitable square matrix. We do not enter at this stage into the
choice of B but hope to discuss these points in Part III. When the panel is
symmetrical about its middle line it is preferable to combine the X-systems
into symmetrical and antisymmetrical groups.

In a wing structure of the type investigated previously we can describe
three simple types of self-equilibrating internal systems. They are shown in
FIGS. 42, 43 and 44 and denoted by

X=1, Y=I, Z=I
respectively. The first is the generalization of the X-system used in the flat
panel and the second and third may be considered as slightly modified
four boom load systems taken in the longitudinal and transverse directions
respectively. The longitudinal four-boom load systems are applied ex-
tensively in standard wing analysis.* The three figures are self-explanatory
and give all flange loads and shear flows associated with the unit systems.
Note, however, that the effect of taper is neglected except that we intro-
duce the true local dimensions in the evaluation of the self-equilibrating

* See J. H. Argyris and P, C. Dunne, ‘The General Theory, etc.,' J.R.Ae.S., Vol. LI February,
September, November 1947 °
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Fig. 42.—Multi-web wing. Unit self-equilibrating stress system of type
X=1

systems. This ignoring of the influence of taper gives rise only to small
errors as long as the lengths / of the bays are reasonably small and the
angles of taper restricted to the order of magnitude mentioned initially.
The expressions for the shear flows in the ribs for the Y- and Z-systems are
also approximate, being derived for an equivalent rectangular rib. Again
the error introduced by this assumption is for practical purposes insigni-
cant. The conditions of equilibrium for the X- and Z-systems yield a load
in an ‘effective’ vertical flange at the intersection of the ribs and webs.
This flange load may always be neglected.

We enumerate now the number of X, Y, Z systems, independent within
their own group, which can possibly be applied. We find easily, with the
notation of Eq. (247) that we can use for'each bay

(B—4) X-systeins, N Y-systems and (N—1)  Z-systems

Thus there are more systems than we require, the difference from the
number 7 of redundancies being obviously linearly dependent systems.
Evidently the

(N—1) Z-systems
are independent of the X- and Y-systems and hence must all be chosen as
redundancies. To complete the number n of unknowns we may use

(B—4) X-and one Y-system
However, it is preferable to apply more longitudinal four-boom (V)
systems since they are better conditioned, and to reduce accordingly the
number of X-systems. Thus, if we introduce all

N Y-systems
we have to adopt
(B—3)—N X-systems

The last number reduces to N—1 when the effective longitudinal flanges
are only placed at the corners of the N-cells.

It is often advisable to improve the conditioning of the D-matrix by
the introduction of group loads X and Y where

D X=B,X Y=B,Y ... ..ot (252a)

Multi-web wing
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Self-equilibrating siress system V=1

Longitudinal tlange loads

Fig. 43.—Multi-web wing. Unit self-equilibrating stress system of type
Y - . (Longitudinal four-boom tube)

When the cross-section is singly symmetrical the number of redun-
dancies for lift and torque loads reduces to n, given by the first of Eqs.
(248). The N —1 Z-systems must still be included in the analysis for such
loading cases. If, in addition, we use all V' Y-systems the necessary number
of X-systems becomes d

B
S—1=N

and is zero when the effective flanges are arranged merely at the corners of
the N-cells.
For the multispar wing of FiG. (40) with ribs only at the root and tip
the n redundancies of Eq. (250) may be selected as
(N—1) Z-systems at the root
one Y-system at the root

(B—4) X-systems at each junction of bays and at the root.

The Y-system may involve a considerable length of the tube and if the
latter is tapered a more accurate estimate of the longitudinal variation of
the flange loads may become necessary.

Having selected a suitable system X, Y, Z of redundancies we can write
down the b, matrix with the information given in F155. 42, 43, 44, To obtain
the b, matrix we may use any suitable statically equivalent stress system
in the actual or idealized structure, but preferably the former. It was
mentioned on page 32 that it is advantageous to select a basic stress system
which, while being simple, approximates as closely as possible to the true
stress system and reference was made to the method of example (a) of
Section 9. Nevertheless, if the work in finding such a b, matrix proves
excessive it may be preferable—since the choice of by does not affect
the conditioning of the D matrix—to sacrifice the closeness to the true
stress system and to select a b, as simple as possible. Thus, we can calculate
a b, matrix for a basic system in which the spars act independently; a
choice differing, in general, widely from the final b matrix.

and
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Fig. 44.—Multi-web wing. Unit self-equilibrating stress system of type
Z=1. (Transverse four-boom tube)

We write now the by and b, matrices in the partitioned form:

-1 1
l,IBI bl‘ I
bllr blf
by= | bo, bi= by | ceriiiiiiiiii... (253)
ho., blw
bor by
[

where the suffices /, 1, 5, w and r denote matrices for the longitudinal
flange loads, transverse flange loads, shear flows in the fields of the cover,
shear flows in the webs and shear flows in the ribs respectively.

Since the flange loads are assumed to vary linearly between nodal points
we need at least two entries in the b matrices to describe the loads in each
flange. As such we use the loads at the ends (nodal-points) of each flange
element and denote them by the suffices | and 2 where | is the end first
met when we proceed along the +z or s direction. These two associated
loads are entered in the assigned column of the appropriate sub-matrix of
b, or b, in two consecutive rows, the first of which always corresponds to
the end 1. Since the shear flow is assumed constant in each field only one
entry appears for a field. In the b, matrix we arrange the columns in three
groups, the first referring to the .Y, the second to the ¥- and the third to
the Z-systems. It is of the utmost importance to organize ab initio a rigid
and consistent system for the setting up of the by and b, matrices,

40

Transverse tlange —- "

1 V z
< h a
|~
// U
Shear  field — - ! 3 u" n .
1 i _——Longitudinal flange
-
P
d k b
¥ 1
2 1
9

Fig. 45.—Simple panel to illustrate b, and b, matrices

Consider the simple grid shown in FIG. 45 and denote by Py (P), O, (Q)),
4o (4:) the longitudinal flange loads, transverse loads and shear flows
corresponding to some R=1 (X;=1). The corresponding columns in the
by and b, matrices are

'&P 001 PoazPoby Pova Poer Loz Poay P onanraQor:Qo:zQuuQnos‘?oA%k}}

an
{Piay PiaoLiny PivoPiar PecaPiay PianQie) Qres Qi1 Qi 1301 1 O o2Gindin} 254

rspectively, e i
To find the D and D, matrices it only remains to give the flexibility

matrix f of the elements. We write it in the partitioned form associated
with the by, and b; matrices of Egs. (253),

o o o f

where the suffices have the same meaning as in Eqs. (253). The matrices
f; and f, are themselves partitioned diagonal matrices, the sub-matrices
being the flexibility matrices of the longitudinal and transverse flange
elements respectively. Since the flange loads vary linearly and the effective
flange area of each element is assumed constant within each element the
flexibility of the flange elements is that given on p. 22. Thus, for the
grid of FI1G. 45 the f, and f, are,

fi= , fi=lo f; o | .. ........ (256)
o o f, o
o o f
o o o f L. |
_
typical sub-matrices being
[~ = -
ly _"b_ d. _‘.i'_
3EB,, ©6EB,, 3EC,. 6EC,,
f,= » f.= o (257)
1y ly d, d,

e L
6£B., 3EB., 6EC,, 3EC,,
L il L |
The flexibility matrices f,, f,, f. are diagonal matrices with elements

®/Gt, D,,/Gr,, and L)/Gt, respectively.
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................ (258)

where @, @, C are the areas of the shear fields in the wing surface, webs
and ribs respectively and ¢, t,, ¢, are the corresponding thicknesses.

We have now all the information to form the matrices
D=b,'fb, and Dy=b,'fbR
and can hence solve the system of equations .
b/fb{X Y Z}+b/fbR=0 ...........ovoninnnn (259)

for the unknowns X, Y, Z.
Finally, we find the true flange loads and shear flows of the idealized
structure from

S=boRAbUX Y Z} ovrnrnnaninrininnnes (260)

It will then be necessary to translate the results (260) into stresses of the
actual structure. Finally the flexibility F of the structure at the points and
directions of the loads R may be determined from Eq. (229).

When the number of equations (259) is too large to be dealt with by our
digital computer we may proceed in two (or more) steps by the method
given on page 36. Essentially this introduces into our analysis a redundant
basic system.

1f initial strains H are imposed on the structure in addition to the loads
R we have merely to add the column matrix

b/’H’
on the left hand side of (259). Thus the analysis includes inter alia the com-
plete calculation of wings under thermal loading.

A new opproach to the problem of cut-outs

We emphasize that our above analysis is valid in the presence of any
kind of cut-out stiffened or unstiffened by closed frames as long as the
overall geometry and idealization conforms with the initial assumptions.
Nevertheless, when we have a structure which is essentially continuous
with only minor unstiffened cut-outs it may be worthwhile to apply an
artifice which avoids the lack of uniformity in the pattern of the equations
inevitably associated with cut-outs. Moreover, it is the ideal method of
finding the alteration in the stresses due to the subsequent introduction of
cut-outs in our system without having to repeat all the computations ab
initio.

The method is as follows, To preserve the pattern of equations disturbed
by missing shear panels or flanges we eliminate the cut-outs by introducing
fictitious shear panels or flanges with an arbitrary thickness or area.
Naturally, it is usually preferable to select for the latter dimensions those
of the surrounding structure. To obtain nevertheless the same flange loads
and shear flows in our altered structure as in the original system initial
strains are imposed on the additional elements of such a magnitude that
their stresses become zero. The effect of the fictitious elements is thus nulli-
fied whilst the uniform pattern of our equations is retained.

Let the column matrix of the unknown initial strains, in the additional
elements only, be

H

In the new structure (i.e. without the cut-outs) we determine the flexibility
matrix f and the matrices by and b; which we write in the partitioned form

- -
bOv : blﬂ
by= s b= | (261)
bgx by
[ L

where the sub-mat;ices with the suffices g and k refer to the forces in the
e_lenlwnts of the original structure and the fictitious new elements respec-
tively.

_ Denoting the column matrix {X Y Z} simply by X and taking the
initial strains in the original structure as zero the Egs. (259) in the un-
known X become,

v
H\=°
L

b,fb, X +b,'fboR+b,’

and hence using the second equation of (261)
X=-—D"1b/fbgR—D-1b,’H .......ccoooevninnne (262)

D=b,fb;
The stress matrix S follows as,
S=[by—b;D-1b/fbg]JR—b,Dby’H .........connnn. (263)
The expression in the square bracket is the matrix b which we write in the
partitioned form

where

7

L

To find now the column matrix H we put the stresses in the additional
elements to zero. Thus, the matrix S must be

S

where §, are the true stresses (forces) in the original structure. Applying
Eqgs. (261), (264) and (265) in (263) we find

7 r 7
SO bll 10
= R— D-lbH ..........t (236)
(o} b, | bya
L4 L 4 L
Hence
O=b,R—b,,D'b;,'H
or
H=(b;,D b,y bR oooeiiieiiinns 67
The true stresses in our actual structure are thus
S,=[b, —b,,D b, (bsD~1by )DL IR L (268)

which solves our problem completely. As meantioned already the method is
ideally suited for finding the alteration of the stresses in a structure through
a subsequent introduction of cut-outs, such as access doors which usually
seem to materialize at a late stage of design. Another particularly useful
application of the new approach may be found ih the analysis of fuse-
lages with window-openings. Naturally, the degree of redundancy is
increased by the ‘filling-in’ of the cut-outs but this is of no importance
for the automatic computations envisaged here.

A more refined wing stress analysis

The above general method of wing stress analysis suffers from the serious
defect mentioned initially that the effective flange areas have first to be
guessed since the stress distribution on which they depend is unknown.
It is certainly feasible to apply an iteration technique but this is not only
necessarily lengthy but also rather uninspiring.

To obviate these difficulties we develop a method which eliminates the
determination of the effective flange areas and works directly with effective
flange loads. The method has the further virtue that it takes full account
of the Poisson’s ratio effect which may be important at the rootand at other
structural and loading discontinuities. The addition of 1/6 of the web
area to the flanges is always sufficiently accurate for lift and torque loads
and is retained here. Hence, our problem is restricted to the wing surface
alone.

