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Chapter 16 — Structural Dynamics
R 3

A First Course in the

Finite Element Method

Learning Objectives

To discuss the dynamics of a single-degree-of
freedom spring-mass system.

To derive the finite element equations for the time-
dependent stress analysis of the one-dimensional
bar, including derivation of the lumped and
consistent mass matrices.

To introduce procedures for numerical integration in
time, including the central difference method,
Newmark's method, and Wilson's method.

To describe how to determine the natural
frequencies of bars by the finite element method.

To illustrate the finite element solution of a time-
dependent bar problem.

Chapter 16 — Structural Dynamics
BE = Learning Objectives

A First Course in the

Finite Element Method

To develop the beam element lumped and
consistent mass matrices.

To illustrate the determination of natural
frequencies for beams by the finite element
method.

To develop the mass matrices for truss, plane
frame, plane stress, plane strain, axisymmetric, and
solid elements.

To report some results of structural dynamics
problems solved using a computer program,
including a fixed-fixed beam for natural frequencies,
a bar, a fixed-fixed beam, a rigid frame, and a
gantry crane-all subjected to time-dependent
forcing functions.
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Structural Dynamics
Introduction

This chapter provides an elementary introduction to time-
dependent problems.

We will introduce the basic concepts using the single-
degree-of-freedom spring-mass system.

We will include discussion of the stress analysis of the one-
dimensional bar, beam, truss, and plane frame.

Structural Dynamics
Introduction

We will provide the basic equations necessary for structural
dynamic analysis and develop both the lumped- and the
consistent-mass matrices involved in the analyses of a bar,
beam, truss, and plane frame.

We will describe the assembly of the global mass matrix for
truss and plane frame analysis and then present numerical
integration methods for handling the time derivative.

We will provide longhand solutions for the determination of the
natural frequencies for bars and beams, and then illustrate the
time-step integration process involved with the stress analysis
of a bar subjected to a time dependent forcing function.
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Structural Dynamics

Dynamics of a Spring-Mass System

In this section, we will discuss the motion of a single-degree-of-
freedom spring-mass system as an introduction to the
dynamic behavior of bars, trusses, and frames.

Consider the single-degree-of-freedom spring-mass system
subjected to a time-dependent force F(t) as shown in the
figure below.

The term k is the stiffness of the spring and m is the mass of the
system.

Structural Dynamics

Dynamics of a Spring-Mass System

The free-body diagram of the mass is shown below.

T=kr = | l Fir) = L= ma = mi
==

The spring force T = kx and the applied force F(t) act on the
mass, and the mass-times-acceleration term is shown
separately.

Applying Newton’s second law of motion, f = ma, to the mass,
we obtain the equation of motion in the x direction:

F(t)—kx = mx

where a dot ( * ) over a variable indicates differentiation with
respect to time.
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Structural Dynamics

Dynamics of a Spring-Mass System
The standard form of the equation is: mx + kx = F(t)

The above equation is a second-order linear differential
equation whose solution for the displacement consists of a
homogeneous solution and a particular solution.

The homogeneous solution is the solution obtained when the
right-hand-side is set equal to zero.

A number of useful concepts regarding vibrations are available

when considering the free vibration of a mass; that is when
F(t) = 0.

Structural Dynamics
Dynamics of a Spring-Mass System

Let’s define the following term: o” = L3
m

The equation of motion becomes: X + w?x =0

where o is called the natural circular frequency of the free
vibration of the mass (radians per second).

Note that the natural frequency depends on the spring stiffness
k and the mass m of the body.
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Structural Dynamics
Dynamics of a Spring-Mass System

The motion described by the homogeneous equation of motion
is called simple harmonic motion. A typical displacement -
time curve is shown below. Real Space Phase Space

OO

x
|

-5
-

Velocity

where X, denotes the maximum displacement (or amplitude
of the vibration).

Structural Dynamics
Dynamics of a Spring-Mass System

The time interval required for the mass to complete one full
cycle of motion is called the period of the vibration 7 (in
seconds) and is defined as:

The frequency in hertz (Hz = 1/s) isf=1/7= w /(27x).
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Structural Dynamics

Dynamics of a Spring-Mass System

Structural Dynamics

Dynamics of a Spring-Mass System
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Structural Dynamics

Dynamics of a Spring-Mass System

Structural Dynamics

Dynamics of a Spring-Mass System
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Structural Dynamics

Structural Dynamics

Dynamics of a Spring-Mass System
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Structural Dynamics
Direct Derivation of the Bar Element

Let’s derive the finite element equations for a time-dependent
(dynamic) stress analysis of a one-dimensional bar.

Step 1 - Select Element Type

We will consider the linear bar element shown below.

1y Lr)
————-I—- X }—"-—"7 S3d1)

fay L

where the bar is of length L, cross-sectional area A, and mass
density p (with typical units of Ib-s?/in%), with nodes 1 and 2
subjected to external time-dependent loads: f °(t)

Structural Dynamics
Direct Derivation of the Bar Element

Step 2 - Select a Displacement Function

A linear displacement function is assumed in the x direction.
u=a, +a,Xx

The number of coefficients in the displacement function, a;, is
equal to the total number of degrees of freedom associated
with the element.

We can express the displacement function in terms of the shape
functions:

u X
u=[N1 N2]={u1} N, =1-— N, =
2
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Structural Dynamics
Direct Derivation of the Bar Element

Step 3 - Define the Strain/Displacement and Stress/Strain
Relationships

The stress-displacement relationship is:

fe.} = 2= 1B1{a)

o ] ol

The stress-strain relationship is given as:

{0} =[Dl{e,} = [DI[B]{d}

Structural Dynamics
Direct Derivation of the Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations

The bar element is typically not in equilibrium under a time-
dependent force; hence, f,, # f,,.

We must apply Newton’s second law of motion, f = ma, to each
node.

Write the law of motion as the external force f,2 minus the
internal force equal to the nodal mass times acceleration.

10/85
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Structural Dynamics
Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Therefore: 22U 22U
f1x = f1>< +m, at_; fzx = f2>< +m, 6t22
where: AL AL
m - PAL g PAL
2 2

Mass lumped to the nodes

/ ou,
f1><e _{f1x}+{m1 0 } 8t2
fzxe f2x 0 m, 52U2

ot?

Structural Dynamics
Direct Derivation of the Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations

If we replace {f} with [K}{d} we get: {f*(t)} =[k]{d}+[m]{d]

Where the elemental stiffness matrix is:

] :E[ 1 _1} @) -1l

L -1 1

and the lumped-mass matrix is:

-
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Structural Dynamics
Direct Derivation of the Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations

Let's derive the consistent-mass matrix for a bar element.

The typical method for deriving the consistent-mass matrix is
the principle of virtual work; however, an even simpler
approach is to use D’Alembert’s principle.

The effective body force is: {Xe} =—p{U}
The nodal forces associated with {X®} are found by using the

following:
{f,} = [INI'{X}dV

Structural Dynamics
Direct Derivation of the Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting {X¢} for {X} gives: {f,}= —I pINT {ti}dV

The second derivative of the u with respect to time is:
{u} =[N]{d} {u} =[N]){d]}

where u andu are the nodal velocities and accelerations,
respectively.
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Structural Dynamics
Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Therefore:  {f,} = —\J/',O[N]T [N]{d}dv = ‘[m]{d}

where:  [m] =\J/.,0[N]T [N]dv

The mass matrix is called the consistent mass matrix because
it is derived using the same shape functions use to obtain the
stiffness matrix.

Structural Dynamics
Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting the shape functions in the above mass matrix
equations give:
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Structural Dynamics
Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting the shape functions in the above mass matrix
equations give:

)
(-2 (&

Evaluating the above integral gives:

]

(m]- pAI

Structural Dynamics
Direct Derivation of the Bar Element

Step 5 - Assemble the Element Equations and Introduce
Boundary Conditions

The global stiffness matrix and the global force vector are
assembled using the nodal force equilibrium equations, and
force/deformation and compatibility equations.

