
Chapter 16 – Structural Dynamics

Learning Objectives
• To discuss the dynamics of a single-degree-of

freedom spring-mass system.

• To derive the finite element equations for the time-
dependent stress analysis of the one-dimensional
bar, including derivation of the lumped and
consistent mass matrices.

• To introduce procedures for numerical integration in
time, including the central difference method,
Newmark's method, and Wilson's method.

• To describe how to determine the natural
frequencies of bars by the finite element method.

• To illustrate the finite element solution of a time-
dependent bar problem.

Chapter 16 – Structural Dynamics

Learning Objectives
• To develop the beam element lumped and

consistent mass matrices.

• To illustrate the determination of natural
frequencies for beams by the finite element
method.

• To develop the mass matrices for truss, plane
frame, plane stress, plane strain, axisymmetric, and
solid elements.

• To report some results of structural dynamics
problems solved using a computer program,
including a fixed-fixed beam for natural frequencies,
a bar, a fixed-fixed beam, a rigid frame, and a
gantry crane-all subjected to time-dependent
forcing functions.
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Structural Dynamics

Introduction

This chapter provides an elementary introduction to time-
dependent problems. 

We will introduce the basic concepts using the single-
degree-of-freedom spring-mass system. 

We will include discussion of the stress analysis of the one-
dimensional bar, beam, truss, and plane frame.     

Structural Dynamics

Introduction

We will provide the basic equations necessary for structural 
dynamic analysis and develop both the lumped- and the 
consistent-mass matrices involved in the analyses of a bar, 
beam, truss, and plane frame. 

We will describe the assembly of the global mass matrix for 
truss and plane frame analysis and then present numerical 
integration methods for handling the time derivative. 

We will provide longhand solutions for the determination of the 
natural frequencies for bars and beams, and then illustrate the 
time-step integration process involved with the stress analysis 
of a bar subjected to a time dependent forcing function.   
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Structural Dynamics

Dynamics of a Spring-Mass System

In this section, we will discuss the motion of a single-degree-of-
freedom spring-mass system as an introduction to the 
dynamic behavior of bars, trusses, and frames. 

Consider the single-degree-of-freedom spring-mass system 
subjected to a time-dependent force F(t) as shown in the 
figure below. 

The term k is the stiffness of the spring and m is the mass of the 
system.

Structural Dynamics

Dynamics of a Spring-Mass System

The free-body diagram of the mass is shown below.

The spring force T = kx and the applied force F(t) act on the 
mass, and the mass-times-acceleration term is shown 
separately.

Applying Newton’s second law of motion, f = ma, to the mass, 
we obtain the equation of motion in the x direction:

( )F t kx mx  

where a dot ( • ) over a variable indicates differentiation with 
respect to time.
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Structural Dynamics

Dynamics of a Spring-Mass System

The standard form of the equation is:

The above equation is a second-order linear differential 
equation whose solution for the displacement consists of a 
homogeneous solution and a particular solution. 

The homogeneous solution is the solution obtained when the 
right-hand-side is set equal to zero. 

A number of useful concepts regarding vibrations are available 
when considering the free vibration of a mass; that is when 
F(t) = 0.

  ( )mx kx F t

Structural Dynamics

Dynamics of a Spring-Mass System

Let’s define the following term:

The equation of motion becomes:

2 k

m


  2 0x x

where  is called the natural circular frequency of the free 
vibration of the mass (radians per second). 

Note that the natural frequency depends on the spring stiffness 
k and the mass m of the body.
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Structural Dynamics

Dynamics of a Spring-Mass System

The motion described by the homogeneous equation of motion 
is called simple harmonic motion. A typical displacement -
time curve is shown below.

where xm denotes the maximum displacement (or amplitude 
of the vibration). 

Structural Dynamics

Dynamics of a Spring-Mass System

The time interval required for the mass to complete one full 
cycle of motion is called the period of the vibration  (in 
seconds) and is defined as:

The frequency in hertz (Hz = 1/s) is f = 1/ =  /(2).