The previously introduced assumptions that the loads are carried in the
idealized structure by a grid system of effective flange loads and fields

urely shear-carrying form also the basis of the new method. We assume
also that both the direct stress distribution and the effective flange loads
vary linearly between consecutive nodal points. However, our analysis
does not presume that the so-called effective flange areas—which do not
enter into our developments—are constant between nodal points. The
shear flow is again taken to be constant within each field. When replacing
the linearly varying direct stresses across a grid line by effective flange
loads at the nodal points we introduce the additional assurnp.tior} that the
actual flange areas and thicknesses do not vary across this grid line. Since
in wing structures plate thicknesses and possibly flange areas may vary
just there it is suggested to take for this particular calculation the mean
values of areas and thicknesses on either side of the grid line; on the other
hand when there is a cut-out on one side of the grid line or the flange is
interrupted the corresponding values should be taken as zero. These
simplifications are not necessary for the purpose of the analysis but ease
the problem of notation; moreover they do not affect seriously the
accuracy of the computations. Contrary to our previous practice of num-
bering the flange elements with letters we numbar here only the nodal points
with numerals.

We derive now the equation connecting the effective flange loads at
nodal points in the z and s directions of the idealized structure and the
direct stress distribution in the plate material. It is more convenient to
fix a particular point and for this purpose we select the point 9 in the grid-
system shown in FIG. 46.
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Fig. 46.—Equivalent flange loads in idealized structure

The following notation is used: all values apply to nodal point 9.

Py, Qy effective flange loads in z and s directions

B, (actual) area of longitudinal flange+ § (spar-web area)
Cy (actual) area of transverse flange + § (rib-web area)
E,E Young’s modulus of sheet and flanges respectively

[ longitudinal and transverse flange stresses

€9, €xg longitudinal and transverse flange strains

0w’y 0x’  longitudinal and transverse stresses in sheet

E . g
E,/=7=" effective elastic modulus of sheet

E/ E/ , .
A3_9=%f'13,9fa.s, Ay g=k—Fdy ot5, effective flange areas due to plate in
= pure bending

Note that the material of flanges and sheet is assumed to be different.
We have,

E/
029’ =E, (€,9-+ Veo) = E (G29+vo,)
and

E/
O’ =E/(e+ve,g)= f(o’,g +vo,)
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The conditions of equilibrium for the actual and idealized systems yield
in conjunction with Eq. (269)

Po==0:9[By+2(Ag,9+Ag10) ]+ 0545 o +0:1045,00 )

........ (270)
+0_.92v(A8‘9+A,,_,0)+0'_.st3_9+0_,101//19‘10 J
Q9=0'_,9[C9+2(A3'9+A9_15)]+¢7,\,.;A3‘9+0,15A9_15 ) @1
4‘C"zeaZV("‘a.aa'f"‘is.w)"‘C'z:JV"’s.s touwdys |
These equations are expressed more concisely in the form,
o] el (el T
9 T T Oi0
l =L9.s, ’ +Llgg [ +Loo
Qq Oy Tug | Tagp
L L LI L. =l
.............. 272)
| r I
Ty Ta15 !
+Llgs +Loys ’
Ty T |
Ls 24 [
where the matrices L are as follows :
[~
By+2(Ag +Aga0) 2v(Ag g+ Ay 19)
Lys= 273)
2v(Ayg+Ag,45) Co+2(Ay g+ A4 15)
(- |
r o [~
| Agg vAg,g 0 0
Los= Ls=| | ... (273a)
0 0 VAze Agzg
_J |

The matrix Ly, (Lg,5) is obtained from Lo, (Ly ) by substituting 10(15)
for 8(3). Equations corresponding to (272) may be written down for any
other nodal point. We see immediately that B

L.,=L,, (274)

L.=0 (274a)

when r and s are not adjoining nodal points of the grid. We deduce also
that Eqs. (273a) are the general formulae of the L-matrices for adjoining
nodal points in the z- and s- directions respectively.

Consider now the column matrices for the flange loads and stresses at
all p nodal points

and that, M e

S={PIO1Py0,........ PyQq. oo .. P,Q,}
.. (275)
S={04000T:90cp. oo .... [ P 022055 }
From the set of equations of the type (272) we find,
S=Ls ... (276)
where L is the symmetrical partitioned matrix
= =
Ly, Lypo....... Lgoeoont.. L,
L=|Ly Lgp........ N o @71
Ly Lpoo..... Lygovunnt. L,

From (274a) the submatrices with suffices referring to non-adjoining nodal
points are zero. Solving Eq. (276) for s we find

s=LTIS (278)
and hence also
s 1
_—— -1
e=p=p LS 279)
where e is the column matrix of the flange strains at the nodal points, i.e.
e={€1€0.c0uunur.. €xgfagainavenain €l s (279a)

Thus, once we have determined the effective flange loads the flange
stresses and strains follow from Eqgs. (279) and the direct stresses in the
sheet from Egs. (269). No guessing of effective flange areas is involved in
this procedure but we have on the other hand to invert the matrix L with
2p rows and columns. It is apparent that if we knew the effective flange
areas B,, C, at the nodal points we could immediately write down the in-
verted matrix as a diagonal matrix whose elements are the unit flange
fexibilities at the nodal points. In fact, then
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Consider now the b, and b, matrices of the basic system, We emphasize
that the b, system can in the present method only be derived from pure
static considerations since the effective flange areas are unknown. Thus,
b, cannot be derived for a multicell wing from an Engineers’ theory of
bending cum Bredt-Batho analysis unless we assign arbitrary areas to the
flanges. To find, in fact, the by system in this example it is probably best to
select a set of longitudinal flange loads in equilibrium with the applied
loads and derive a statically consistent set of shear flows and transverse
flange loads in equilibrium with the applied shear forces and torgue. Con-
trary to the system adopted in the previous method we write here the
statically determinate b, and b, matrices in the partitioned form

1 . =l
| bu! } I’:I.I'
‘ bun bll
b= L e (280)
bo-a blm
] bf.'r blr
L

where the submatrices by, by, give the flange loads at the nodal points. The
rows in by, by, arearranged in p pairs corresponding to the p nodal points;
the first and second row in each pair refers to longitudinal and transverse
flange loads respectively.

Returning now to Eq. (279) we apply it in the basic system for the
external loads R and the redundancies {X Y Z} respectively. We *find
with the notation of Eq. (280) the flange strains

LY

eo=pLbyR and e, =zL7b(X Y Z}

We seek next the contribution of the flange strains e, and e, to the matrices
D and D, of the relative displacements 8, and 8. For this purpose we
apply a self-equilibrating unit load system X;=1 (which may be also a
Y- or Z-system) and denote by P;; and Py, its longitudinal effective flange
loads at the points 3 and 9 and by Q. and Qg its transverse effective
flange loads at the points § and 9. Let 3; be the relative displacement at the
points and directions of X;=1 due to some given flange strains €, and «,.
The contribution to §; of the straining of the flanges (3, 9) and (8, 9) is then

9 9
3|= .......... +£P.~e,dz+gQ.-€,dS+

and since we assume that both flange loads and strains vary linearly between
nodal points we find,

-
i3l | ddie| —
— €;: €
Si=.... +[PuPl- | +101sQiel e
€3
116 1/3 [ p_ll daj6 df3 L J
3.0 L— —-I 8.9
.............. (282)

The com_pletg expression of _8.- is arranged by pairing the terms involving
the lqngltudmal and transverse strains at the same nodal point. Thus,
showing only the typical terms involving {€,y€x},

§i=.... +{[PaQilly+[PigQuislly,a+[PisQusllg o+
+PuaoQaolloo HPas@usTloast[ 2]+ oo (282a)
where the 1 matrices are,
-
I3,15/3 0
o= | | e (283)
0 dg 10/3
|

— 1 [~ -
0 0 lyal6 0
19-8= Y 19-3= ...... (2833.)
0 dg /6 0 0
L _1 -

The matrix I 1q{ly.15) is obtained from 1y g(l,3) by substituting 10(15) for
8(3). It is simple now to write down in Eq. (282) the terms for any other
pairs of strains (e;e,). We deduce immediately that,

T PP (284)

and that all 1,, matrices are zero when they do not refer to adjoining points.
Moreover, matrices (283a) are typical for adjoining nodal points in the z
and s directions respectively.

Introducing the matrix

r
Ve ol sminesns Rjratsog siemsanass Li»
| S ) 1 ———— L g o wimeisivia Yol seecmisucss (285)
Lipsnesmsmes | [ | I
|
we can express Eq. (282) concisely as
0;i=[PiuQiy.vvn - PigQigoeevnnnn P,O)le ... (286)
Observing that the matrix
[PyQi.oovennee PigQigevvvvnnn P..0:,]

is the ith row of the b, matrix and noting Egs. (281) we find that the
contributions of the flange strains to the D and D, matrices are
-1

L 1
D,=by/I5by, Do=byTEboR. ..o, (287)

We conclude that the flexibility of the flanges at the nodal points is given
by

Lt

f,=lE— ............................
Note the structural similarity between the 1 and L matrices. It is particu-
larly pronounced when v=0. The total flexibility of the elements of the
structure is now

(288)

r 1

fi o o o
o f, o o
oo f, o

o o o f

where the flexibilities of the cover, webs and ribs are as before.
We find for the matrices D and D,.

D=b,fb, and Dg=byfBgR . .......oruieiiinnn (225b)

where b, and b, are arranged as in Egs. (280).

Using Eqgs. (225b) in (259) we solve the problem completely.

The refinement introduced by the L matrix need not of course extend
over the complete wing but may be restricted to the root and other marked
changes of structure and loading. For the rest of the structure it may still
be sufficient to estimate the effective flange areas and to use the simple

form (277a).

D. The Analysis of Structures by the Displacement Method

The analogy between the developments for the flexibilities and stiffnesses
given under A and B and summarized in TABLE 1 shows clearly that parallel
to the analysis of structures with forces as unknowns there must be a cor-
responding theory with deformations as unknowns. As mentioned in the
introduction to this section Ostenfeld* when investigating frameworks
was the first to draw attention to such an analogy. In fact, his equations
are the exact counterpart of the classic 8 equations given by Mueller-
Breslau for forces as unknowns. In more recent times Southwellf and his
pupils have used his relaxation technique to solve the elasticity equations
in the finite difference form with displacements as unknowns for a great
number of problems. Hoff{ has applied the latter method to diffusion and
related problems in aircraft structures and has solved also the correspond-
ing equations directly. Lately Williams || has outlined an analysis of wing-
structures of the standard or solid type by introducing the deflexions at a
finite grid of points as unknowns; his technique, which is intended for use
in combination with the automatic digital computer, neglects however the
shear deflexions, which may have an important influence.

—_—

* loc. cit. p. 43.

4 loc. cit. p. 43. .

N. J. Hoff and Paul A, Libby, ‘R dati for sca! solution of reinfe d-panel and
tustehg&ring problem. N.A.C.4. Rep. 934 (1949)

Il loc. cit. p. 43.




|uruldiiy, @ LISUTY using displacements as unknowns would only be of
value if it could show some concrete advantages. It is clear that such an
advantage may possibly arise when the stiffnesses are simpler to calculate
than the flexibilities, which is, as we have seen previously, very often the
case. In particular in the egg-box structure, characteristic of aircraft wings,
the stiffnesses &, are much easier to find than the influence or flexibility
coefficients 8,,. Another obvious advantage arises when the number of un-
knowns is smaller for the displacement analysis. This may occur in frame-
works, especially the stiff-jointed type with few degrees of freedom at the
joints. The equations in the displacements for stiff-jointed frameworks are
almost invariably well conditioned: a further point in their favour, not
only for iteration techniques but also for the direct solution. On the other
hand in continuous structures, like wings and fuselages, this is not the
case. Here, in fact, the equations in the displacements are nearly always
ill-conditioned and it then becomes necessary to introduce generalized
or group displacements as unknowns in order to improve the conditioning.
This is a pronounced drawback of the displacement method when applied
to aircraft structures. Furthermore, in such continuous systems the dis-
placement method will usually involve a considerably greater number of
unknowns than the force analysis in order to achieve a comparable degree
of accuracy. It is apparent then that the choice between the two parallel
techniques must be made on an ad hoc basis after careful consideration
of the possible advantages and disadvantages of each method for a parti-
cular problem. It would, however, appzar that at least with the present
types of construction the force method is to be preferred for aircraft
structures.