{F(t)} =[K]{d}+[m]{d]}

where

KI=XK0] M]=X[m"]  (F= i)
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Structural Dynamics

Numerical Integration in Time

We now introduce procedures for the discretization of the
equations of motion with respect to time.

These procedures will allow the nodal displacements to be

determined at different time increments for a given dynamic
system.

The general method used is called direct integration. There
are two classifications of direct integration: explicit and implicit.

We will formulate the equations for two direct integration
methods.

Structural Dynamics

Numerical Integration in Time

The first, and simplest, is an explicit method known as the
central difference method.

The second more complicated but more versatile than the
central difference method, is an implicit method known as the
Newmark-Beta (or Newmark’s) method.

The versatility of Newmark’s method is evidenced by its

adaptation in many commercially available computer
programs.
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Structural Dynamics

Central Difference Method

The central difference method is based on finite difference
expressions for the derivatives in the equation of motion.

For example, consider the velocity and the acceleration

at time t: d()
i {dm} _{dm} o
= 2(At)
{d} _ {dm} _{di—1}
| 2(At)

where the subscripts indicate the time step for a given time
increment of At.

Structural Dynamics

Central Difference Method

The acceleration can be expressed in terms of the
displacements (using a Taylor series expansion).

The first two terms of Taylor series of a function d(t) is:
d,,, =d +dAt +%(At)2 +oe
Solving for the acceleration gives:

| 2(di+1 _di _di%\
d = 5
(At) {di} _ {di+1} _{di—1}

2(At)
Substitute the central difference for the first derivation
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Structural Dynamics

Central Difference Method

Therefore, accelerations can be expressed in terms of the
displacements as:

{d.} _ {di+1} B 2{di2} + {di—1}
(At)

We generally want to evaluate the nodal displacements;
therefore, we rewrite the above equation as:

{di+1} = z{di} _{di—1} + {di}(At)z

The acceleration can be expressed as:

{d.}=[M]"({F} - [K]{d,})

Structural Dynamics

Central Difference Method

To develop an expression of d, 4, first multiply the nodal
displacement equation by M and substitute the above equation
for {di} into this equation.

(M]{d...} =2[M]{d,} - [M]{d, ,} + ({F} - [K]{d,})(at)
Combining terms in the above equations gives:

[M]{dl..} = (At)" {F } +| 2[M] - (at)*[K] ] {d } - [M]{d )
To start the computation to determine {d.,,}, {dm}, and {d'm}
we need the displacement at time step i -1.
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Structural Dynamics

Central Difference Method

Using the central difference equations for the velocity and
acceleration:

{d|} _ {di+1} - {di—1}

) = {d.,}=2(a){d,}+{d, ,}

—

{di+1} = Z{di } - {di—1} + {d.i}(At )2
Solving for {d; ,} gives:

(A} ={d}-anfd )+ ) &

Structural Dynamics

Central Difference Method

Procedure for solution:

1. Given: {do},{do},and{ﬁ(t)}

2. If the acceleration is not given, solve for {do}

{dy} =[M]" ({F} - [K]{d,})

3. Solve for {d_4} at t = -At

{d,1} = {do} _(At){do} N {d-o} (A;)z

18/85
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Structural Dynamics
Central Difference Method

Procedure for solution:

4. Solve for {d} at t = At using the value of {d_;} from Step 3

[M{d,..} = (At)" {F} +| 2[M] - (at)’ [K] |{d } - [M]{d] )

fa) =[] {(a0)" Ry} + [ 2[M] - (at)" [K] |} - [M] {a_,}|

Structural Dynamics

Central Difference Method

Procedure for solution:
5. With {d,} given and {d,} determined in Step 4 solve for {d,}

{da} =[M] | (a0)" R} [ 2[M] - (a0)° [K] |{dt} - [M] {d, }|
6. Solve for {d}} : {d}} =M]"({F.} - [K]{d.})

fd,) - {d,} —{d, }

7. Solve for {d1}5 2(At)

8. Repeat Steps 5, 6, and 7 to obtain the displacement,
acceleration, and velocity for other time steps.
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Structural Dynamics @
Input the boundary and ilnl'ti.'\l conditions )
Central Difference Method b and (o). Mooumbor f s b e i

. '
Procedure fOl' SO|UtI0n: Evaluate the initial aceeleration from
ldg) = IMITV([Fp) = [KT1dp))
1
| Solve Eq. (16.3.8) for {4} |
i
| Solve Eq. (163:7) for (d) |
1
| DO i = I, Total number of time steps I-_
1

| Solve Eq. (16.3.7) for {d,,, ] |

1

I Solve Eq. (16.3.5) for 1&’,-] |

| sowveEq (1630 for (d) |

and accelerations {d;} for a given
time step f

Output the displacements |d; }, velocities {a',-}. }>

)

Structural Dynamics

Central Difference Method — Example Problem

Determine the displacement, acceleration, and velocity at 0.05
second time intervals for up to 0.2 seconds for the one-
dimensional spring-mass system shown in the figure below.

Fir). b

m = 31.83 Ib-s*/in.
Fir)

2000

m

0.2 ns

Consider the above spring-mass system as a single degree of
freedom problem represented by the displacement d.

20/85
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Structural Dynamics

Central Difference Method — Example Problem
Procedure for solution:

1. Attimet=0: {doj=0 {d,j=0

2. If the acceleration is not given, solve for {do}
{do) =[] ({Fe} - [K]{c})

fd,} = 22520 _62.83in/,

Structural Dynamics

Central Difference Method — Example Problem

Procedure for solution:
3. Solve for {d_,} at t = -At

1=l (o0}« e} 5

{d,}=0-(0.05)0 +@(62.83) =0.0785 in

4. Solve for {d,} at t = 0.05 s using the value of {d_,} from Step 3
fa} =[] {(a0)" R} + [ 2[M] - (a0)" [K] (e} - [M] {a_,}|

{d,} = ﬁ{(o.os)2 2,000 +[ 2(31.:83) - (0.05)" (100) |0~ (31.83)(0.0785)|

=0.0785in
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Structural Dynamics

Central Difference Method — Example Problem

Procedure for solution:
5. With {d,} given and {d,} determined in Step 4 solve for {d,}
fda} =[M] "{(a0)" (R} 2[M] - (a0)° [K] |{dt} - [M] {d, }|

1
dl=—
da 31.82

=0.274in

6. Solve for {d}} : {d}} = [M]_1 ({E} —[K]{d1})

{(0.05)"1500+ | 2(31.83) - (0.05)" (100) |(0.0785) - (31.83)(0)|

{d} :m[1,500—100(0.0785)] _ 46.88 %2

Structural Dynamics

Central Difference Method — Example Problem

Procedure for solution:

(d,] {d,} —1do}

7. Solve for {d1}2

2(At)
.\ 0.274-0 -
ld,} = 3(008) 2.74in/

8. Repeat Steps 5, 6, and 7 to obtain the displacement,
acceleration, and velocity for other time steps.
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Structural Dynamics

Central Difference Method — Example Problem

Procedure for solution:
5. With {d,} given and {d,} determined in Step 4 solve for {d;}

fda} = [M] " {(a0)"{F,} +] 2[M] - (a0)" [K] {d,} - []{a. }]

{d,) = ﬁ{(o.os)z 1,000 +[ 2(31.83) - (0.05)" (100) ] (0.274) - (31 .83)(0.0785)}

6. Solve for{d'z}i {dz} = [M]_1({F2} —[K]{dz})

. 1 .
{d,} = m[1,000 ~100(0.274) | = 30.56 '%2

Structural Dynamics

Central Difference Method — Example Problem

Procedure for solution:

(d,) - {d} —{d\}

7. Solve for{dz}i

2(At)
. 0.546-0.0785 -
d,} = —4.68in
1} 2(0.05) 581

8. Repeat Steps 5, 6, and 7 to obtain the displacement,
acceleration, and velocity for other time steps.
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Structural Dynamics

Central Difference Method — Example Problem

The following table summarizes the results for the remaining
time steps as compared with the exact solution.

t(s) Ft)(b) d, (ins?) d.(inss) d. (in) d. (exact)
0.00 2,000 62.8338 0.0000 0.0000 0.0000
0.05 1,500 46.8786  2.7428 0.0785 0.0718
0.10 1,000 30.5552 4.6787 0.2743 0.2603
015 500  13.9918 5.7923 0.5464 0.5252
020 0 26815  6.0751 0.8535 0.8250
025 0 36252 5.9174 1.1539 1.132

Structural Dynamics

Central Difference Method — Example Problem

Plotting the motion for about 4 s gives:

70.000

—Velocity

60.000 | —Acceleration

——Position

50.000 -

40.000 -

30.000 +

20.000 -

10.000

0.000

-10.000 -

-20.000

24/85
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Structural Dynamics

Newmark’s Method

Newmark’s equations are given as:

{duf ={d}r@nfa-nid]r{d. )]
{d} ={d,} +(at){d }+(At) [( -p){d )+ B{di..} ]

where g and yare parameters.

The parameter gis typically between 0 and %4, and yis often
taken to be 7.

For example, if § = 0 and y= 2 the above equation reduce to
the central difference method.

Structural Dynamics

Newmark’s Method

To find {d.,} first multiply the above equation by the mass matrix
[M] and substitute the result into this the expression for
acceleration. Recall the acceleration is:

{dif = M) ({F} - [<{d })
The expression [M]{d,,} is:
[M]{d...} =[M]{d,} +(at)[M]{d, | +(aty’ [M]({- B){d| |
+A(AP[{F 1} = [K]{d,,0} ]

Combining terms gives:

(1M AP KI)d..| = At (R} [
HAOIM(d }+ (a0 (M]3 - £){d |

25/85
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Structural Dynamics

Newmark’s Method
Dividing the above equation by A(At)? gives: [K']{d..,} = {F'..}

where:
(K] =[K]+ ﬂ(lt)z [M]
(Fia={F.}+ ﬂEZIt])z [d}+(anfd ]+ (3-p)(aty {d ] ]

The advantages of using Newmark’s method over the central
difference method are that Newmark’s method can be made
unconditionally stable (if f= 7 and y = 2) and that larger time
steps can be used with better results.

Structural Dynamics

Newmark’s Method Input the boundary and initial conditions {dy} and {dj},

the number of time steps, the size of
the time step or increment Af, and the

Procedure for solution: velucs of fand y
'

Evaluate the initial acceleration

from {dp} = [M1™({Fp} - [K1{dy))
i

DO i = 1, Total number of time steps }_7

I

Solve Eq. (16.3.13) for {d,,, }; that is,
solve [K']{dj, ) = (Fy}

I

Solve Egs. (16.3.10) and (16.3.9) for {d,,} and {d,,}

Output the displacements {d;}, velocities {d},
and accelerations {d;} for a given —
time step i
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Structural Dynamics

Newmark’s Method

Procedure for solution:
1. Given: {do}, {d,},and {F(t)}

2. If the acceleration is not given, solve for {do}
{do} =[MI" ({Fo} = [K]{do})
3. Solve for {d,}att=0

[K']{d1} - {F'1}

Structural Dynamics

Newmark’s Method

Procedure for solution:

4. Solve for {d1} -- original Newmark equation for{d,,,} rewritten
for {dm} :

16 = a0 {0} (a0 (o) -0 (- )}

5. Solve for {d1}
{d,} ={d, +(At)[(1—7){d'o} +y{d'1}}

6. Repeat Steps 3, 4, and 5 to obtain the displacement,
acceleration, and velocity for the next time step.
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Structural Dynamics

Newmark’s Method — Example Problem

Determine the displacement, acceleration, and velocity at 0.1
second time intervals for up to 0.5 seconds for the one-
dimensional spring-mass system shown in the figure below.

m = 1.77 Ib-s*/in.
F(t)

m pP—ae————x

Consider the above spring-mass system as a single degree of
freedom problem represented by the displacement d.

Use Newmark’s method with = 1/6 and y = V2.

Structural Dynamics
Newmark’s Method — Example Problem

Procedure for solution:
1. Given: {do}, {d,},and {F(t)}

2. If the acceleration is not given, solve for {do}

{dof = [M]”({Fo} - [<]{do})

=1 [100-70(0)]=56.5in/s?
1.77
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Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

3. Solve for{d;}att=0.1s  [K']{d,}={F}
1 1

[K'] = [K]+W[M] = 70 + %(01)2

(1.77) =11321b /in

P = R o () + (0} + (3 9) 407

1.77
1(0.1y
{F,}  280Ib

{d,}= K] =32 = 0.248 in

=80+

[0+(0.10+(4-4)(0.17(56.5) | =280 Ib

Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

4. Solve for {d,} att=0.1s
.. 1 . 2/ ..
{d1}:m[{d1}_{do}_(At){do}_(At) (E‘ﬁ){do}]
1 2r 4
=W[o.248—o—(o.1)o—(o.1) (1-1)56.5]|=35.41,

5. Solve for {d1}
) ~[8 =0 fd (4]

=0+(0.1)[ (1-1)56.5+3(35.4) | =4.59 %/

29/85
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Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

6. Repeat Steps 3, 4, and 5 to obtain the displacement,
acceleration, and velocity for the next time step.

Repeating Steps 3, Solve for{d,} att=0.2s

Pl = (R (a0 + (- 8) a7 6

1.77
L0

=60+ [0.248+(0.1)4.59+(3-1)(0.1)° (35.4) | =934 Ib

{F,} _ 934

{d,} K] 1132 0.825in

Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:
Repeating Step 4: solve for {61} att=02s

{d,} =m[{d2} —{d,} - (At){d,} - (At} ($- ) {d}

L 2(1_ 1
:W[o.azs—0.248—(0.1)4.59—(0.1) (3-1)35.4]

=1.271y,

30/85
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Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

5. Solve for {d, |
(0o} = [d )+ @01 {d) + ()]
=4.59+(0.1)[ (1-1)35.4 +1(1.27)]
=6.421/

Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

The following table summarizes the results for the time steps

through t = 0.5 seconds.

t(s) FOIb  d@n/s?)  d (inls) d; (in)
0.0 100 56.4972  0.0000 0.0000
0.1 80 35.4155  4.5956 0.2473
0.2 60 11939  6.4261 0.8270
0.3 485714 -28.9276  5.0394 1.4253
0.4 457143 -437731  1.4044 1.7599
0.5 428571 -42.3776  -2.9031 1.6838

31/85
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Structural Dynamics

Newmark’s Method — Example Problem

Procedure for solution:

Plotting the motion for about 4 s gives:

80.000

—Velocity
60.000 ——Acceleration
—Position

40.000
20.000
0.000 T
. . 25 3 3.5

-20.000

-40.000

-60.000

Structural Dynamics

Natural Frequencies of a One-Dimensional Bar

Before solving the structural stress dynamic analysis problem,
let's consider how to determine the natural frequencies of
continuous elements.

Natural frequencies are necessary in vibration analysis and

important when choosing a proper time step for a structural
dynamics analysis.

Natural frequencies are obtained by solving the following

equation: )
[M]{d}+[K]{d} =0
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Structural Dynamics
Natural Frequencies of a One-Dimensional Bar
The standard solution for {d} is given as: {d(t)} ={d'}e'"

where {d '} is the part of the nodal displacement matrix called
natural modes that is assumed to independent of time, i is the
standard imaginary number, and @ is a natural frequency.