2
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Structural Dynamics

Dynamics of a Spring-Mass System

Structural Dynamics

Dynamics of a Spring-Mass System
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Structural Dynamics

Dynamics of a Spring-Mass System

Structural Dynamics

Dynamics of a Spring-Mass System
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Structural Dynamics

Dynamics of a Spring-Mass System

Structural Dynamics

Dynamics of a Spring-Mass System
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where the bar is of length L, cross-sectional area A, and mass 
density  (with typical units of lb-s2/in4), with nodes 1 and 2 
subjected to external time-dependent loads:

Structural Dynamics

Direct Derivation of the Bar Element

Let’s derive the finite element equations for a time-dependent 
(dynamic) stress analysis of a one-dimensional bar. 

Step 1 - Select Element Type

( )e
xf t

We will consider the linear bar element shown below.

Structural Dynamics

Direct Derivation of the Bar Element

Step 2 - Select a Displacement Function

A linear displacement function is assumed in the x direction.

The number of coefficients in the displacement function, ai, is 
equal to the total number of degrees of freedom associated 
with the element. 

 1 2u a a x

We can express the displacement function in terms of the shape 
functions:

   
   

 
1

1 2
2

u
u N N

u
  1 21

x x
N N

L L
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Structural Dynamics

Direct Derivation of the Bar Element

Step 3 - Define the Strain/Displacement and Stress/Strain 
Relationships

The stress-displacement relationship is:

     [ ]x

du
B d

dx


where:             
1

2

1 1
[ ]

u
B d

uL L

      [ ] [ ][ ]x xD D B d 

The stress-strain relationship is given as:

Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The bar element is typically not in equilibrium under a time-
dependent force; hence, f1x ≠  f2x. 

We must apply Newton’s second law of motion, f = ma, to each 
node. 

Write the law of motion as the external force fxe minus the 
internal force equal to the nodal mass times acceleration.
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Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Therefore: 2
1

1 1 1 2
e

x x

u
f f m

t


 



where:

1 2

AL
m
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1 11
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Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

If we replace {f} with [k]{d} we get:          ( )ef t k d m d

Where the elemental stiffness matrix is:

      
    


2

2

1 1

1 1

dAE
k d

L t

   
  

 

1 0

2 0 1

AL
m



and the lumped-mass matrix is:
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Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Let’s derive the consistent-mass matrix for a bar element. 

The typical method for deriving the consistent-mass matrix is 
the principle of virtual work; however, an even simpler 
approach is to use D’Alembert’s principle. 

The effective body force is:      eX u

The nodal forces associated with {Xe} are found by using the 
following:

    [ ] { }T
b

V

f N X dV

Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting {Xe} for {X} gives:      [ ]Tb

V

f N u dV

          [ ] [ ]u N d u N d

The second derivative of the u with respect to time is:

where    and    are the nodal velocities and accelerations, 
respectively.

u u
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Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

              T

b

V

f N N d dV m d

where:

The mass matrix is called the consistent mass matrix because 
it is derived using the same shape functions use to obtain the 
stiffness matrix. 

Therefore: 

      
T

V

m N N dV

Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting the shape functions in the above mass matrix 
equations give:

 
          
  


1

1
V

x
x xLm dV

x L L

L



 
          
  


0

1
1

L
x

x xLm A dx
x L L

L



CIVL 7/8117 Chapter 16 - Structural Dynamics 13/85



Structural Dynamics

Direct Derivation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting the shape functions in the above mass matrix 
equations give:

 

         
                  



2

2
0

1 1

1

L

x x x

L L L
m A dx

x x x

L L L



   
  

 

2 1

6 1 2

AL
m



Evaluating the above integral gives:

Structural Dynamics

Direct Derivation of the Bar Element

Step 5 - Assemble the Element Equations and Introduce 
Boundary Conditions

The global stiffness matrix and the global force vector are 
assembled using the nodal force equilibrium equations, and 
force/deformation and compatibility equations.