Before proceeding to the general development of the displacement
analysis we introduce first a simple example to familiarize ourselves with
the ideas. Consider the framework shown in fiG. 47, symmetrical both in
structure and loading. The number of unknown forces or moments when
the engineers' theory of bending is assumed to hold is evidently six. On the
other hand, if we neglect the deformations due to shear and end load, two
deformations alone, the rotations ry and ry at the stiff joints, suffice to
specify completely the deformation of the system. The analysis may pro-
ceed as follows (moments and rotations are taken as positive if in the anti-
clockwise sense). We freeze first the joints, i.e. put

rn=ry=0
Then, due to the loading on the upper member, moments M, are applied
at the joints and are, with the notation of FiG. 47

PYA o2 N

M!'Ao:"}_zl' , M210=+'% '
. A G T (290)

Pal. / i

M= -2 ppgm |

The out-of-balance moments on the joints are then
2 2 p2

T (291)

Consider next the system with free joints and no transverse loading sub-
Jected to the loading by the joint-moments
pyly2 Pob?  p 2
Ri=—M =+, Ry=—M,=— S P (291a)
The superposition of this and the previous case yields the true solution of
the given system under the transverse loading. To analyse the second
problem we apply Eqs. (138) which take the form

kyry thygry= R,
...................... (292)
kyyry +hoory =R,y J
The stiffnesses &, are easily found as (see also Egs. (144))
4El, .. 4E7, 2E],
k11=T"+T' k= T’ =ky
............ (293)

_4AEL AEl | 4El,
S

which assumes that the horizontal beams and supporting struts have the
constant bending stiffness £/, and EI, respectively,

ey e |, —-—r._ f, —
2 gl
prssssie 100D HRERHsonsi

s “

Ri=- Mo Ry= Mo~ My

Frozen syslem

Displacement  Analysts - 2 Unknowns £ and 1

Fig. 47.—Displacement analysis of stiff-jointed frame

We obtain from Eqs. (292)

r Ry
r= =K=V\ (292a)
r2 R,
where B
K-t i koy kg (293a)
= | . a
kukye —kyp* —hke Ay

Having the rotations r, and ry and using the stiffnesses of the individual
elements contained in (293) we easily derive the actual moments in the
structure. Thus, introducing again the usual sign convention giving posi-
tive bending moment when upper fibres are in compression, we find for
the bending moment M, at the junction (1) of element (1, 2)

L% 4El 2E1
My, = —‘-’;—2‘ SRR (294)
This method forms also the basis of the Hardy-Cross or the more general
Southwell relaxation technique in stiff-jointed frameworks.

We develop next the general theory of the displacement method. We
introduce immediately the matrix notation and assume that the structure
consists of a finite number s of elements whose stiffnesses k, due to relative
displacements at the ends or boundaries of each element, are known. In
order to show most clearly and concisely the striking analogy between the
force and displacement methods we present them side by side in the follow-
ing TABLE I1; most of the information with respect to forces has been given
previously under C. The complete duality between the two theories is,
of course, a direct consequence of the twin principles of virtual displace-
ments and virtual forces from which they derive most naturally, We
believe that the analysis has not been given previously in this generality.
It includes ab initio any effects of initial strains like temperature, lack of
fit and ‘give’ at the foundations. The great advantage obtained in deeper
insight and new theorems and applications by developing the theory on
the most general lines is too apparent to need stressing.

TABLE II
A COMPARATIVE PRESENTATION OF STRUCTURAL ANALYSIS BY THE FORCE AND DISPLACEMENT METHODS

METHOD OF FORCES

METHOD OF DISPLACEMENTS

External forces R
Flexibility F
Displacements r=FR

) FK=I

See also TABLE 1

Joint displacements r

Stiffness K

Forces R=Kr
KE=I

See also TABLE 1
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TABLE 11 (continued)

Unit Load Method
Given the true strains € in a structure the kinematically related displace-
ment r at a given point and direction can be calculated from
(295a) | r=foedV
v

where o is a virtual or otherwise statically equivalent stress system due to
unit load in given direction. Statically equivalent stresses ignore compati-
bility conditions. (See also Section 6 and FiG. 15).

Cf. Eq. (84b)

Unit Displacement Method
Given the true stresses g in a structure the equilibrating force R at a given
point and direction can be calculated from
I.R= i[e-adV ................................ (295b)

where € is a virtual strain system due to unit displacement in given direc-
tion. In what follows we denote virtual strains as kinematically equivalent
strains. Kinematically equivalent strains ignore equilibrium conditions.
(See also Section 4 and F1G. 8.)

Cf. Eq. (146)

Statically Determinate System

Internal forces (stresses) on elements determined from

(296a) ............. e S=bR -

where matrix b is obtained by static reasoning alone.

Flexibility of individual (unassembled) elements f -
Internal strains,

(2972). . oot v=fS=fbR

External displacements,

(2083) ....iiiiiiiiiee r=b’v=bfbR

Flexibility,

(299a) ... F,=b’fb

Cf. Eqs. (121), (122), (125), (126)

Kinematically Determinate System

Internal relative displacements (strains) of elements determined from
LT Y (296b)

where matrix a is obtained by kinematic reasoning alone by displacing
one joint at a time whilst keeping all others fixed.

Stiffness of individual (unassembled) elements k
Internal stresses,

S=kv=kar .. .. ... ..., (297b)
External forces,

R=a’S=a’kar ...............ccciiiiiinennnn. (298b)
Stiffness,

Ko=a'ka ... ... . i (299b)

Cf. Egs. (153), (154), (159), (160)

Statically Indeterminate System

In the relation
(296a) ..ol S=bR

b cannot be determined by statics alone.
Flexibility of structure needs to be considered, entering as compatibility
conditions.

On the othar hand if the iAternal strains v are known the kinematically
related external displacements may be derived from

(300a) ...l
where b is merely a statically equivalent (virtual) matrix due to unit R’s.

r=b'v

Hence flexibility
(301a) .o F=bfb

Eq. (300a) is a special form of the Unit Load method (Principle of
Virtual Forces).

F1G. 48a illustrates the matrices b and b on a particularly simple
example of a singly redundant system.

R =1 R=1

~ o b L1
A " F

True syslem

Statically equivalent system
3 . . . g="3 2
lbl-9{33|z1333333} (b]-§{333033333-33}

Fig. 48(a).—True and statically equivalent stress systems in singly redund-
ant, pin-jointed framework

Cf. Eqgs. (125a), (126)

Kinematically Indeterminate System

In the relation
R UG (296b)
a cannot be determined by kinematics alone.
Stiffness of structure needs to be considered, entering as equilibrium
conditions.
On the other hand if internal stresses S are known the equilibrating
external forces may be derived from
R=2'S i e (300b)

where a is merely a kinematically equivalent (virtual) matrix due to unit
s,
Hence stiffness

K=2'Ka ... ...t (301b)

Eq. (300b) is a special form of the Unit Displacement method (Principle
of Virtual Displacements).

FiG. (48b) illustrates the matrices a and a on the same example as in
FIG. 48a.

True displacement system

@-R{33 1213332333}

Kinematically equivalent system-2

m=[ﬂoooooooooo}

Kinemalically equivalent system-1

[al={ooooooo'%'%oo}

Fig. 48(b).—True and kinematically equivalent displacement systems in
pin-jointed framework

C/. Egs. (159a), (160b)
45



TABLE II (continued)

Problem a

Given a set of forces R, determine a set of statically indeterminate forces
X necessary to satisfy the compatibility conditions. Find also the displace-
ments r in the directions of R.

Complete force matrix

(3022) e (R X}

By putting X = O we obtain the so-called basic system which is statically
determinate within limits of idealization.
Stresses in basic system

(3032) ...iiiiiiiii i Sy,=b,R
Stresses due to X (with R=0)
(304a) ........cciiiiiiii... S,=bX

where by and b, are obtained from statics alone.
True stresses in actual structure

(3052) ....iiiiiiiiiiiii., $=8y+8,=bR+b, X
Strains of elements
(306a) ..... R v={S=fb,R+fb; X
Compatibility condition in actual system at points of application of
forces X -
(BGO72) i, b,'v=b,fbyR+b,fb;X =0
or
(308a) ......cciiieiiiinin... DX+D,=0
where
(3093) .iiiiiiiiiiiiinian., D=b,fb, , Dy=b,fb,R
Hence
(3102) ..eiiiiiiiii. X = —D-1Dy=— (b, fh,)~'b, fb,R
True stresses
(296a) ...t S=bR
where
(B11a) oieiiiiiiiii b=by— b, (b,'fb,)~1b, ‘fb,
True strains
(297a) i v=fS=fbR
Displacements r due to R
(300C) ....oiiiiiiiiiaea, r=b'v=bfbR=FR
where
(312a) iR Fx=F,—by'fb,(b,"fb,)-!b,fb,
and
Fo=by'fby is the flexibility of the basic system since we may choose
(B13a) uiwammses i s b=b,

Cf. Eas. (217), (223), (222a), (224), (225), (226), (227a), (228), (229), (230)

Problem a

Given a set of joint displacement r, determine the set of kinematicaily
indeterminate joint displacements U necessary to satisfy the equilibrium
conditions. Find also the forces R in the directions of r.

Complete displacement matrix

U (302b)

By putting U=0 we obtain the so-called basic system which is kine-
matically determinate within limits of idealization.
Strains in basic system

D St L2 (303b)
Strains due to U (with r=0)
vi=a U e (304b)

where a, and a, are obtained by kinematics alone.
True strains in actual structure

v=votvi=agr+a,U . ... ... ...l (305b)
Forces on elements
S=kv=kagr+ka,U .......................... (306b)

Equilibrium condition in actual system at non-prescribed displace-
ments U

Problem b

Given a set of displacements r find forces R, stresses S and strains v
From Egs. (300c)

(Gl4a) ..ot r=FR

Hence

(315a) ...... R SRS R=F-1r
(3162) iivsiv i v S=bR=bF-Ir
Bl7a) ..., v=fS=fbF-1r

. Once F is known the question of statical determinacy or indeterminacy
is irrelevent in this problem.

a;’'S=a’kayr+a,’ka,U=0 ... ................. (307b)
or

CUHC, =0 i i (308b)
where

C=a,’ka; , Cy=aykagr ...................... (305b)
Hence

U=—-C1C=—(a/ka))ta,’kagr .............. (310b)
True strains

R T (296b)
where

a=a;—a)(a’ka;)la;’ka; ......... .00, (311b)
True stresses

S=kv=kar ........ . ... . i (297b)
Forces R due to r

R=a'S=a’kar=Kr ..................cvuvun.. (300d)
where

K=K,—ajy'ka)(a,’ka;)a,’kay .................. (312b)
and .

Ko=ay’ka, is the stiffness of the basic system since we may choose
AR it e e e, (313b)
Problem b

Given a set of forces R find joint displacements r, strains v and stresses S
From Egs. (300d)

R=Kr . e (314b)
Hence

r=K IR (315b)

v=ar=aK-IR ............ ... ... . ... (316b)

S=kv=kaK-IR............ccoiviiiiiinnrnnn. (317b)

Once K is known the question of kinematical dsterminacy or indeter-
minacy is irrelevent in this problem.

Problem ¢

Given a set of initial strains H imposed on free unassembled elements
due to temperature, lack of fit, ‘give’ at foundations, find stresses S and
total strains v when forces R=0.

Total strains of elements

(3182) ..iiiiiiiiiiiiinn, .v=fb,X+H

Compatibility condition in actual system at points of application of
forces X

(Bl9a) ..., b,’v=b,fb;X+b,’H=0
Hence,
(320a) ... X=—(b,fb))'b’H
and
(G21a) .o S=—b,(b,'fb,)-'b,'H
(322a) ... v=—fb,(b,'fb,)"b,’H+H
Note,
H=—-f)
Cf. Eq. (236)

46

Problem ¢

Given a set of initial stresses J imposed on elements with frozen joints
(i.e. all joint displacements zero) due to temperature, lack of fit, ‘give’ at
foundations, find strains v and stresses S when displacements r=0.

Total stresses on elements

S=ka,U+J ... .. e (318b)
Note that the column matrix U must here include all unknown joint
displacements.
Equilibrium condition in actual system in the directions of U
a’S=a,’ka)U+a,J=0 ... .................... (319b)
Hence,
U=-—(@/ka)ta/) ..., (320b)
and .
v=—aayka)ta’. ... (321b)
S=—ka(a,’ka,)ta," J+d ... (322b)
Note,
J=—kH

1
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TABLE II (continued)

Problem d

Assume that we write the total set of forces (including the statically
indeterminate forces) in the partitioned form

[
(323a)

L

in which Z is known in terms of R and X. We set now the modified
problem (a): Given the set of forces R determine the set of forces X
necessary to satisfy the compatibility conditions.