Differentiating the above equation twice with respect to time
gives: .. ' .
[d) = o) (-o?)e"

Substituting the above expressions for {d} and {d} into the
equation of motion gives:

~[M]e? {d"} e +[K]{d"}e™ =0

Structural Dynamics

Natural Frequencies of a One-Dimensional Bar
Combining terms gives: €'” ([K] — o’ [M]){d =0
Since ei“t is not zero, then: ([K] -’ [M]) =0

The above equations are a set of linear homogeneous
equations in terms of displacement mode {d '}.

There exists a non-trivial solution if and only if the determinant
of the coefficient matrix of is zero.

[K]-o*[M] =0
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Structural Dynamics

One-Dimensional Bar - Example Problem

Determine the first two natural frequencies for the bar shown in
the figure below.

E—

2L

Assume the bar has a length 2L, modulus of elasticity E, mass
density p, and cross-sectional area A.

Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as

shown below.

1 3

2
O O @ G—=

N

We need to develop the stiffness matrix and the mass matrix
(either the lumped- mass of the consistent-mass matrix).

In general, the consistent-mass matrix has resulted in solutions
that compare more closely to available analytical and
experimental results than those found using the lumped-mass
matrix.
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Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as

shown below.

1 3

T O O B—-

L

N

However, when performing a long hand solution, the
consistent-mass matrix is more difficult and tedious to
compute; therefore, we will use the lumped-mass matrix
in this example.

Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as

shown below.

1 3

T O O B—-

L

N

The elemental stiffness matrices are:

1 2 2 3
AE| 1 -1 AE[ 1 -1
[k“J:TL 1} [k‘ZJZTL 1}
2 3
The global stiffness matrix is: 1 1 0
K]=2E|1 2 -
L
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Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as
shown below.

2 3
O O @ G—=

L

1

N

The lumped-mass matrices are:
1 2 2 3

pAL|1 O _pALI1T O
[mm]:T{o 1 [mm]— 2 |0 1
1 2 3
The global lumped-mass matrix is: 10 0
M]=225l0 2 o
0 0 1

Structural Dynamics

One-Dimensional Bar - Example Problem

Substituting the above stiffness and lumped-mass matrices into
the natural frequency equation:
([K]- e [M]){d"} =0

and applying the boundary condition {u,} = 0 (or {d 4} = 0)

" et

Set the determinant of the coefficient matrix equal to zero as:

AE| 2 -1 _,PAL 20 -0 where 1 = o?
L|{-1 1 2 |0 1

36/85
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Structural Dynamics

One-Dimensional Bar - Example Problem

Dividing the above equation by pAL and letting u = %Lz gives:

2u—1 —u )

A|=0 ,u2—2,u/1+%:0
Evaluating the determinant of the above equations gives:

A=2u+ 2 2, =0.5858u A, =3.4142u

For comparison, the exact solution gives 1 = 0.616x, whereas
the consistent-mass approach yields 1 = 0.648.

Structural Dynamics

One-Dimensional Bar - Example Problem

Therefore, for bar elements, the lumped-mass approach can

yield results as good as, or even better than, the results from
the consistent-mass approach.

However, the consistent-mass approach can be mathematically
proven to yield an upper bound on the frequencies, whereas

the lumped-mass approach has no mathematical proof of
boundedness.

The first and second natural frequencies are given as:

o, =4, =0.7654/u w, = A, =1.8478\[u
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Structural Dynamics
One-Dimensional Bar - Example Problem

The term ¢ may be computed as:

6 .
p=t_ o 30A0pSl 445,100 62

P (0.00073"5)(100in.)?

in.

Therefore, first and second natural frequencies are:

o, =1.56x10° rad /s w, =3.76x10° rad / s

Structural Dynamics

One-Dimensional Bar - Example Problem

In general, an n-degree-of-freedom discrete system has n
natural modes and frequencies.

A continuous system actually has an infinite number of natural
modes and frequencies.

The lowest modes and frequencies are approximated most
often; the higher frequencies are damped out more rapidly and
are usually less important.

38/85
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Structural Dynamics

One-Dimensional Bar - Example Problem

Substituting 4, into the following equation

AE[2 1], pAL[2 OT)[d%]_J0
L -1 1 2 10 1|)d, 0
Gives: 1.4142,d"'," —ud', " =0

—d","+0.7071d ", = 0

where the superscripts indicate the natural frequency.

It is customary to specify the value of one of the natural modes
{d '} for a given u or @ and solve for the remaining values.

For example, if{d 'gj’} =1 than the solution for{d "2”} =0.7071

Structural Dynamics

One-Dimensional Bar - Example Problem
Similarly, if we substitute 4, and let {d '(32)} =1 the solution of the
above equations gives {d "22)} =-0.7071

The modal responses for the first and second natural

frequencies are shown in the figure below.
d'I:I

1.0
0.7 1.0 /‘
W

First mode Second mode

driH

The first mode means that the bar is completely in tension or
compression, depending on the excitation direction.



CIVL 7/8117 Chapter 16 - Structural Dynamics 40/85

Structural Dynamics

One-Dimensional Bar - Example Problem

Similarly, if we substitute 4, and let {d '(32)} =1 the solution of the
above equations gives {d "22)} =-0.7071

The modal responses for the first and second natural

frequencies are shown in the figure below.
dJI:I

1.0
0.7 1.0 /‘

-0.7

dr“!

First mode Second mode

The second mode means that bar is in compression and tension
or in tension and compression.

Structural Dynamics

One-Dimensional Bar - Example Problem
Similarly, if we substitute 4, and let {d '(32)} =1 the solution of the
above equations gives {d'}"} =—0.7071

The modal responses for the first and second natural

frequencies are shown in the figure below.
dJI:I

1.0
0.7 1.0 /‘
W

First mode Second mode

dr“!

—  ———

0 05 1 0 05 1
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Consider the one-dimensional bar system shown in the figure
below. F()

1000 Ib -

i—-— Fr)

yrrrs

I

Assume the boundary condition {d,,} = 0 and the initial
conditions {d,} = 0 and {do} =0

Let p=0.00073 Ib-s?/in.4, A =1in.2, E = 30 x 106 psi, and
L =100in.

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

The bar will be discretized into two elements as shown below.

I 2 3

(@) (P—rw

N L L

The elemental stiffness matrices are:
1 2 2 3

[km]:A_LE{_z _11} [km]:%{_z _11}

The global stiffness matrix is:



CIVL 7/8117

Chapter 16 - Structural Dynamics 42/85

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

The bar will be discretized into two elements as shown below.

I 2 3

(@) (P—ro

N L L

The lumped-mass matrices are:

1 2 2 3
pAL[ 1 O _pAL|1T O
m 210 a2
1 2 3
The global lumped-mass matrix is: 10 0
M]-225/0 2 o
0 0 1

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Substitute the global stiffness and mass matrices into the global
dynamic equations gives:

1 -1 0]y, 10 olfd) [R
%—12—1%#’7“020(12:0
0 -1 1|y, 00 1|4, |R)

where R, denotes the unknown reaction at node 1.
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

For this example, we will use the central difference method,
because it is easier to apply, for the numerical time integration.

It has been mathematically shown that the time step At must be

less than or equal to two divided by the highest natural
frequency. 5

At < ——

a)m ax

For practical results, we should use a time step defined by:

At < E[L)
4 Orax

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

An alternative guide (used only for a bar) for choosing the
approximate time step is: At = L
c

X

where L is the element length, and ¢, = E%
is the longitudinal wave velocity.

Evaluating the time step estimates gives:

a=3 2 o159 9404107
4w ) 3.76x10
At=L - 100in. ~0.48x107°s

C, 30x10°psi ,
0.00073 -8

in4
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Guided by these estimates for time step, we will select
At=0.25x103s.