        ( ) { }F t K d M d

 


    ( )

1

N
e

e

K k

where

 


    ( )

1

N
e

e

M m    


  ( )

1

N
e

e

F f
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Structural Dynamics

Numerical Integration in Time

We now introduce procedures for the discretization of the 
equations of motion with respect to time. 

These procedures will allow the nodal displacements to be 
determined at different time increments for a given dynamic 
system. 

The general method used is called direct integration. There 
are two classifications of direct integration: explicit and implicit. 

We will formulate the equations for two direct integration 
methods. 

Structural Dynamics

Numerical Integration in Time

The first, and simplest, is an explicit method known as the 
central difference method. 

The second more complicated but more versatile than the 
central difference method, is an implicit method known as the 
Newmark-Beta (or Newmark’s) method. 

The versatility of Newmark’s method is evidenced by its 
adaptation in many commercially available computer 
programs.
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Structural Dynamics

Central Difference Method

The central difference method is based on finite difference 
expressions for the derivatives in the equation of motion. 

For example, consider the velocity and the acceleration 
at time t:

     1 1

2( )
i i

i

d d
d

t
 






     1 1

2( )

i i

i

d d
d

t

 




 


where the subscripts indicate the time step for a given time 
increment of t. 

Structural Dynamics

Central Difference Method

The acceleration can be expressed in terms of the 
displacements (using a Taylor series expansion).

The first two terms of Taylor series of a function d(t) is:

 2

1 2
i

i i i

d
d d d t t      

 

Solving for the acceleration gives:

 
 

1

2

2 i i i

i

d d d t
d

t

   







Substitute the central difference for the first derivation

     1 1

2( )
i i

i

d d
d

t
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Structural Dynamics

Central Difference Method

Therefore, accelerations can be expressed in terms of the 
displacements as:

       1 1
2

2

( )
i i i

i

d d d
d

t
  






        2
1 12 ( )i i i id d d d t    

We generally want to evaluate the nodal displacements; 
therefore, we rewrite the above equation as:

         1
M F Ki i id d


 

The acceleration can be expressed as:

Structural Dynamics

Central Difference Method

               2

1 12i i i i id d d d t     M M M F K

                 2 2

1 12i i i id t t d d 
       M F M K M

Combining terms in the above equations gives:

To develop an expression of di+1, first multiply the nodal 
displacement equation by M and substitute the above equation 
for        into this equation. id

To start the computation to determine  
we need the displacement at time step i -1. 

     1 1 1, , andi i id d d  
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Structural Dynamics

Central Difference Method

       
2

1

( )
( )

2i i i i

t
d d t d d


    

Using the central difference equations for the velocity and 
acceleration:

     1 1

2( )
i i

i

d d
d

t
 






        2
1 12 ( )i i i id d d d t    

     1 12( )i i id t d d    

Solving for {di-1} gives:

Structural Dynamics

Central Difference Method

1. Given:      0 0, , and ( )id d F t

2. If the acceleration is not given, solve for  0d

         1

0 0 0M F Kd d


 

Procedure for solution:

3. Solve for {d-1} at t = -t

       
2

1 0 0 0

( )
( )

2

t
d d t d d
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Structural Dynamics

Central Difference Method

Procedure for solution:

4. Solve for {d1} at t = t using the value of {d-1} from Step 3 

                 2 2

1 12i i i id t t d d 
       M F M K M

                   1 2 2

1 0 0 12d t t d d



       M F M K M

Structural Dynamics

Central Difference Method

Procedure for solution:

5. With {d0} given and {d1} determined in Step 4 solve for {d2}

                   1 2 2

2 1 1 02d t t d d
        M F M K M

6. Solve for  1 :d          1

1 1 1M F Kd d


 

7. Solve for  1 :d      2 0
1 2( )

d d
d

t







8. Repeat Steps 5, 6, and 7 to obtain the displacement, 
acceleration, and velocity for other time steps.
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Structural Dynamics

Central Difference Method

Procedure for solution:

Structural Dynamics

Central Difference Method – Example Problem

Determine the displacement, acceleration, and velocity at 0.05 
second time intervals for up to 0.2 seconds for the one-
dimensional spring-mass system shown in the figure below.