Here in the basic system obtained by putting X =0 the stresses

(303a) So=b,R
are completely known although the system is statically indeterminate.

Similarly we know the stresses

(3042) ...iiiiiiieiiie s S,=b; X
when R=0
True stresses in actual structure,
(3058)  hiieininaiannn §=S,+S;=bgR+b; X )
strains in elements
(3062) ... v=fS=fbR+fb, X

Compatibility condition in actual system at points of application of X
(3242) b,’v=b,'fb,R+-b,'fb; X =0
where I_al is a set of stresses statically equivalent to unit X's (and R=0)

preferably found for Z=0. In the latter case the rows of b, are the same
as the corresponding rows of b, of Problem (a).

Thus,

(3252)  ciiiiiii s X = —(b,'fb,)"!b,"fb,R
True stresses and strains

(2962) .. S=bR , v=fbR
where

(€727 ) I b=b,—b, (b, fb,)"1b,"fb,
Displacements r due to R (see Eq. (3002))

(3272) oo r—=b,’v=FR

where

(3283) .rniiinaianann Y F=F,—byfb,(b,'fb,)-1b,'fb,
and

(3292) i F,=bqy'fb,

is the flexibility of the basic system.

The matrix by is a set of stresses statically equivalent to unit R's pre-
ferably found for Z=0 and X=0. In the latter case b, is identical with
b, of problem (a).

Cf. Egs. (226), (227a), (229), (230)

Problem d

Assume that we write the total set of joint displacements in the parti-
tioned form

(323b)

Lo J
in which W is known in terms of r and U, We set now the modified prob-
lem (a): Given the set of displacements r determine the set of displace-
ments U necessary to satisfy the equilibrium conditions.
Here in the basic system obtained by putting U= the strains
vo=agr (303b)
are completely known although the system is kinematically indeterminate.

Similarly we know the strains

vi=a, U e (304b)

when r=0
True strains in actual structure,

v=vptv=agr+a,U ... (305a)
forces on elements

S=kv=kagr+ka,U ....... ...l (306a)
Equilibrium condition in actual systzm at displaczments U

3,’S=3a,'kayr+a,’ka,U=0 ................00 (324b)

where 3, is a set of strains kinematically equivalent to unit U’s (and r=0)
preferably found for W =0. In the latter case the rows of a, are the same
as the corresponding rows of a, of Problem (a).

Thus,

U=—@/ka)la/kayr ......coovvvnviniiniane (325b)
True strains and stresses

v=ar, S=kar ........ ... .. i (296b)
where

a=ag—a,@,/ka))ta’ka, ... (326b)
Forces R due to r (see Eq. (300b))

R=3,S=Kr ... (327b)
where

K=Ky—3g'ka(a,'’kap)ta’kay ................0 (328b)
and

Ko=3pKay .. .cevtereriininiinnnneneeaoannasens (329b)

is the stiffness of the basic systam.

The matrix 4, is a set of strains kinematically equivalent to unit »’s pre-
ferably found for W =0 and U = O. In the latter case &, is identical with
a, of problem (a).

Condensation of flexibility matrix

The calculation of the flexibility matrix F given under problem (a) can
be developed concisely as a condensation of the complete flexibility matrix
for the forces R and X.

This matrix may be written as

=
| Fs Firi
Fm_ Fir
L
where 1(I1) is for forces R (X) only and was denoted by F, (D) in problem

(a). Evidently F;;;R=D,.
The flexibility matrix F of the actual structure under the forces R is then

(331a) ... F=FI—FIIIIFII—1FIII

Naturally this condensation rnay be performed in two or more stages
and is then equivalent to the method of problem (d).

Condensation of stiffness matrix

The calculation of the stiffness matrix K given under problem (a) can be
developed concisely as a condensation of the complete stiffness matrix for
the uisplacements r and U.

This stiffness may be written as

- ]
K K
Kirr Kir

[

where I(I) is for displacements r (U) only and was denoted by K, (€) in
problem (a). Evidently K, r=C,.
The stiffness matrix K of the actual structure for the displacements r is
then
K=K,—K; /K K;1r (331b)
Naturally this condensation may be performed in two or more stages
and is then equivalent to the method of problem (d).

Cf. Eq. (175)
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TABLE II (continued)

Elimination and rigidification of structural elements
Assume a set of initial strains, written as column matrix H, in the struc-
tural elements to be removed, of such magnitude as to give zero stress in

resultant system. ]
Write the b and b, matrices of the complete structure in the partitioned

form

| ~ =
. I b, | by,

(332a) ........ b= , b,=

| ba b;a

(.
where the suffix 4 refers to those elements that are to be removed.
We find

(3332) .. H=(b,,D"'b,,")"'b,R
and hence forces in the new structure
(334a)  ....iinen S,={b,—b;,D1b,,'(b,;,D'b,,")"'b,}R

In this process the number of statically indeterminate forces X has been
reduced to a degree depending on the number of elements removed.

In the inverse process of making infinitely rigid certain of the structural
elements we have merely to put f,—=o for the affected elements. The
number of statically indeterminate forces remains the same.

Cf. Eqs. (264), (267), (268)

Rigidification and elimination of structural elements

Assume a set of initial stresses, written as column matrix J, in the struc-
tural elements to be made infinitely rigid, of such magnitude as to give
zero strain in resultant system .

Write the a and a, matrices of the complete structure in the partitioned
form

[ ~ 7
| a'.'I | | aly
a= | | = | e (332b)
| an | | 3
[
where the suffix & refers to those elements that are to be made infinitely
rigid.
We find
J=(a;,,C A )t asr e (333b)
and hence strains in the new structure

v,={a,—a;,,Cla,(@a,C'a, ) tar ... (334b)
In the process of making elements infiniteiy rigid (stiff) we introduce
kinematic relations between displacements and hence reduce the number
of unknown displacements U accordingly.
In the inverse process of eliminating certain of the structural elements
we have merely to put k,=o for the affected elements. The number of
kinematically indeterminate displacements remains the same.

Generalized Forces
Generalized forces given by

(3362) iiiiiiiiiiiiieeiaan, DX+D,=0

where

(3372) e . D=B,'DB, and D,=B,'D,B,
Then

(3382) ...iiiiiieiiiiiiien.es S=bR

where

(33%) .....coiiieienn. b=boBy—b,B,(B,'DB,)"'B,’b,'fb,B,

and the flexibility of the actual structure for the forces R is
(340a) F=F,—By'byfb,B,(B,'DB,)~1B,’b,fb,B,

where

(G40C) oo Fo=By’by fboB,

is the flexibility of the basic system under the forces R

48

Generalized Displacements
Generalized displacements given by

- . 1ol

[r| [RARcOf | 7|

! I = | ! || L (335b)

‘ U | l OA | |U

L = [ S |
The equation for the unknown U is

CULC=0 .. .. (336b)
where

C=A/CA and €,=ACA, .............ccvvvrnnnn. (337b)

Then

VAP e (338b)
where

a=agA,—a,A(A'CA A a ' kagAy ... ... (339b)
and the stiffness of the actual structure for the displacements r is

K=K,—Ayag’ka,A (A, 'CA 1A, 'a’kaA, ...... (340b)
where,

Ko=Agagkaghy  ...oooviiiiiiiinn, (340d)

is the stiffness of the basic structure for the displacements r

r‘J

-
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HE application of the general theory with displacements as unknowns

to frameworks—both of the pin-jointed and stiff-jointed type—is

straightforward, For the stifi-jointed system the method is particularly
simple when direct and shear deformationsare ignored. In fact, for all frame-
works the determination of the matrices C and C, is trivial once we con-
sider all possible degrees of freedom of the joints. See for example, the
systems of FiGs. (23), (24) and (48) investigated on pp. 23, and 45,
which show clearly how elementary the matrices a and stiffness k are when
we break up the structure into its simplest constituent components. We
need not therefore concern ourselves any more here with frameworks, and
we turn our attention to the membrane type of system characteristic of
aircraft applications. Essentially, a major aircraft structure like a wing
consists of an assembly of plates (fields) stiffened by flanges along their
edges. The field may be a curved and/or tapered surface but we ignore here
both these effects and consider only rectangular flat elements of constant
thickness. For convenience the element formed by the plate (sheet) and its
fouredge members is denoted by the term unit panel. [t is assumed that
the flange areas are constant along each edge.

[ -
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Fig. 49.—Stiffnesses of unit panel

We determine first the stiffnesses &, of the unit panel shown in FiG. 49
for unit displacements in the z- and s-directions at the four corners or nodal
points of the idealized system. The stiffness of our element is hence an
8 % 8 matrix. As in the case of the force method it is necessary for the
practical evaluation of the k;, to introduce simplifying assumptions which
are, naturally, concerned here with the state of deformations. Thus, we
assume that the displacements vary linearly between the nodal points.
Although this idealization offends against the equilibrium conditions its
effect upon the stiffness is not pronounced as long as we keep the unit

panels reasonably small. Nevertheless, it is inevitable that the stress dis-
tribution derived from an approximate deformation analysis should, in
general, be less accurate than the one obtained from the approximate force
method in the same grid system.

We denote for the purpose of the analysis of the unit panel the dis-
placements parallel to the s and z axes by wand w respectively and intro-
duce also the local coordinate system £, {. Consider now the state of strain
and stress arising from a unit displacement

' Vo=l e (341)

Following our assumption the internal displacements are given by

=0 wy= f (1 —S ...................... (41a)

where the suffix 3 indicates that these displacements are due to v3=1.
The strains and stresses in the sheet are*:

£
€= —Id y Tz™= _“Gm 1
1
e:::I=_[.( 1 "5 y  €ug =0 F .. (342)
_E £y vE’ £
aa=7(1-2) c o= (1 J
where E'=E/(1 —v?)
Strain ¢, and load P, in flange B,
1 1
€T » Pra=By7 e (342a)

all other flange strains and loads are zero.

Similar formulae are obtained for the strains and stresses due to any
other v;=:1. To derive the stiffnesses we apply the unit displacement
method Eq. (295b), which takes here the form,*

kpe= J'" f o endbdl

where the integral extends over sheet and flange. For example, for the
stiffnesses associated with v,=1 we obtain,

foo Edt_EBy Gil 1
wTT3 T T Ted
E'dt Gil
oy~ — 5T 0 —%4
Lo sreeiens (343)
E'dt EB, Gil
kp=+37 +77+ 32
E'dt Gil
ko=t + 0 ~3a J
and
vE't Gt vE't Gt
kn=—7"t7 » ke=t+7
...... (3432)

vE't Gt vE't Gt

kw=-—7 » k=t 7
It is simple now to write down the stiffnesses corresponding to any other
unit displacement. For convenience we express the total stiffness matrix

in the form
k==K, +hathe oo (344)

* Contrary to our usual notation subscripts are used here to denote stresses and strains due to unit
displacements.
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where the suffices s, 4, f indicate the partial stiffnesses for shear strains
and direct strains in sheet, and direct strains in flanges, We find

ky =

Gt Gt Gt Gt Gid Gtd Grd Gid
! 4 4 4 T3 el KT
Gt Gt Gt Gt Gd Gd Gd Gud
4 3 4 4 6 3 o 3
L _l
'_ ’ z _I
E’dt E'dr E'dt E’dt vE't yE't vE't vE"t
3! 6l — 31 6l 4 74 4 "2
E'dt E'dt E’dt _E'dr vE't vE't vE't vE't
6/ 3/ 6/ 3/ 4 T4 4 4
E’dt E'dt E'dt E'dt vE't vE’t vE't vE’t

B 1
Gl Gl G G Gt Git Gt Gr
3dd " 3d 6 6 4 4 4 T4
Gl G G Gl Gt Gt Gt Gt

"3d 3d 6d 6d 4 4 T4 i
Gu  Gi G Gl Gr Gt Gt Gt
6d  6d 3d id 4 4 4 4
Gl G Gt Gld Gt Gt (e Gt

T 6d 6d  3d id 4 4 4 "4
Gt Gt Gt Gt Gid Gid Gtd Gid
4 T4 4 "4 37 6l 31 T 6l
Gr Gt Gt Gt Gird Gid Gid Gid
44 4 4 6 3 63

T3 T e 3 el 4 4 4 4
idl E’dt E’dr E’dt vE't vE’t vE’t vE'1
el T3 6/ 31 T4 N

I:E_'I vE't vE't vE't E’'lt E’ll

) 4 4 74 3d T3d 6d " 6d
£ Y
_i’t_v’E'r vE’t vE’t E'li E'lr E'lt E'lt
4 4 4 4 34 3d ~6d 6d
vE't vE't vE't vEt E'lt E'lt E'lt E'll
4 4 4 T4 6d ~6d 3d 34
_VE't vE't vE't vEt E'lt E'lt E'll E'li
4 4 43 4 " 6d 6d ~3d 3d
i _l
EB EB
T‘— 0 "TL 0 0 0 0 0
EB EB
o Tt -5t 0 0 o o
EB EB
—,—‘ 0 Tl‘ 0 0 0 0 0
EB, EB
0 -7 T 0 o o
0 0 o EG, EG
0 7 7 0 0
EC, EC,
6 0 o0 0 —— = 0 0
o o o o0 o o EC EG
d d
0 0 0 0 0 0o EC. EC,
d d

L

(345)

(345a)

(345b)

In assembling the panels of FiG. 50 to form a wing structure the stiff-
nesses (345) and (345a) may be simplitied considerably when applied to
rib and spar webs. Thus, for these cases we can always neglect the expan-
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sion in the di_rection of the height of thz web. The corresponding formulae
may be obtained by putting v, =v; and v; =vy which apply when C, and

C, are infinite.