Procedure for solution:
1. Attimet=0: {do}=0 {d,}=0

2. If the acceleration is not given, solve for {dio}

{dy} =[M]" ({F) - [K]{d,})

R i (s N )

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Applying the boundary conditions u, =0 and u, =0 and
simplifying gives:

. u 2000 |0 0 :
=l R ool %%
Uy ), PAL (1 27,400] /s
3. Solve for d_; at t = -At

{d_1} = {do} —(At){do} N {do} (A;)z

{uz} :{o}_(0-25x10_3){0}+(0.25><103)2{ 0 }
u;j_, (0 0 2 27,400

0 .
= in
{0.856><103}

44/85
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

4. Solve for d, at t = At using the value of d_, from Step 3

fa) =[] {(a0)° (R} + [ 2[M] - (at)" [K] |{dl} - [M] (|
R = I MBS 25
~(0:25x107) (30 X104){—21 _11H{g} _$B (’)IHO.856O>< 1 03}}

u] 2 [% 0 0 B 0
u,/, 0073/ 0 1][]0.0625x10°| [0.0312x10°
o lossero
= L in
u,J,  10.858x10

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

5. With d, given and d, determined in Step 4 solve for d,

fda} =[M] | (80)" (R} [ 2[M] - (a0)" [K] |{dt} ~[M] {d, }|
ol oamlo (02510 i) 255 ]

oz (0109 % 2l 0025705 G
R [ A ]

u| _[0.221x10°]
uf, |2.99x10°
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

6. Solve for {d1}

{df =[M]" ({F} - [K]{d}})

), mawalo 1l ol 201 s
u,J, 0.073 0 1] (1000 -1 1](0.858x10

i, [ 3526);
) el 7%

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

7. Solve for {d1}

(4 L)1)

2(At)

o L

u, 2(0.25x1o-3) 5.98
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Structural Dynamics
Time-Dependent One-Dimensional Bar - Example

8. Repeat Steps 5, 6, and 7 to obtain the displacement,
acceleration, and velocity for other time steps.

Repeating Step 5:

fda} =[M] " {(at)" {F,} +| 2[m] - (at)*[K] }{d,} - [M]{d,}
el rogmlo om0 {235
~(0.25x10°)" (301 04)[_21 ]ﬂ{ozia?: 115-33} %B ?Ho.sssox 1 0-3}}

Up| _[1.006x107 |
U J, [5.397x10°

Structural Dynamics
Time-Dependent One-Dimensional Bar - Example

Repeating Step 6. Solve for {dz}

{d | =[M]"({F.} ~[K]{d.})
R S (SN W el

i,|  [10,500];,
)l %
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Structural Dynamics
Time-Dependent One-Dimensional Bar - Example

Repeat Step 7: Solve for{dz}

PRMCARCY

2(At)

H1.096x103}_{ 0 H

: -3 -3

{uz} _ | [5:397x10°] 0.858x10 {2.192}"%
) S

U, 2(0.25x10°) ~19.078

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

The following table summarizes the results for the remaining
time steps as compared with the exact solution.

t(10%s) d, d; d, (infs) d, (in/s) d,(10%n/s?) d (10%n/s?)
0.00  0.0000 0.0000 0.0000 0.0000  0.0000 2.7397
025 0.0000 0.0009 04398 59697  0.3518 2.0360
0.50  0.0002 0.0030 2.1870  9.0987 1.0459 0.4672
0.75 0.0011 0.0054 5.1477 8.6772 1.3227  -0.8044
1.00 0.0028 0.0073 7.6928 6.4426  0.7134  -0.9833
1.25 0.0049 0.0086 7.9409 4.8502  -0.5149  -0.2906
150  0.0068 0.0097 5.3555 4.8455  -1.5535  0.2868
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Plotting the displacements for 0.015 s gives:

x10°%

I L
0 0.005 0.01 0.015

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Plotting the velocities for 0.015 s gives:

L 1
0 0.005 0.01 0.015

49/85
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Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Plotting the accelerations for 0.015 s gives:

x10*

L I
0 0.005 0.01 0.015

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

15 %102 Displacement x-direction
T T
10 // \ \ / il
/ N
o ]
5 . I
0 0.005 0.01 0015
Velocity x-directi
2 i ‘elocity x-direction i
100 - P N\ ]
. 7N / . A\
ol L/ A \ ]
N,,/ AN / N 2 AV
A0 A g \/ ]
20 L I
0 0.005 0.01 0.015
4
4 =10’ .
AN A /N a ]
\ / - \VAVAY
AN \/ ~ ) \ o~ / \ .
PNt e
{ DV e \
2t \/ \/ \/ A
4

L L
0 0.005 0.01 0.015
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Structural Dynamics
Beam Element Mass Matrices and Natural Frequencies

We will develop the lumped- and consistent-mass matrices for
time-dependent beam analysis.

Consider the beam element shown in the figure below.

d,, dy,
él (—.;_—-_Q T “—,%\ é?
1 2

The basic equations of motion are: {F(t)} =[K]{d} +[M]{d}

Structural Dynamics
Beam Element Mass Matrices and Natural Frequencies

The stiffness matrix is: v, 4 v, 4
12 6L -12 6L

_EI| 6L 41> -6L 217
H_F 12 -6L 12 -6L
6L 2 -6L 4L°

The lumped-mass matrix is:

Vi %V 2

N

Lo |

=

e

|

S}

>

(o

o
© o o o
o -~ o o
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Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

The mass is lumped equally into each transitional degree of
freedom; however, the inertial effects associated with any
possible rotational degrees of freedom is assumed to be zero.

A value for these rotational degrees of freedom could be
assigned by calculating the mass moment of inertia about
each end node using basic dynamics as:

1z 1 pALYLY | pAL
3 3 2 2 24

Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

The consistent-mass matrix can be obtained by applying
[m]= [ pIN] [N]av
\Y

1

m]-

Oy

3

N

N2
[py ZHIN, N, Ny N,]dAdx
"IN

N4
where

N, = %(ZX?’ —3x’L+ L3) N, = %(x:*L —2X71% + xL3)

N, =%(—2x3 +3x°L) N, =%(X3L—X2L2)

52/85
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Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

The shape functions are shown below:

1.2 4

1.0

0.8 -

0.6 -

04 -

Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies
Substituting the shape functions into the above mass
expression and integrating gives:
156 22 54 -13L
_pAL| 22L 47 13L -3
T 420| 54 13L 156 -22L
-13L =312 -22L 41°

[m]
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Structural Dynamics

Beam Element - Example 1

Determine the first natural frequency for the beam shown in the
figure below. Assume the bar has a length 2L, modulus of
elasticity E, mass density p, and cross-sectional area A.

1 2 3

Ll
.
V2 G

Let’s discretize the beam into two elements each of length L.

We will use the lumped-mass matrix.

Structural Dynamics

Beam Element - Example 1

We can obtain the natural frequencies by using the following
equation.

[K]-o*[M] =0
The boundary conditions are v, = ¢, = 0 and v; = ¢, = 0.

v1 ¢1 v ¢2 v2 ¢2 V3 ¢3

12 6L -12 6L 12 6L -12 6L
[km]zﬂ 6L 4 -6L 2 k= ElI| 6L 41 6L 2U°
’|-12 6L 12 -6L ’|-12 6L 12 -6L

6L 27 -6L 417 6L 21 6L 417
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Structural Dynamics

Beam Element - Example 1

We can obtain the natural frequencies by using the following
equation.

[K]-o*[M] =0
The boundary conditions are v, = ¢, = 0 and v; = ¢, = 0.

Voo V3 fs

N
Ry
N

Vi %

1 0 0 O 10 0 0
ALIO O O O ALIO O O O

m® _P m® _P
[ ] 2 10 010 [ ] 2 10010
0O 00O 0 00O

Structural Dynamics

Beam Element - Example 1

We can obtain the natural frequencies by using the following
equation.