Consider the above spring-mass system as a single degree of 
freedom problem represented by the displacement d.
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Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

1. At time t = 0:    0 00 0d d 

2. If the acceleration is not given, solve for  0d

         1

0 0 0M F Kd d


 

  20

2,000 100(0)
62.83

31.83
ind

s


 

Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

3. Solve for {d-1} at t = -t

4. Solve for {d1} at t = 0.05 s using the value of {d-1} from Step 3 

       
2

1 0 0 0

( )
( )

2

t
d d t d d


    

                   1 2 2

1 0 0 12d t t d d



       M F M K M

 
2

1

(0.05)
0 (0.05)0 (62.83) 0.0785

2
d in    

             2 2

1

1
0.05 2,000 2 31.83 0.05 100 0 31.83 0.0785

31.82
d      

0.0785 in
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Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

5. With {d0} given and {d1} determined in Step 4 solve for {d2}

                   1 2 2

2 1 1 02d t t d d
        M F M K M

               2 2

2

1
0.05 1,500 2 31.83 0.05 100 0.0785 31.83 0

31.82
d      

0.274 in

6. Solve for  1 :d          1

1 1 1M F Kd d


 

    21

1
1,500 100 0.0785 46.88

31.83
ind

s
    



Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

7. Solve for  1 :d      2 0
1 2( )

d d
d

t







8. Repeat Steps 5, 6, and 7 to obtain the displacement, 
acceleration, and velocity for other time steps.

   1

0.274 0
2.74

2 0.05
ind s
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Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

5. With {d1} given and {d2} determined in Step 4 solve for {d3}

                   1 2 2

3 2 2 12d t t d d
        M F M K M

               2 2

3

1
0.05 1,000 2 31.83 0.05 100 0.274 31.83 0.0785

31.82
d      

0.546 in

6. Solve for  2 :d          1

2 2 2M F Kd d


 

    22

1
1,000 100 0.274 30.56

31.83
ind

s
    



Structural Dynamics

Central Difference Method – Example Problem

Procedure for solution:

7. Solve for  2 :d      3 1
2 2( )

d d
d

t







8. Repeat Steps 5, 6, and 7 to obtain the displacement, 
acceleration, and velocity for other time steps.

   2

0.546 0.0785
4.68

2 0.05
ind s
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Structural Dynamics

Central Difference Method – Example Problem

The following table summarizes the results for the remaining 
time steps as compared with the exact solution.

t (s) F(t) (lb) (in/s2) (in/s) (in) (exact)

0.00 2,000 62.8338 0.0000 0.0000 0.0000

0.05 1,500 46.8786 2.7428 0.0785 0.0718

0.10 1,000 30.5552 4.6787 0.2743 0.2603

0.15 500 13.9918 5.7923 0.5464 0.5252

0.20 0 -2.6815 6.0751 0.8535 0.8250

0.25 0 -3.6252 5.9174 1.1539 1.132

id id id id

Structural Dynamics

Central Difference Method – Example Problem

Plotting the motion for about 4 s gives:
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Structural Dynamics

Newmark’s Method

Newmark’s equations are given as:

       1 1( ) (1 )i i i id d t d d  
      

   

          2 1
1 12( ) ( )i i i i id d t d t d d  

        
  

where  and  are parameters. 

The parameter  is typically between 0 and ¼, and  is often 
taken to be ½. 

For example, if  = 0 and  = ½ the above equation reduce to 
the central difference method. 