The stiffnesses k, and k, contract to 6 x 6 matrices and are

k.

G G Gl
3d  3d  6d
_Gil Gl GH
3 A ed
G_I/ Gl G
6d  6d 3d
G Gl Gil
T 6d 6d 3d
Gi Gt Gt
227 i
Gt Gt Gt
-
E’dt E'dr E’t
37 6 3
E'dt E'dr E’dr
6/ 3/ 6/
E'dr E'di E'dr
37 6l 3l
E’dt glh I:E/
6/ 37 6l
0 0 0
0 0 0

Gl

“6d

Grl

6d

Gl
3d

u’q N'Q g~|q
Q Q2 ¥Q

Gt Gt
T
G Gt
2T 7
Gt Gt
2 2 .
Gt Gt

2 2
Gid  Grd

[} ]
G Gid
/]

Ml (=

0 0

0 0

n 0

0 0

0 0

0 0

(346)

(346a)

No contribution of the flanges is called for when evaluating the stiff-
nesses of the webs since k is best included in the top and bottom panels.

Further simplification of the stiffness matrices for the webs is possible
when the top and bottom panels of our wing structure are identical. Then
for vertical loads alone the horizontal displacements in the two covers are
antisymmetrical and the stiffness matrices (346) and (346a) may be con-
tracted to 4 - 4 matrices.

We illustrate now the application of the unit panel stiffnesses to the
diffusion problem shown in FiG. (50). The plate is reinforced longitudinally
and laterally by stiffeners of area B and C respectively, and edge members
of area 8,. Displacements in the s and z directions are defined at all nodes
of the grid formed by lateral and longitudinal stiffening. Naturally the
grid does not have to be restricted to this definition and we canalways
choose a finer one if the stiffeners are widely spaced so that the assumption
of linear variation between adjacent nodal points can represent adequately
the displacement pattern. Using the stiffness matrix of the unit panel
already derived, the setting up of the complete stiffness matrix follows
quite simply. It is oniy necessary to identify quickly and easily the dis-
placements defined for the unit panels separately with those defined for
the assembled panel. The complete stiffness matrix is obtained as (Eq.

299b).

K- a'ka

where k is the stiffiness matrix of the unassembled unit panels and may be
written in the diagonal partitioned form

[ amn I eanl e

'l'.l.LI.LII'.ll..[!ll!



k, is the (8 x 8) stiffness matrix for the unit panel g as derived previously,
see Eq. (344).* To preserve the symmetry of formulation, the stiffnesses
of the reinforcement elements are included with the panels, Thus each of
the areas B or C is split in two and B/2 or C/2 associated with the panel on
each side. For the boundary member, of course, the whole area must be
included with the panel it bounds.
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Fig. 50.—Rectangular stiffened panel. Assembly of stiffness
matrix from unit panels

Since the terms in the a matrix are either unity or zero their formation is
particularly simple. Writing a in the partitioned form

a, is the sub-matrix of 8 rows and 50 columns relating the displace-
ments defined for the unit panel g (F1G. 49) to the displacements as defined
for the complete system of FiG. (50). Superimposing the unit panel on
panel ¢ of the complete assembly we find that the directions 1, 2, 3, 4, 5, 6,
7, 8 of the unit panel coincide with 15, 25, 17, 27, 16, 26, 18, 28 respectively
and the sub-matrix a, is thus

looods 16 17 I18.u.... 25 26 27 28...... 50
0..... I 0 0 oO....... 0 0 0 O....... 0
0..... 0 0 0 oO....... I 0 0 o0....... 0
0..... 0 0 1t oO....... 0 0 0 o0....... 0
0..... 0 0 0 O0....... 0 0 | O0....... 0
a,= (349)
0..... 0 I 0 O0....... 0 0 0 O0....... 0
0..... 0 0 0 O....... 0O | 0 O0....... 0
0..... 0 0 0 I....... 0 0 0 O0....... 0
0..... 0 0 0 oO....... 0 0 0 1....... 0
L. -

All remaining columns in a, are zero.

As typical terms in the complete stiffness matrix the stiffnesses associated
with direction 15 are, for a uniform panel with t,d, 1, Band C, the same in
each bay:

® Suffix 5 refers here to the number of unit panels and should not be confused with suffix s for st1iff-
ness due to shear stresses in (344).

4E’dt 2EB 4Gl A

ki = W Tt

2E’'dt EB Glt

kyzas=kyz,15=

3 T T T3
E'dr 2GIr oo G50
kesas=ks15= 3 T34
E’dr Glt
kzs.m:k:x.m_:k7.15=k27.15=“T/_@
vE't Gt
ku.xs=“k4.15=—ksa.1a=ka.ls=T+'4T J

All the remaining k’s associated with 15 are here zero due to symmetry.
If R is the column matrix (50 rows) of forces applied at the nodes then
the displacements r are given by

r=K-1R

Naturally, loads may not be applied at all nodes (joints) in which case
it may be desirable partially to solve the problem by eliminating the dis-
placements where forces are not applied and to use the condensed matrix.
(See TABLEIL)

Finally we apply the unit panel to the assembly and analysis of the egg
box type of structure illustrated in FIG. 51 where upper and lower plates are
connected together by longitudinal and transverse webs. Any stiffeners
on the plates are assumed for the present example to be along the lines of
web-plate intersections. The structure is taken to be symmetrical about the
horizontal middle surface and we consider the application of vertical loads
only. With these assumptions it is only necessary to specify three displace-
ments at each web intersection : the vertical displacement and the two
rotations of the web intersection line (FIG. 51). In many cases the webs may
be too widely spaced for the assumed linear variation of displacements
between them to give satisfactory accuracy. It then becomes necessary to
introduce further grid lines intermediate between the actual webs, the dis-
placements being defined at all nodal points formed by grid line inter-
sections, Where such nodal points do not lie on a web then obviously we
define there only the two rotations, since vertical displacement does not
affect the cover plates. Naturally, further lateral and longitudinal rein-
forcement of the plates can lie along the extra grid lines.

The analysis of such a structure under vertical loads follows that given
under Problems (a) and (b) in TABLE 1. Thus, we designate the vertical
cﬂsplacements as r and take the rotations as the redundant displacements

:I‘he strains of the elements are here identified as -the displacements of
the unit panel defined in F1G. 49 and can therefore be written (Eq. 305b).

v=a5r+a,U

Unit panel f (web) /\ /\d
1

g

Unit panel ¢
(lep cover)

Fig. 51.—Egg-box type of structure. Analysis by displace-
ment method

The equation for the unknowns U, which is here the condition of equili-
brium of the moments corresponding to the rotations U at the joints is
(TABLE 1, Egs. (310b)),

a,’ka U +a,'kayr=0
or
U = —(a,’ka,))a,'ka,r
The stiffness for displacements r only is then
.............. (312b)
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from which the displacements r under loads R are found as

r

—K-IR

The total strains of the elements due to R are then

v=ar={a,—a,(a,’ka;)'a,’ka,}K-R

from which the stresses in the unit panels are calculated.
Due to the simple geometry of the structure the matrices a,, a, are again
quite straightforward. Thus writing a, in the partitioned form

(316b)

351

it is apparent that for the cover plates the a,'s are all zero since vertical
displacements r can cause no strain in the plates* (with U=0).

For the web f, the ag, matrix is easily seen to be

I..... 5 6..... 9
0..... 0 0..... 0
0..... 0 0..... 0
0..... 0 O0..... 0
= |01 0| e @52
0..... 1 0..... 0
0..... 0 1..... 0
0..... 0 1.....

Likewise the a; matrix for unit panel ¢ of the top cover is
..... 9 10 11 12 .....15 16 17 18 .....
= -
..... h2 0 0 O0.....0 0 O O.....
..... 0 0 A2 0.....0 0 O O.....
..... 0 0 0 O0.....h//2 0 0 O.....
..... 0 0 0 O0.....0 0 A/2 O0.....

.= (353)
..... 0 A2 0 0.....0 0 O O.....
..... 0 0 O A2.....0 0 O0 O.....
..... 0 0 0 O0a...0 A2 0 O.....
..... 0 0 0 0.....0 0 O AH2.....
i _

and for the web plate
..... 0 11 12 .....
..... h2 0 0 .....
..... —h2 0 0 .....
..... 0 0  h/2.....

ay=..... 0 O —A2.....01 o (354)
..... 0o o0 o0 .....

..... 0 0 0 .....
..... o 0 o0 .....
..... 0o 0 € isan

All other columns are zero.

The matrices for the web plates may of course be reduced to six or even
four rows by using the assumption of zero vertical direct strain and the
antisymmetric character of the U displacements (see also Eqs. (346) and
(346a)). However, we retain here the full eight displacements of the unit
panels to show the simple formation of the 2 matrices with a completely
standard unit panel.

The stiffness matrix k of the unassembled unit panels is written again in
the diagonal partitioned form:

¢ This, of course, is no longer true if the webs are tapered in depth, when an appreciable part of
the ;henr force carried here by the web is equilibrated by the vertical component of the direct stresses
in the covers.
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- -
2k O L. ] 1
o 2k, O ... o
» covers
k= R e (355)
(e ] k, 0...0
> webs
O i o k
i e

The factor 2 is introduced for the cover plates to take advantage of the
symmetry of the structure by including the unit panels of the lower cover
with their opposite numbers in the top cover. The k,, k, etc., are of course
the stiffnesses of the unit panels discussed earlier.

The method of formulation of the matrices a,’ka,, etc., given above is
probably the most convenient for use with the automatic digital computer
since the various terms in the constituent matrices are reduced to their
simplest and most standard forms. However, it is instructive to consider
directly the components of a,’ka,, etc., and gain some physical insight
into their formation.

We call
ag'kay=K, }

a’ka,=C e
a,’ka,=C
Thus the complete stiffness matrix for the displacement column {r U} is

-
Ko

c cC
L. |

K, is clearly the set of vertical forces R which arise due to unit r displace-

ments when U is zero. Evidently only the webs are involved and we find

easily as a typical example the vertical forces at the joints due to ry;=1

_ 1
c/

2Ght,, 2Ght,
ky.s5.5= i + d 1
Ght, L
kogs=koas=— . AR R RER T (358)
Ght,,
ko,3.5=Ko.2.6=— -

Similarly € is the set of moments arising at the joints due to unit dis-
placements (rotations) U. By using the stiffnesses of the unit panel (or by
carrying out the matrix multiplication a,’ka,;) we find for the moments
due to Uy=1

2E’h%dt EBR* E’'R%t, 2GR  Ghlt, ]

__ _E'Wdr EBR* E'W, Gkt Ghit,
Ca9= G50~ — 3] T T 121 6d 76

E’'R*dt  Ght
U,9=C9="gI  — 34
E'hdt

€17,9=C13,9=C5,9=CL,9= 127

> .. (359

Gh2lt
12d
vE'h%t Gh®t
T BT U= T 02,0 Co9= T g 3

Finally € is the set of moments arising at the joints due to the vertical
displacements. Again only the webs are involved, and we obtain easily

_ - Ght,
€128~ ~Cas= 3

...................... 360)
- _ Ght,, (
€155~ —Ca5= "3

—

l
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In some problems it may be possible to neglect the shear deformations
of the webs. Quite obviously this introduces kinematic relations between
the rotations and the vertical displacements. However, the above break-
down of the structure into the simple unit panels is then not the most
suitable. A suggested method for the setting up of the K matrix for this
case, based on the theory of bending of plates, has been given by Williams.*

9. ILLUSTRATIONS TO THE ANALYSIS OF REDUNDANT
STRUCTURES BY THE FORCE METHOD

In this section we present two very simple applications of the force
method developed in Section 8C. The first example shows how to deter-
mine the statically equivalent stress system in an N cell tube typical of a
wing structure.t With the direct stresses distributed according to E.T.B.
we find using the 8;; method the corresponding shear flow distribution
for the multi-cell cross-section with the assumption that the ribs are rigid in
their plane. Naturally, the axial constraint stresses and the effect of rib de-
formation remain to be investigated but the statically equivalent stress
system derived here is particularly useful, being, in general, a reasonable
first approximation when the structural design has to be based merely on
a statically equivalent stress system. This, of necessity, has been the
approach in most cases up to the present owing to the difficulty of
computing highly redundant systems.