[K]-*[m] =0
The boundary conditions are v, = ¢, = 0 and v; = ¢, = 0.
Therefore, the global stiffness and lumped-mass matrices are:

v ¢, v, 4,

2

-2 ] mefl ]
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Structural Dynamics

Beam Element - Example 1

Substituting the global stiffness and mass matrices into the
global dynamic equations gives:

Eif24 0], [10
= -
clo 82| o o

Dividing by pAL and simplify

,  24El 4.8990 |EI
@ = 2 0=—"—,|—
PAL L PA

The exact solution for the first natural frequency is:

5.59 |EI
= —
> \ pA

0

[K]- e [M] =0

Structural Dynamics

Beam Element - Example 2

Determine the first natural frequency for the beam shown in the
figure below. Assume the bar has a length 3L, modulus of
elasticity E, mass density p, and cross-sectional area A.

Al 2 3 4y
g . L ] ;
2 I | i | I 7
A | - | 4

Let’s discretize the beam into three elements each of length L.

We will use the lumped-mass matrix.
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Structural Dynamics

Beam Element - Example 2

We can obtain the natural frequencies by using the following
equation.

[K]-o*[M] =0
The boundary conditions are v, = ¢, =0and v, = ¢, = 0.

Therefore the elements of the stiffness matrix for element 1 are:
V ¢1 V2 ¢2

12 6L -12 6L

k] El| 6L 41 -6L 2U°
|12 6L 12 -6L

6L 21 -6L 4L

Structural Dynamics

Beam Element - Example 2
Element 2: v, ¢ v g,
12 6L -12 6L
[(2)]25 6L 4 -6L 21°
°|-12 -6L 12 -6L
6L 21> -6L 417

Element 3: v, ¢ v 4,
12 6L -12 6L

ko= ElI| 6L 41" 6L 2V

L°|-12 -6L 12 -6L

6L 21° -6L 41?
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Structural Dynamics

Beam Element - Example 2

Assembling the global stiffness matrix as:

v, 4, v, 4,

12+12 -6L+6L  -12 6L

[K]:E —6L+6L 4L%+2> -6L 212
2| -12 -6L 12+12 -6L+6L
-6L 212 —6L+6L 417 +4L2

v, ¢2 v, ¢3

24 0 -12 6L
[K]:E 0 8 -6L 2°
°/-12 6L 24 O

6L 21> 0 87

Structural Dynamics

Beam Element — Example 2

We can obtain the natural frequencies by using the following
equation.

[K]-o*[m] =0

Therefore the elements of the mass matrix for element 1 are:

v, 4 v, 4
1000
210010
0 00O
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Structural Dynamics

Beam Element — Example 2

Element 2: v, 4 v, 4 Element 3: v. 4 v, 4
10 00 1 0 0 O
2 10010 210 010
O 00O 0O 00O
The assembled mass matrix is:

V2 ¢2 3 ¢3 V2 ¢2 VS ¢3
1+1 0 0 O 170 0O
pALl 0O 0 O O 0O 00O

ml=£2"= M|= pAL
M= 0 0 141 0] M=PAYY o 4 o
O 0 0 O 0O 00O

Structural Dynamics

Beam Element — Example 2

We can obtain the frequency equation as: ‘[K] - o’ [M]‘ =0

24 0 12 6L 1000
EIl 0 8 6L 2% . 10000
|12 6L 24 0 0010
6L 2.2 0 8L 0000
248 —w’pAL 0 ~128 6%
0 8& 628
128 85 24E_oPpAL 0
B 28 0 8l
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Structural Dynamics

Beam Element — Example 2

Simplifying and assuming: p = pAL

248 - w?f 0 ~128 6%
0 B 6% 28
128 68 24E -5 0|

6g 28 0 8Ee

Evaluating the 4x4 determinate gives:
600 F°EA*  2,3040°BE°® 11,664E°l*
2 5 T

2.4495 |EI 5.6921 | El
CTTE AR T

0

Structural Dynamics

Beam Element — Example 2
Ignoring the negative root as it is not physically possible gives:

2.4495 |EI 5.6921 | El
@ =" A~ W, =—"13 WA
L Ap L Ap

To compare with the two-element solution, assume L = %4L:

_24495 [El 55113 [Ei
N N LR VY

60/85
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Structural Dynamics

Beam Element — Example 1 Revisited

Determine the first natural frequency for the beam shown in the
figure below. Assume the bar has a length 2L, modulus of
elasticity E, mass density p, and cross-sectional area A.

N 2 3§\

\ - N

P F——

In summary:
Two elements: o= 480 El Exact solution:
L PA
o= 5.59 [EI
5.5114 |El T 12 A\ A
Three elements: @ =—"—5— |— L\ pA
L Ap

Structural Dynamics

Beam Element — Example 3

Determine the first natural frequency for the beam shown in the

figure below.
I 15 in. |
| |

) D

30 in. i

YL

Assume the bar has a length L = 30 in, modulus of elasticity
E = 3 x 107 psi, mass density o = 0.00073 Ib-s?/in*, and cross-
sectional area A = 1 in2, moment of inertia | = 0.0833 in*, and

Poisson’s ratio v=0.3.

61/85
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Structural Dynamics

Beam Element — Example 3

Determine the first natural frequency for the beam shown in the
figure below.

I 15 in. I

) D

30 in. i

YL

Let’s discretize the beam into two elements each of length
L = 15 in. We will use the lumped-mass matrix.

We can obtain the natural frequencies by using the following

equation.
[K]-o”[M]|=0

Structural Dynamics

Beam Element — Example 3

In this example, the elemental stiffness matrices are:
V1 ¢1 VZ ¢2
Element 1: 12 6L -12 6L |
2 2
[k(”} _El 6L 4L° -6L 2L
|12 -6L 12 -6L

6L 21 -6L 4L°

VZ ¢2 V3 ¢3
Element 2: 12 6L -12 6L |
[k@’]:ﬂ 6L 4> -6L 217

L|-12 -6L 12 -6L

6L 21> -6L 412
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Structural Dynamics

Beam Element — Example 3

In this example, the elemental mass matrices are:

v, ¢1

Element 1: 10
120 ¢

00

O ~ O O <

"

2

Element 2: 1

AL|O
- 231

0

O O O O &
O A O O <

Structural Dynamics

Beam Element — Example 3

The boundary conditions are u; = ¢, = 0.
stiffness and lumped mass matrices is:

2,

s O O o o

o O O O

Therefore the global

v, ¢2 v, ¢3 v, ¢2 v, ¢3

24 0 12 6L 2 000
[K]:E 0 8. -6L 27 M:p_AL 0 00O
°-12 6L 12 -6L 210010

6L 27 -6L 4L° 0000
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Structural Dynamics

Beam Element — Example 3

Chapter 16 - Structural Dynamics

Substituting the global stiffness and mass matrices into the

global dynamic equations gives:
-12
EI|l 0 8. -6L 2| ,pAL
oL Y 2
-6L  41°

24 0
Ll-12 -6L
6L 212

24 0
0 8L
12 6L
6L 212

12

-12
—6L

12
—6L

6L

Structural Dynamics

Beam Element — Example 3

o O O o

O O O N

o O

O N=

o O O o
o ~ O O
o O O O

El

o O O o

Evaluating the determinant of the above equations gives:

», =0.7891
1444 0" 240,707 +144,4 =0 ) #

w, = 4.0645

The solution for the first two natural frequencies are:

~ 0.7891

@,
12

El
PA

@,

4.0647

El
PA

-~ pAL
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Structural Dynamics

Beam Element — Example 3

In this example, the length of each element is actual L/2,

therefore:
0 7891 / 3 1564 f
4 0645 f El 16 2580 f

The exact solution for the first natural frequency is:

3516 [El
L2\ pA

Structural Dynamics

Beam Element — Example 3

In the exact solution of the vibration of a clamped-free beam,
the higher natural frequencies to the first natural frequency
can be given as:

2 _ 6.2669 Y5 _ 175475

, 2
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Structural Dynamics

Beam Element — Example 3

The figures below shows the first and second mode shapes
corresponding to the first two natural frequencies for a 2-
element FEA cantilever beam.