Although the problem may, with some justice, be described as trivial in
relation to the powerful analytical techniques of Section 8 it is astonishing
to see what an unfortunate treatment it often receives—even today. g

The second example analyses—first by the 8, method—the axial con-
straint stresses in a four flange tube with shear carrying walls and deform-
able ribs under arbitrary loading at the rib stations. The solution of the
same problem is also obtained by the matrix method and the effect of a
cut-out is investigated by the H matrix device of p. 41. The ‘exact’ flexi-
bility of the structure is derived and compared with that given by E.T.B.
and Bredt-Batho. A thermal loading is also investigated by the matrix
method.

These two problems are only meant as preliminary illustrations of the
force method. Thermal applications of the &, method are investigated in
Part 1I. More complicated structures, particularly suitable for showing
the power of the matrix formulation of the theory, will be analysed in
a later publication.

(a) Shear Flow Distribution in a Multi-cell Tube Due to E.T.B. Direct
Stresses

Consider the uniform cylindrical and multi-cell tube of the type shown
in FIG. 52 subjected to shear forces S,, S, through and a torque 7, about
the point O. Find the corresponding distribution of shear flow if the direct
stresses are given by the engineers’ theory of bending; thus axial constraint
stresses due to restrained warping are ignored. Instead of referring the
loads to the arbitrary point O we may alternatively give the point D
through which the resultant of all transverse forces is acting, i.e. Tp=0.

_ The direct stress o due to bend_igg moments M,, M, about the axes Gx,
Gy through the section centroid G and parallel to Ox, Oy, is

7 _Xx
0=M‘7;+Myl_u .......................................... (al)
where
rvi MI_MV(IJ'//Iy) 7 Mv—‘Mr(,.ry/l.r)

(a2)

M= T— (L)L) M,= T [Uy)Thd,] ARy

are the effective bending moments for the chosen axes which_are,_in general,
not the principal axes of the cross-section. Physically M,, M, are the
combinations of M., M, which give rise to pure bending strains about
Gx, Gy respectively. We could alternatively restrict ourselves to principal
axes of the cross-section but in practice, unless these are obvious, it is
preferable to use Eqs. (al), (a2). They are not only more convenient from
the computational point of view but permit also the retention of parallel
axes Ox, Oy at all cross-sections of a wing regardless of the change of
directions of the principal axes.

The condition of equilibrium in the z-direction of an element dsdz of a
wall gives,

dg Do i

D—}-}-I,E—O .............. .............................. (a3)
where

q=to,,=shear flow in the wall.

t,=effective direct stress carrying thickness of the wall (i.e. in-
cluding an allowance for the stringers).

Similarly, we find from the equilibrium of an element d< of a typical
flange g placed at a web-cover intersection (see FIG. 52),

* foc. cit.p. 17,
1 See J. H. Argyris and P. C. Dunne, ‘The General Theory, etc.’, Part V. J.R. der. Sac ,Vo!.L L1,
P

g'" boom,
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Basic system for calculation of 0,

(c) 0

xM

Distribution

Fig. 52.—Shear flow distribution in multi-cell tube. Sign conventions and
equilibrium conditions

0o,
BUD—ZJ——qJ_~q,,,+qU+=0 ................................ (ad)

Egs. (a3) and (a4) yield, except for a constant of integration in each of the
N cells, a shear flow distribution g whose resultants in the y and x directions
are S, and S, respectively. Since there remains one further equilibrium
condition,

To=0qpads .. e e (as)

for torque about O, the degree of redundancy is (N—1); (the integration
in (a5) extends over all walls and the normal p, is taken positive (negative)
if movement along s leads to an anticlockwise (clockwise) rotation about
0). It follows that the shear flow distribution in a single-cell tube under
prescribed transverse loading is statically determinate once we stipulate
that the direct stresses are distributed as per E.T.B.

For the analysis of the general case of an N cell tube we find it more
convenient to use a slightly different approach. Thus, for the moment,
we prescribe instead of the torque equilibrium condition, the rate of twist

b
¢ == a'_z .............................................. (ab)

in all cells. The prescribed ¢ may be considered as an initial ‘give’ ex-
perienced by the ribs maintaining the shape of the cross-section and is
subsequently determined from the torque equilibrium equation. Our
modified problem has now N redundancies. The basic system is obtained
by cutting the wall in each of the NV cells and the unknowns

X], Xl Iy v o v e o v an N XA\'

are then the shear flows at the cuts. They are determined from the com-
patibility equations,

N
Lj X O =0 e e (a7)

which express the conditions of zeto relative warping 8 at the cuts.*

September 1947, p. 770, and J. H. Argyris and P. C. Dunne, Structural Analvsis, Parct 1T ol H,
of Aeronautics, Pitman 1952.

* We denote here the warping by the unconventional symbol o to apply directly Eqs.(282}in their
original notation.
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The shear flow distribution g, in the open tube forming the basic system
is obtained from Egs. (a3) and (a4). Integrating (a3) with respect to s
and using Eq. (a2) we find

qh=§y%+§zo—:” ........................................ (a8)
where
§ _ SV_S:(IJ—V/Iv) T _ Sz""s!l([:v/lz) (a9)
R (VASLY7 A s I (VARLT7 9 /5 B
and
Dy = —[Ftudds, Do = —JFOS + oo (al0)

o
To detert;nine completely the D, distributions from'Eqs. (al0) we require
also the equilibrium conditions of the type (a4) at each joint of spar web
and cover. Using (al) and (a8) in (a4) we have

(Dzy~Dza—D;_+By)y, =0 )

(Dyy —Dya—Dy_+ BX)y=0 J
The positive directions of ¢ and s are indicated on FIG. 52.

Choice of Basic System .

The reduction of the multi-cell tube to an open section can, of course,
be achieved in a variety of ways. For example, we may cut the upper or_
lower cover in each cell or we may cut N of the vertical walls (see FIG. 52).
However, consideration of the form of the 3's shows that the compatibility
equations (a7) are very much simpler for the former choice. We confirm
this immediately by applying the unit load method for the calculation of
the &’s which measure the relative warping at the cuts. Thus, if we apply
unit shear flows at each of the cuts of the open section in FiG. 52 we
produce merely constant shear flow around each of the individual cells.

The Redundant Shear Flows

5 _
, /{, S, {:'
o ¥ fm
R Ly z R
§ [+] S,
/ ] 1, Gl_ / 6

Transverse loading S, through D Transverse loading S, through O
$-0 §=0

Fig. 53.—Effective shear forces for bending about non-principal axes

If we consider now the total transverse loading_S,, and S, as acting
through D and split it into the two component loads S, and S, (see FIG. 53)
we can express the statically indeterminate shear flows in the form

_D,y =D
XM=qM=s,,D—’”+S, L (al2)
A 1,

where the D,y and D,y are unknown. For the basic system of F1G. 52 the
shear flows in the M cell of the actual system can then be written as:

external walls q=qy+qy ]I
web between M—1 and M cells g=q,+qy_,—qmu coe. (al3)
web between M and M+1 cells q=q,+qy—qas,

We may always put the total shear flow in the form

D, <D,
v

G=S TS (al4)

and Egs. (al2), (al3), (ald4) yield for the cross-sectional function D, in
the M cell

external walls D.=D.,+ Dy )

web between M—1 and M cells D,=D,,+ D, p_y— D,y L (al5)

web between M and M+1cells D,=D,,+ D,y —D.prpy J
Similar equations may be written down for D,.

The 8 Coefficients for the Basic System of FIG. 52

The & 5, coefficients consist of two parts 3., and 8y, corresponding to
the shear flow g, in the basic system and the initial “give’ ¢ (see also
Eq. (177)). We have:

8 410 =0 pop +8,How
Application of the unit load method yields immediately for & s -

q
SMob = I ‘G—l;dslw .......................................... (al 7)
M
where sy, is the circumferential anticlockwise co-ordinate in the M cell
and the integral
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Fig. 54.—Warping in Mth cell of basic system due to rate of twist ¢
-r(. .o .)ds_"
M

denotes integration over the M cell. It must be emphasized that the sign
convention used for ¢, and 5 in the basic (open) system is in opposition
to sy in the left-hand wall of the M cell and hence in evaluating the above
term the sign of g, must be reversed over this wall.

Similarly, we obtain for the relative warping S_W,,q, due to ¢ (see FIG. 54).

8_",,9, = —ZQM¢ .......................................... (al 8)

The standard derivation of Egs. (al7) and (al8) is by kinematics. Thus,
Eq. (al7) is obtained by integration of the shear strain expression corre-
sponding to zero rate of twist. Also, we find (al8) from the condition of
zero shear strain along the middle line of the wall.*

The unit load method also yields directly the coefficients of the unknown
X's. Thus, the relative warping 8 ;3 due to unit shear flow in the M cell is

ds
8.“.\1:.“?:’:% ........................................ (3.19)
where '
ds
By= ‘[ -r—" .............................................. (a20)
M

All cross-terms but Sy u_pand 8y, +1 vanish since only unit shear flows
in adjoining cells act over a common wall. We find

1 1
831. .1I—1:8M—1‘ "= —E'"G—I" l
. /3 P e e (a2l)
31, .‘l+1=8.ll+1. n= -M'—G'-”H J|
where
ds fds
ﬁ,u_ly M= .[7 s Banare = J T e (a22)
M-I, M M. M+1

are the integrals extending over the common walls (spar webs) of cells
M-I, M and-M, M -+ respectively. The minus sign arises since the shear
flows due to unit redundancies have opposite signs in the common walls.
Determination of Redundant Shear Flows

We denote the unknown rates of twist associated with S, and S, by

&, and ¢, respectively. For the loading due to S, the Mth compatibility
Eq. (a7), which expresses the condition of zero relative warping at the
M''th cut is obviously

S, f [D- L
T:{ I —,—fds,,, _ZQ.lIG¢y§ —Bar—1s ¥Der 3y
M

B33 =Bty 1100 3141 } =0

We obtain hence the set of N equations in the N unknowns Dy
D, lr
BiD:i—B1 11D = —IdeSI +20Q, G¢,,§——
1 v

D, /.
=By Dy sy +BuDey —Br ss1 Doy sta1=— IdeS.w +ZQMG¢u§—
M v

|

W
o
L
o
5
f.
+
=
©
5

<

It

[Py 204G, =
N Sy
.................................. (a23)

® See e.g. J. H. Argyris, ‘The Open Tube', AIRCRAFT ENGINEERING, Vol. XXVI, No. 302,
April 1954, p, 102.

— v e ) — O T ] e e —— e



These formulae are usually derived more simply from the condition of
equal rate of twist*

in all N cells in the actual system. In this approach we specify initially
zero relative warping at all cuts and express the compatibility condition by
the equality of ¢ in all cells. On the other hand in our present method we
specify initially the same rate of twist ¢ in all cells and express the com-
patibility by the condition of zero relative warping at the cuts.

The solution of Eqs. (a23) and the corresponding ones for D,y is
straightforward and may be put in the form

I
Doym=dzu +¢1MG¢r:S‘~— 1|

[ [ e (a25)
Dyy=dyu +aMG¢v§L

d.u d,ae are the values of the redundancies corresponding to zero rate of

twist. They yield hence the shear flow distribution g z—commonly known

as the engineers' theory of bending shear flows—due to transverse shear
forces acting through the shear centre E, - g, may be written

-

=S, F+S.7

9k v]z+ 1,

where the cross-sectional functions 4, (d,) are obtained from Egs. (al5)

with d,y (dyy) in place of D,y (D,a). The co-ordinates xy, y,;_gf E, can

be determined from a consideration of the two loading cases §, and S,

through E, shown in FIG. 55. We find

N

Ixg— Loy p=|d.pods  =[Deypods+25d,y 2y ]|
. S L. (2

- zvyE+IvyE='-Idypuds: —IDybpodS—Zzl:dy.wQu Jl
where the integrals extend over all walls and the normal p, is taken positive

(negative) if movement along the positive s direction produces anticlock-
wise (clockwise) rotation about O.

Transverse loading 3, through

Transverse loading 3, through

shear centre E;  §,=0 shear centre €5 5,=0

Fig. 55.—Effective shear forces applied through the shear centre E;

The shear centre allows us to define the loading alternatively by the
shear forces through and the torque

Teg=—Sxg—xp)+S:(yg—yp)=T,—S,xpg+Seyve .......... (a28)

about E,.

To obtain the total redundancies D,y and D,y we have still to determine
the rates of twist ¢, and ¢,. Observing that the distribution coefficients
ay are the same in the two equations (a25)—a direct result of the rigid
diaphragm assumption which allows us to displace the transverse forces
anywhere along their lines of action—we can combine the indeterminate

shear flows due to S, and S, into a single set

Ky I, 38, I
qpn= l—”auG¢y§ +l-0-.wG¢;3.—v =ayG(p:+d)=ayGd ...... (a29)
P v ¥ £
where
di
= =BaF by e (a30)

is the total rate of twist due to the given loading.

To derive the rate(s) of twist we may apply the equilibrium condition
about D (see FIG. 53)

Jqppds=0 .. . e (a3l)

where the sign of pp is defined as for p,. Applying Eq. (a3l) to the S,
loading we obtain

/.
JDoop pds +22d 2y +2Zap 2y - G‘l!’u?‘ =0
or Y

* See loc. cit. p. .’lz9. ‘The General Theory'. See also derivation of Eq. (a24) by the Unit Load

method in Section 7.

£

&, I, Y
2240.‘1.(2‘" -G ,,S—,= —ID,,,pl)dS —ZZd,MQ_,,
I 7

Y

Similarly

— —
N —
—
)
[99)
N
h—

N I, i
2Zayfdy - G‘f’-—g—: — Dy pds —22d, 82y
I} A ]

where the integrals extend over all walls.

Having derived the complete set of redundancies we can calculate using
formulae (al4) and (al$) the shear flow distribution in the actual system
under any given transverse loads.

If we have found the shear centre E, and the torque T it is more
convenient to proceed as follows. Thus, using the equilibrium condition
(FI1G. 55)

Tu=lqpuds . . (a33)

and remembering that the engineers’ theory of bending shear flows have
no torque contribution about £,, we obtain with Eq. (a29)

N
Th' = GqSZZa"Q R R T PN (3.34)
I
or
T
G (ad4a)
22(1}]{2 M
i
Hence the redundant g3 due to torque T are given by:
T
GHa = g i i T e RIS T (a35)
ZZaJ,Q M
I

The shear flow is, of course, constant in each wall between two consecutive
joints. Thus, we have in the M th cell

external walls q8=qBM 1
web between M —1 and M cells  gp=qp, y—1—qnxu L R CE 1))
|

web between M and M +1 cells gu=qru—agn, Ml J
The distribution g4 is known as the Bredt-Batho shear flows in a muiti-
cell tube. The special case of Egs. (a23) corresponding to pure torque is
now written more conveniently in the form

Biasi—81119811=2Q, G

—BA\‘_l, NGBy N—1 +B NGB N =2QA\G¢ .......... (337)
which are most simply derived from the rate of twist formula Eq. (a24).
Expressing the solution as in Eg. (a29) we find the unknown G¢ from
Eq. (a34a).

Note that the total shear flow ¢ of Eq. (al4) may be written as

GomgE B oo v ettt e e e e (ald4a)
where the engineers’ theory shear flows g are given by Eq. (a26).

With the chosen basic system Eqs. (a23) and (a37) are particularly well
conditioned since the diagonal coefficients are predominant and at the most
only three unknowns are involved in a given equation. Direct solution by
elimination is quite easy and may be performsd by slide rule even for a
high degree of redundancy; application of the relaxation technique is
superfluous. An additional virtus of the basic system of FIG. 52 is that the
D,, distribution is quite close to the final d, distribution and the values of
the redundancies are small.

In finding on the other hand the d, 4 redundancies there is a conflict in
the choice of the basic system. For when we cut the external wall in each
cell the D,, distribution is vastly different from the final one although the
equations are as well conditioned as for the D,y since the matrix D is
the same in both cases. Naturally, the criterion of good conditioning of
the equations is always the most important one. The alternative basic
system in which the webs are cut gives a D,, distribution close to the
actual d, but the equations are not so easy to solve since each equation
involvés all the unknowns. To satisfy both the above requirements it is
necessary to make composite cuts, i.e. to cut both upper and lower
external walls and instead of the condition D, =0 at a cut to take say
equal and opposite values of D,, at the two cuts of each cell. In any case
the d, distribution is, in general, of small importance and a more approxi-
mate solution is acceptable.

Generalizations of the Above Analysis

The method given above for the determination of the statically equivalent
stress system in uniform cylindrical tubes may be generalized and applied
to tubes with conical or non-conical taper and with sheet thicknesses and
boom areas varying lengthwise. The angle of taper 26 is taken, however,
to be so small that cos 28~ 1 and sin 26~26.
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T, is the torque aboul axis V-A

Fig. 56.—~Geometry and loading for conical tube

1. Conical and Cylindrical Tubes with Similar Distribution of Material at
All Cross-Sections
Consider the conical tube shown in FIG. 56. At the root the sheet thick-
nesses for direct and shear stresses are f, and r respectively and the
(effective) boom areas B. At any intermediate section the corresponding
thicknesses and areas are given by

’x' =¢‘s’s )
= } ........................................ (al3g)
B=pfB - ]
where
O =T flg .+ Rele v - v o TR+ » » to R " - o Wkt + ¢+ ¢ o R ¢ (a39)

r and r, being the distances from the apex V of the current and root cross-
sections respectively; for cylindrical tubes p=1. ¢ and i}, are non-
dimensional functions of z or p.

In what follows under the present heading (1) all cross-sectional dimen-
sions, areas and functions refer to, the geometry of the root-section.

As in the previous analysis we assume that the direct stresses are given
by the engineers’ theory of bending and write them in the form

— ¥,

Ps
where M, M, are given by Egs. (a2). Note that y, I, are based on the root
geometry. Since the stresses (a40) act along the generators they give rise
to shear resultants at the apex V in the y and x directions which are easily
found to be

M, .
_Iva, and —r—" respectively.

y x
g=r f— B o e B AL < (a40)

Hence the shear forces resisted solely by shear flows g are

Q,=S,+Mr—‘, 0=t o (ad1)

If now the transverse forces are applied through a line VD where D
is a point at the root the shear flow g at any cross-section may be expressed
as (see also Egs. (al4))

_&D. 0D,

q—p z+ o [ R et teum MR (ad2)
where 0,, 0. are determined from Egs. (a9) with Q,, Q. in place of S,, S:.
Thus,

"_Qv—Qz(Irv/lv) = _Qz—Qy(lﬂ/l.r)

Q,,—1 TT)LLY Q,—1 = (729 077 ERCARRRERERERLRRETETEE (ad3)

The cross-sectional distribution functions D,, D, are obtained at the root
cross-section by the method of the previous analysis but with

pzll«ﬁvé—"v (leﬁtﬁxé—‘fz) in place of 45:% (¢§i) e (ad)

in Eqs. (a23), (a24), (a25), (a29), (a32). Note that p%/;zﬁ,l,/@,,, etc., are
constants for the type of loading considered as the transformed Eqgs. (a32)
show. .

The flexural axis is in the present case a straight line VE, through the
apex and the shear centres at all cross-sections. We define this axis by the
shear centre E, at the root. The co-ordinates xg, yg are found as before
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from Egs. (a27). The engineers’ theory of bending shear flows for trans-
verse forces through the flexural axis are now
_Od: 0.4,
qg= ’ Iz+ o J, tteeteeererreteseiessii (ad5)
where d,, d, are obtained for the root dimensions from Eqs. (a23) for

v z

If the shear centre E, has been found we may calculate at any cross-
section the torque T of all applied transverse forces about the flexural
axis. It is then preferable to calculate the Bredt-Batho shear flows gy of
the total statically equivalent shear flow

=GB oo e e e e (adla)

by a slightly modified version of the method on p. 55. Thus, Egs. (a37)
for the redundant gg, become

Biasi—Br 119811=2Q; ppG

_,B N~1> N9Bs N—1 +ﬁ‘\'q3 N =ZQNpl/JGqS ...... (a46)
The solution of which may be written
qBM:a._-,,Gpl,lqu .......................................... (847)
Next we deduce from the equilibrium condition about the flexural axis
T
G = (a48)
2p22ay 2y
f;
Hence the shear flows ggy are
Te
F T - (ad9)
2p22aMQM
I

Finally, we derive the shear flow ¢ in all walls from Egs. (a36).
If the torque is given initially about an arbitrary axis ¥4 we can cal-
culate 7 with the formula

Te=Ts—pQuxg—x)+pO:(Vg—Ya) «oviirirriiiii e (a50)
where x4, ¥4 are the co-ordinates of the point A at the root.

2. Conical and Cylindrical Tubes with Arbitrary Variation of Boom Areas
and Wall Thicknesses

Here we investigate conical or cylindrical tubes with an arbitrary length-
wise variation of skin thicknesses and boom areas. The engineers’ theory
shear flows are not any longer proportional to Q, and Q. and Eg. (a42)
does not apply. The concept of a flexural axis, either straight or curved,
is also not any longer strictly true.

Under this heading all cross-sectional dimensions, areas and functions
are based on the current cross-section.
fr.dw +aa($)dr. auw

q.dr+g—3)dwdr
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v
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T
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Fig. 57.—Equilibrium condition in element of conical tube

For the subsequent analysis we require the modified forms of the internal
equilibrium conditions (a3) and (a4). Thus, we deduce immediately from
the geometry of FIG. 57 the equilibrium condition on a conical element on
the surface

Arf)  dq

~r T =0
or
1L3(ef)  dq
- —b_r_+b_s_0 ...................................... (as1)
where
B PO (as2)
Hence
¥ 1),
D—;=; a—r—Df .................................. (a5|a)
where
_f [ b_f [ (a53)

Df—b_r +r— —bz-l-r ..............................
In practical calculations we find df/dz numerically by finite differences
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The equilibrium condition Eq. (a4) for a flange B, at the intersection of
cover and web becomes here

dapP

Tz’—q,_—q,,d+q,,+=0 .................................. (a54)
where

P, =By0y  wsivhess sl diaths s o aio a0 v a6 8 T 6 S (a55)

To find the statically equivalent stresses for an arbitrary system.of
transverse loads defined by the shear forces (and associated bending
moments)

Sv(Mz) and Sx(M,)
and the torque
T4
about an axis ¥4 we proceed as follows. First we equilibrate the applied
bending moments by the E.T.B. direct stresses

—y _f-
0=M’T,,+M“1, ........................................ (al)

The co-ordinates ¥, y from the centre of gravity and the corresponding
moments of inertia may vary arbitrarily from section to section.
The statically equivalent shear flows are calculated as before in two parts
q=4g E S R R R R I 5356)

where gy are in equilibrium with ,, O, with the imposed condition of
zero twist throughout the tube and additional shear flow necessary to
balance the applied torque.* The solution for an N cell tube follows

closely the method given initially and the selection of a basic system
derives from similar considerations. The calculations must, of course, be
repeated for every section to be analysed.

Calculation of 95

The shear flow g, in the basic system is obtained at all sections we want
to analyse by integration from (a51a)

G=JDfEAs e (as?)

where f is calculated from Egs. (al) and (a52). The necessary constants
of integration to compute the shear flow in the webs, etc., are derived
from equations of the type (a54). The N unknown shear flows gz, at the
cuts of each section are determined by the same method leading to
Eg. (a23). We find

Bragi—Bri9e=— J.‘l’bdsl

—By_1, ¥9E, N1 +BNgeN ¢
i eee.. (aS8)

Note that all dimensions are based on the current cross-section. Having
solved these equations we calculate the shear flow gz with Egs. (al3).