05 05

-1
0 15 30

First mode shape Second mode shape

Structural Dynamics

Beam Element — Example 3

The figures below shows the first and second mode shapes
corresponding to the first two natural frequencies for a 8-
element FEA cantilever beam.

05 05

05 05

rl E . 4
0 375 75 1125 15 1875 225 2625 30 0 375 75 1125 15 1875 225 2625 30

First mode shape Second mode shape
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Structural Dynamics

Beam Element — Example 3

The figures below shows the third and fourth mode shapes
corresponding to the first two natural frequencies for a 8-
element FEA cantilever beam.

05

05 D5

A ® 7
0 375 75 1125 15 1875 225 2625 30 0 375 75 125 15 1875 225 2625 30

Third mode shape Forth mode shape

Structural Dynamics

Beam Element — Example 3

The table below shows various finite element solutions
compared to the exact solution.

@, (rad/s) w, (rad/s)
Exact Solution 228 1,434
FE Solution
Using 2 elements 205 1,286
Using 6 elements 226 1,372
Using 10 elements 227.5 1,410
Using 30 elements 228.5 1,430

Using 60 elements 228.5 1,432
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Structural Dynamics

Truss Analysis

The dynamics of trusses and plane frames are preformed by
extending the concepts of bar and beam element.

The truss element requires the same transformation of the mass
matrix from local to global coordinates as that used for the
stiffness matrix given as:

Structural Dynamics

Truss Analysis

Considering two-dimensional motion, the axial and the
transverse displacement are given as:

uj u,
ul| [N, 0 N, 0 |]v 1{lL-x" 0 x" 0]|v;
{v'}_{o N, O Nj u, :E{ 0 L-x 0 x’} u,

Vs Vs

The shape functions for the matrix are:

1{L—x' 0 x 0}

[N]:E 0 L-x" 0 X
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Structural Dynamics

Truss Analysis

The consistent-mass matrix can be obtained by applying:

2010
(= [pINT NIV [y]=2AL[ O 2 0 1
Y 6 (1020
0102

The lumped-mass matrix for two-dimensional motion is obtained

by simply lumping mass at each node (mass is the same in
both the x and y directions):

1000
[m,]:p_ALo1oo
210010
000 1

Structural Dynamics
Plane Frame Analysis

The plane frame element requires combining the bar and beam
elements to obtain the local mass matrix.

There are six degrees of freedom associated with a plane frame
element.
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Structural Dynamics

Plane Frame Analysis

The plane frame analysis requires first expanding and then
combining the bar and beam mass matrices to obtain the local
mass matrix.

The bar and beam mass matrices are expanded to a 6 x 6 and

#
V-

superimposed

.
15

Structural Dynamics

Plane Frame Analysis

Combining the local axis consistent-mass matrices for the bar
and beam elements gives:

% 0 0 % O 0
0 Yoo o O Yo Vax
[m !] = pAL 0 2 4L%20 0 0 _3"%20
%0 0 % 0 0
0 o ™o 0 ™%
10 0 _3"%20 0 2 4L%20 )

[ ] - Beam element components
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Structural Dynamics

Plane Frame Analysis

The resulting lumped-mass matrix for a plane frame element is

give as:
1 0 0 0 0 O
010000
[m,]:p_AL 0 00O0O0ODO
21000100
0 00O0T1TDO
0 000 0 O]

Structural Dynamics

Plane Frame Analysis

The global mass matrix for the plane frame element arbitrarily
oriented in x-y coordinates is transformed by:

[m]=[T] [m][T]

where the transformation matrix is given as:

C S0 0 0 0]
S CO0 0 00
[T]:oo1ooo
0 00 C SO
0 00 -SC O
(0 00 0 0 1]
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Structural Dynamics

Plane Stress/Strain Elements

The plane stress/strain constant-strain triangle consistent-mass
matrix is obtained using the shape functions given below as:

[N, ON, ON, O N
[N]{o N, 0 N, O Nj // NE
Al T

The linear triangular shape functions are illustrated below:

Ny N, N3

x
N
<
w
x
N
w

Structural Dynamics

Plane Stress/Strain Elements

1
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Structural Dynamics

Plane Stress/Strain Elements

The consistent-mass matrix can be obtained by applying:
[m] = [ pINT [N]dV
\%

where dV = tdA

The CST global consistent-mass matrix is:

2010 10]
02010 1
=20 102 0 1
101020
01010 2

Structural Dynamics

Frame Example Problem 1

Use SAP2000 to determine the motion of the frame structure

below.
50 psf
osFw MU ey 1
7 @ For elements 2, 3 7.and 8,
4® @ mf[ A=620in%1= 107in.*

Forclem:nm
=12.3in%/ = 133in*

104 psf
087 || Hhebbbb bbb \
s @ Fowel:menui:nd& .
1@ 104 pst L 20pst 106t A=247in21=237in.
o || b
3 ®

y@ ® 156 Py —
q_ I Os
-

301t
(Bays on 15-ft centers)

_L§
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Structural Dynamics

Frame Example Problem 1

Assume the modulus of elasticity E = 3 x 107 psi. The nodal
lumped mass values are obtained by dividing the total weight
(dead loads included) of each floor or wall section by gravity.

osrw__ bbb Forcemens 1 nd.
MO 2, o|l I 2o, T 1071n.
osrw_|| bbb bR + Forclemend. |
O ° 108 For«\u;";n;!-:m:i 237int
o || Sbssibii
? @ J ﬁ#i Fr). k
® ® 15 ft s‘-——-—
'Jll_—" 777% —l— 0 0:2
!— 0 4-Ji s

(Bays on 15-ft centers)

Structural Dynamics

Frame Example Problem 1

Below is the SAP2000 model for this example:

US" FLOOR .8
E £ WALLB
" -] FLOORB 5
| ’ i For elements 1 and 9,
" A=132in?%1=249in.*
E 3 WALLT =———> Eor elements 2, 3, 7, and 8,
i A=620in21=107in*
Lo FLOORB &

/7 For element 4,
FLOORT A=123in% 7 = 133in*

For elements 5 and 6,

/ A=124.7in% [ =237in*

WALLE
WALLB

FLOORB
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Structural Dynamics

Frame Example Problem 1

For example, compute the total mass of the uniform vertical
load on elements 4, 5, and 6:

M, :% _ (50 pSf)(3O ft)(15ft) _ 5828 |b-S%}

g 386.04 7/,

v, Vs _ (104 psf)(301)(151) . o b7/
g 386.04 7/, in
g 386.04 17/, in

Structural Dynamics

Frame Example Problem 1

Next, lump the mass equally to each node of the beam element.

For this example calculation, a lumped mass of 29.14 Ib-s?/in
should be added to nodes 7 and 8 and a mass of 60.62
Ib-s2/in should be added to nodes 3, 4, 5, and 6, all in
the x direction.

50 psf
057 I I
7‘® IUSDpif @
T | TR AR e \
6
— 20 psf

5

® &
ro ||t b

3 ® 4
, ® ®
.1
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Structural Dynamics

Frame Example Problem 1

In an identical manner, masses for the dead loads for additional
wall sections should be added to their respective nodes.

In this example, additional wall loads should be converted to
mass added to the appropriate loads.