Calculation of gp:
The torque T of the shear flows g5 about the VA axis is

N
TQ =IquAds=J'q,,p,4ds+ZEIQMqEM ........................ (3.59)

where p4 i_s the normal from the point 4 to the tangent at the wall; note
the usual sign convention. Hence the torque Ty to be resisted by the shear
flows g3 is

TB = TA - TQ .......................................... (8.60)

The shear flows ¢z at any section may now be determined from Eqs. (a37)
and (a29) with

_Tr

3. Tubes with Non-Conical Taper

For tubes with non-conical taper we can find the statically equivalent
stress system )

Seand gg+qp

by the method under (2). However, when finding the torque Tj5 to be
carried by the gy shear flows we must make allowance for the torque 7
carried by the direct flow fz and the boom loads. Thus

Tp=Ty—To—Tp

* g may be regarded as quasi-engineers’ shear flow; see also J. H. Argyris and P, C. Dunne,
loe. cit., p. 53 (Handbook).

1 10.000 kg

Top and Bottom Nose|Rear
e Webs
Covers cell|cell
1,2 | 2.3 | 2.4 | 4.8
TN O PO A 10| 2.8 | 38 | &7 | 5.8
Length (mi| 300 | 300 | 300 | 302 17 20 20 18 10 €57 | 846
Thickness 25 7% 2% 25 16 | 16 16 18 18 1o 10
{mm)
] ] 3 4
|Bw..... T T ] 7 Cell 1 T i v X pil
Area Area
i [} 12 12 12 to |RIEA| 3s0 | sss | so0 | ss0 | 3s0 | 210

Fig. 58.—Geometrical data for six-cell tube

The above analysis of a statically equivalent stress system in tapered or
cylindrical multicell tubzs could bz used to write down the b, matrix.
Using the information develop:d in Ssction 8C for the b, and f matrices
we can calculate next the axial constraint stresses in the structures con-
sidered here. Howsver, when an ‘exact’ analysis is to bz pzrformed by
the matrix method in what is essentially a single continuous operation
the choice of the by matrix should bz guided entirely by the requirement
of simplicity. Hence, in such cases the system of indep:ndent spars is
greatly to be preferred to that of the multicell tube in the present example:
see also Example 9b.

Numerical Example

To illustrate the application of the foregoing analysis we determine
now the shear flow distribution in the single symmetrical six-cell section of
a uniform cylinder illustrated in FiG. 58. It was found convenient to use the
metric system in this example. The direct stress carrying ability of the walls
has been replaced by effective flange areas at the web-cover intersections
(augmenting the actual flange areas there) so that the walls carry only
shear flow which is constant between flanges (¢,=0). This procedure
enormously simplifies the work and is quite accurate enough for practical
computations although naturally additional effective flanges may be
introduced at intermediate stations (see Section 8C, p. 37). It should be
noted that since the distribution of direct stress is known (E.T.B.) the
appropriate effective flange areas can be calculated explicitly without any
need for guesswork. S_trictly, different areas have to be calculated for
bending about Gx and Gy but since in practice the horizontal shear force
S, is of much less importance it is usually sufficient to apply throughout
those calculated for bending about Gx.

For a singly symmetrical section under a shear force normal to the axis
of symmetry we are obviously only concerned with the D, (or d,) dis-
tribution. Due to the assumption of r,=0 the (constant) values of D,
in the upper and lower walls are zero and the values in the webs can be
written down by inspection using the equilibrium equation (all) for the
flanges. The D,, distribution is shown diagrammatically in F1G. 59a. In
FIG. 59b we illustrate also the D,, distribution for the alternative basic
system mentioned previously in which the multi-cell tube is reduced to an
open section by cutting NV vertical webs. No further comment should be
necessary to point the moral of this illustration.

Table I of Example 9a
Values of [D,,dsy/t and coefficients 8
M

Cell M I I I v Y Vi

area Qy (cm.®) 350 555 60D 540 190 210

»8 n= j d.:'!‘r

n

763 471 490 466 404 908

By s 106 125 125 100 | 62:5

D,y (cm.?) 468 | 4120 | =120 | 496 | 450 |
DBty 1141 7200 | 15000 ||5009 900 | 3120
Iomd?’ 7200 | 780 ‘ 0 ‘-—xoa‘ —omo\ -3120
ol
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With D,, having (constant) values in the inter-cell webs only the six
compatibility equations are formed easily and systematically by means
of the arrangement in TABLE 1. All values in the table are obtained
directly from the dimensional data of FiG. 58 and the D,, distribution of
FIG. 59a.

The equations for the unknown D,y are therefore (see Eqgs. (a23))

1
763D,,—106D,, =—7200+ 7000455—:
v
IZ
—106D;,+471D,,—125D,, =—7800+HIOG¢-S—
v

]z
—125D,,+490D,3— 125D, = 0+1200G45
’ v

!
—125D,,+466D,,—100 D, =+ 5400+ l080Cv'<}53-i
¥

1
—100D;4+ 404D;5~62-5D,4=+6480+ 780GhE
v

—62-5D,5+ 908D,,=+3120+ 42064)2—’
v

.................................. (a63)
Also the equilibrium Eq. (a31) for torque about D is

700D,,+1110D,,+1200D .3+ 10800, + 780 D,5 +420D 4 + 94600 =0 ;
.................................. (a6d) =

Writing the solution of Eqgs. (a63) in the form
Iz
D2M= zM+aMG¢S—V .................................... (3.25)
G4$1.[S, is determined from (a64) and the results are as in TABLE I

Table II of Example 9a

Values of d.p and D,y (cm.%)

M dap ay D:y
I —12-17 1-46 —20-13
11 —19-62 3-90 —40-92
I - 115 4-52 —25-85
v +15-79 4-20 — 7-16
v +20-71 3-08 + 3-89
VI + 4-88 0-68 + 1-16
From Eq. (a64) G<;{>_I§’;=—5-46

Adding these D,y to the D,, we obtain the total D, distribution due to
S, through D. Since D, is zero in the outer walls we have simply (see also
Eqgs. (al5))

for outer walls D.=D_.y
for web between M and M+1 cells D,=D.+D,y—D,, Ma1
The total actual shear flows under the 10000 kg. load at D are

D, 10000
q=S,,1—: =993 D,=1-25D, ........... N (a64)

in kg./cm., the actual values being shown diagrammatically in f1G. 60.
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a) GOOD CHOICE

D, in em?

ICEFR TN TRENAN]

(b) BAD CHOICE
Fig. 59.—D,s distribution in six-cell tube for alternative choices of basic
system
10,000 kg.

[ -

32

&
=5 b
|2El_l+- f = ]Ei%;;_

I q in kg/cm.

Fig. 60.—Final shear flow distribution in six-cell tube
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Shear Centre

Since the present cross-section is singly symmetrical, the shear centre
lies on the axis of symmetry and the first of Egs. (a27) (with I,,=0) gives
immediately the xz co-ordinate. Alternatively we note that the shear
flows d; have a resultant S,=I. through the shear centre and we can
modify slightly Eq. (aé4) for torque about D to give

700d;z; 4-1110d.; +1200d,.5 + 1080, + 780d 5

+420d.4+94600=[(xg—xp)
Therefore
xpy—xp=12-3 cm.




(b) The Four-Boom Tube with Deformable Ribs and some more General
Structures

In this example we determine, using the force method of analysis, the
‘exact’ stress distribution in the idealized four-boom tube shown in
F1G. 61. The investigation is carried out first by the 8,-method and
illustrated in a numerical example. Subsequently, we analyse the same
example by the general matrix method of Section 8C. We show also how
the matrix formulation may be used with advantage in the more interesting
case of a six-boom tube with or without intermediate spar web. It is hoped
that these simple applications of the matrix method will condition the
reader to the new ideas and show him their power and basic simplicity.

Consider the cylindrical tube of FIG. 61 with a singly symmetrical trape-
zoidal cross-section the flange cross-sectional areas B and the wall thick-
nesses ¢ of which may vary arbitrarily length-wise. Loads are applied only
at the rib positions

1,2, .cvunne [ A n
in the form of shear forces

Ro, Rogy vvvvvens s Raiy Rogy cvvvenen , Rapy Ron
and moments

Mo, My, o oven e s Moy Mygy oo s Man, Mya

at the front (a) and rear (b) spars. Following the general discussion on the
idealization of aircraft structures given in Section 8 C (pp.37and 40) we
assume that the walls carry only shear stresses (the direct stress carrying
ability is allowed for by suitably increasing the flange areas). The shear
flow is hence constant in any field of each bay since changes in the z-direc-
tion can only be brought about at the ribs. It follows then that the end
loads in the flanges vary linearly between ribs and that a knowledge of the
flange loads at the rib positions suffices to determine them everywhere.
Having found the flange loads the corresponding shear flows are deter-
mined easily from the flange load gradients and the condition of equilibrium
with the applied shear force and torque.

In the tube shown in F1G. 61 there are n ribs including those at the free
and built-in ends. At each rib position there are four flange loads and only
three equilibrium equations are available for their determination. Hence,
noting that the flange loads at the tip are zero, the degree of redundancy is
(n—1). This trivial result is confirmed by the general Eq. (247a) on p. 38
by substituting N=1, =4, a=n.

In selecting the basic system many choices are open to us. We may, for
example, make a single cut in one of the flanges at each rib station to reduce
the structure to a statically determinate three-flange basic system. Here,
however, we calculate the statically equivalent stress system by the E.T.B.
and the Bredt-Batho theory of torsion, a more general example of which
was investigated in Section 9a. In this choice, instead of making a single
cut we have, in fact, cut all the flanges to allow the relative warping con-
sistent with the statically equivalent stresses while at the same time the
direct stresses are transmitted across the cuts;* see also the discussion in
Section 8C, pp. 32 and 33.-The redundancies then consist of self-equili-
brating flange load systems at the (n—1) rib stations. A suitable and sym-
metrical measure of such a system is the boom load function P introduced
by Argyris and Dunne.t We prefer to use instead a slight variant of P, the
Y-system introduced on p. 39. The (1—1) redundant Y are determined
from the compatibility conditions of warping at the (n—1) rib stations.

As a further alternative procedure we could, of course, choose as basic
system the very simple structure consisting only of the two spars acting in-
dependently, i.e. we cut the top and bottom covers of the tube. However,

* Actually, we may consider this basic system as also derived by a single cut f[rom the given system,
Thus, if at the cut flange we apply the corresponding E.T.B. flange load and allow there any out ol
place movements, the stress distribution in the other structural elements is obviously that of the E.T.B.
and Bredt-Batho theories.

+ loc. cit. p. 38.

.

Fig. 61.—Four-flange tube. Geometry and loading.

except for very flexible covers and ribs our previous choice is much closer
to the final correct solutions. The latter method is hence to be preferred
when the design work has to be checked solely by a good statically equiva-
lent stress system as is, in general, the case when no automatic digital
computer is available. Subsequently the exact distribution, if found at all,
is obtained only after completion of the design work—usually by a more
clumsy version of the 8, method.

On the other hand when we use the matrix formulation in conjunction
with a digital computer and derive the complete stress distribution as a
single process it is preferable to select the simplest possible b, matrix (see
also the discussion on p. 39). Then the basic system formed by the inde-
pendent spars is obviously indicated. An important advantage of this
system is the absence of rib stresses if external loads are only applied in the
plane of the spars. In multispar construction the simplicity of the basic
system consisting of independent spars in comparison with the multi-cell
system of Example (9a) is even more striking. If it is necessary to take into
account external loads applied at intermediate points in the ribs and/or
if spars are interrupted we may select as basic system for the matrix type of
analysis the grid formed by spars and ribs (without covers)—still a very
simple structure in which to find the b, matrix.

(1) Analysis by the 8, Method*
The statically equivalent stress system

Following our previous discussion we select here the E.T.B. (or quasi
E.T.B.) and Bredt-Batho stresses as statically equivalent stress system.
The flange loads are calculated at the rib stations with the effective areas
B, there. Thus, the m'th flange load at the i"th rib is,

Poi= ,;mi B (bl) -

AT e

where M, is the bending moment at the i rib due to the applied loads R4

* The particular case of the four-flange single-cel] tube under a given loading his also been treated
by W. J. Goodey in “Two-spar Wing Stress Analysis', AIRCRAFT EnGiNeerING, Vol XXI, No. 247,
p. 287, September 194%; No, 288, p. 313, Octaber 1949; No. 289, p. 158, November 1949, There
the author uses the Castigliano technique to formulate equations analogous to the three- and five-joint
cquations given here with essentidlly the same basic idealizations but with the effect of taper included.
A comparison of the theoretical results with exper | strain iz also given.
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