50 psf
0.57) W b
7‘® mgr @
087 0)_| [T

o 2,
ro ||t b

3 ®
R
A, — x »L

20 psf

Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on

element 7 is:
g 386.04 in/, In

Therefore, an additional 3.88 Ib-s?/in should be added to nodes

6 and 8. 50 psf
0.57) W b

7 8

@ 104 psf
osro)_| LI SHTIIL \
o)

o 2,
ro ||t b

3 ® 4
, @ ®
J,,_., il
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Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on

element 8 is:
g 386.04 in/, In

Therefore, an additional 3.88 Ib-s?/in should be added to nodes

4 and 6. 50 psf
0.57) W b

o .8, O)IN

08F0 | HbH AL \
6
— 20 psf

o &
Fo || b j
3 ® 4

;H’@ ®
A, — x »Lb;

Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on

element 9 is:
g 386.04 in/, In

Therefore, an additional 5.83 Ib-s?/in should be added to node 4.

50 psf
0.5F@ W
7 8

@ 104 psf
osro)_| LI SHTIIL \
o)

o 2,
ro ||t b

3 ® 4
, @ ®
J,,_., il
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Structural Dynamics

Frame Example Problem 1

The final values for the nodal masses on this frame are shown

i

below. U :

7

=

-

e

Structural Dynamics

Frame Example Problem 1

The deflected shape from SAP2000 is shown below:

®

78/85
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Structural Dynamics

Frame Example Problem 1

A trace of the displacements of nodes 8, 6, and 4 as a function
of time can be generated using the SAP2000 Display Menu.

X
File

TIME Legend

367

3.2 A / A M\
1 T\ T i
\ [~ 1A /

28

24

n
SUIOr ‘GIIOF HIUIOF

E / | | |
1.6; | h I\ | [ [
\

1.279 il i
] I
|

051 Wy AR, I
ﬂd;} U j \j \ (467, 4)
[ I I [k

o O R R RN
0.5 15 2, 25 335 4 45

Structural Dynamics

Frame Example Problem 1

A plot of the displacements of nodes 8, 6, and 4 over the first 5
seconds of the analysis generate by SAP2000 is shown
below:

X
File

TIME Legend

367

3.2 A / A M\
1 T T i
| LA [l |

Jointé
—Jointd

28

24

n
SUIOr ‘GIIOF HIUIOF

E / | | |
1.6; | h I\ | [ [

1.279

051 Wy AR, I
ﬂd;} U j \j \ (467, 4)
froeeege e | I I [k

NI i
.15 2 5.

o I R RN
0.5 25 335 4 45
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Structural Dynamics

Frame Example Problem 1

The maximum displacement of node 8 is 3.16 in. and the period
of the vibration is approximately 1.2 seconds.

File
TIME Legend
4.1
156 ;
: ]
3.2 sy 5 ™ &) s
E [\ A \ [ . (
2383 [ 1 [ | 3
1 \ i | | |
2.4 | | | [ \ ;
E N )| I i\ - g
27 i A T I
{ VTN N 8
160 | 1 T 1l i I &
i | \ I \ [l | \ i
127 T i I 1
£ L \ L
o8y~ ] T ) z
] [ A \ 1
0.47 46T, 4
1) \ |/ \J \ W03
I R A R
0.5 1. 15 2, 25 335 4 45 5

Structural Dynamics

Frame Example Problem 1
The maximum velocity of node 8 is 8.08 in/s

| File
TIME Legend
10,7 ‘ ‘
I 3
8.3 [ |
6.7 \ .
4: / \ / \ f‘ \ \ g :u
A AL [
AN A \ § v
2 7 | T g at
] \ \ \ =
0.3 | \ -]
] \ l\ | _'_
.2E \ I,‘II‘ \ ‘Iu s
4.3 Y V7 /
E \l/ \/ \ %
6 =
87
-\II\|\\\I||||\‘I\II'II\\|||II‘HH'I\II‘\III'IHI
05 1. 15 2z 25 3. 35 4 45 5
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Structural Dynamics

Frame Example Problem 1
The maximum acceleration of node 8 is -41.9 in/s?

€ nicp

o 1T A Y A AN A '
AN VTN TN g e
i 1 W i b
"1 YR |
£ L [
SN
EVIEIVERVIEyE
,4u \\jl 1\ .<f \-/

0.5' 1.‘ 1.5' 2.‘ 2 5‘ 3 ! 3 SI 4 ‘ 4.5' 3.

Structural Dynamics

Frame Example Problem 1
A plot of the displacement, velocity, and acceleration of node 8
is show below:

M Dis

I e A O s
30:“ j( ‘)' \l f s -.;:‘,. ]-.‘.-\..‘
= FE
% e g o s s e R
AT
0
o I A AW
:j_ \f \ f \ (489, ,-184)
-”d's""w"”w"s"”:l"‘ﬁ!;"”a‘"'a'l;“"i"‘ﬂ;“"é ok ]
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Structural Dynamics

Frame Example Problem 2

Use SAP2000 to determine the motion of the frame structure

below.
30 psf For elements 1 and 9
o570 I A=132in% 1 = 249in.*
i’le) .o@,,, : 106 :D:\E::T;{)s lﬁf’?}twl'g?s‘-}n.‘
0850 | A =123in5 1 = 133in*
5 6 For elements 5 and 6,

1@ ms%sr
Foy LI B /
4

3 ® 4»7 Fo.k
O) ® 151t P
4 oL L

L | -
30Mt 1

A=247in%[=23Tin!

(Bays on 15-ft centers)

Structural Dynamics

Frame Example Problem 2

A trace of the displacements as a function of time of nodes 8, 6,
and 4 over the first 5 seconds of the analysis generate by

SAP2000 is shown below:
nsé ‘I."‘I I“\ "‘I II“\ ‘I"I ‘.\ ‘I‘" ‘I‘." i —Joint8
o I 5 T I VI 1 2 W S\ W
SOV I g
N \\ / \\ /f | 2
S I A I :
g ]
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Structural Dynamics

Frame Example Problem 2

The maximum displacement of node 8 is 0.877 in. and the
period of the vibration is approximately 1.3 seconds.

X Plot Function Traces (HIST

File

TIME Legend

08y |
ER

DGE ‘I.‘I_ ‘I\ ‘I\'I, ‘I‘I‘.‘
i I IV )
g VRN [
o RN A AN
g \F R RN /

067

o
| —
|t
]
| et
o ‘guior ‘Fuor

AW
] =4 e i
\/ \J \/

087

T Rt R R R ARl EE R R RN
05 1. 15 2 25 3. 35 4 45 5

Structural Dynamics

Frame Example Problem 2
The maximum velocity of node 8 is 4.68 in/s

TIME Legend

e

-pauier |-guior |- guior

O L
]
L
B
=
s

L L
05 1. 15 2 25 3. 35 4 45 5
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Structural Dynamics

Frame Example Problem 2
The maximum acceleration of node 8 is -75.2 in/s?

X i X
File
TIME Legend
120
1003
80 <
E g
6073
P H U Iy I E
WRRITY! | T T | AT 1T
207 I ;
03 ¥ . I ;
,zu'é ‘ ! i g
o T
60 ‘
T R O XD

Structural Dynamics

Frame Example Problem 2

A plot of the displacement, velocity, and acceleration of node 8
is show below:

13 Display Plot Function Traces (HIST1) b4
File
TIME Legend

120.

1DD.€

ED’; .

E | m | g

e B B i

o ‘LLMM ‘!11"'; I MHJ;\ Ml H

. I‘mli\‘ L ﬂgﬂl 'ﬁ I, 2

o (TR YIE O TIL VT &

I T »
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-Eiu;
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Development of the Plate Bending Element

Problems
23. Do problems 16.6 and 16.11c in your textbook.

24.Do problems 16.14 and 16.16 in your textbook using
SAP2000.

End of Chapter 16
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