Structural Dynamics

Newmark’s Method

To find {di+1} first multiply the above equation by the mass matrix 
[M] and substitute the result into this the expression for 
acceleration. Recall the acceleration is:

The expression [M]{di+1} is:

         1
M F Ki i id d


 

                  2 1
1 2( ) ( )i i i id d t d t dM M M M 

         
2

1 1( ) i it d F K

Combining terms gives:

               2 2
1 1( ) ( )i i it d t d M K F M

          2 1
2( ) ( )i it d t dM M 
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Structural Dynamics

Newmark’s Method

Dividing the above equation by (Δt)2 gives:

where:

    1 1K' F'i id  

      
 2

1
'

( )t
K K M

              
        

21
1 1 22

' ( ) ( )
( )i i i i id t d t d

t



M

F F  

The advantages of using Newmark’s method over the central 
difference method are that Newmark’s method can be made 
unconditionally stable (if  = ¼ and  = ½) and that larger time 
steps can be used with better results.

Structural Dynamics

Newmark’s Method

Procedure for solution:
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Structural Dynamics

Newmark’s Method

Procedure for solution:

1. Given:      0 0, , and ( )id d F t

2. If the acceleration is not given, solve for  0d

         1

0 0 0M F Kd d


 

3. Solve for {d1} at t = 0

    1 1K' F'd 

Structural Dynamics

Newmark’s Method

Procedure for solution:

          2 1
1 1 0 0 022

1
( ) ( )

( )
d d d t d t d

t



        

  

4. Solve for        -- original Newmark equation for          rewritten 
for          :

 1d  1id 

 1id 


       1 0 0 1( ) (1 )d d t d d       
   

5. Solve for  1d

6. Repeat Steps 3, 4, and 5 to obtain the displacement, 
acceleration, and velocity for the next time step.
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Structural Dynamics

Newmark’s Method – Example Problem

Determine the displacement, acceleration, and velocity at 0.1 
second time intervals for up to 0.5 seconds for the one-
dimensional spring-mass system shown in the figure below.

Consider the above spring-mass system as a single degree of 
freedom problem represented by the displacement d. 

Use Newmark’s method with  = 1/6 and  = ½.

Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

1. Given:      0 0, , and ( )id d F t

2. If the acceleration is not given, solve for  0d

         1

0 0 0M F Kd d


 

  21
100 70(0) 56.5 /

1.77
in s  
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Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

3. Solve for {d1} at t = 0.1 s     1 1K' F'd 

     2

1
'

( )t
 


K K M

             21
1 1 0 0 022
' ( ) ( )

( )
d t d t d

t



        

M
F F  

   21 1
2 621

6

1.77
80 0 (0.1)0 (0.1) 56.5

(0.1)
      

   
 

1
1

'

'
d 

F

K

21
6

1
70 (1.77)

(0.1)
 

280

1,132 lb
in

lb
 0.248 in

1,132 /lb in

280 lb

Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

4. Solve for         at t = 0.1 s 1d

          2 1
1 1 0 0 022

1
( ) ( )

( )
d d d t d t d

t



        

  

 2 1 1
2 621

6

1
0.248 0 (0.1)0 (0.1) 56.5

(0.1)
      

       1 0 0 1( ) (1 )d d t d d       
   

5. Solve for  1d

 1 1
2 20 (0.1) (1 )56.5 35.4      4.59 in

s

235.4 in
s
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Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

6. Repeat Steps 3, 4, and 5 to obtain the displacement, 
acceleration, and velocity for the next time step.

Repeating Steps 3, Solve for {d1} at t = 0.2 s

             21
2 2 1 1 122
' ( ) ( )

( )
d t d t d

t



        

M
F F  

   21 1
2 621

6

1.77
60 0.248 (0.1)4.59 (0.1) 35.4

(0.1)
      

   
 

2
2

'

'
d 

F

K

934

1,132
 0.825 in

934 lb

Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

Repeating Step 4: solve for         at t = 0.2 s 1d

          2 1
2 2 1 1 122

1
( ) ( )

( )
d d d t d t d

t



        

  

 2 1 1
2 621

6

1
0.825 0.248 (0.1)4.59 (0.1) 35.4

(0.1)
      

21.27 in
s
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Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

       2 1 1 2( ) (1 )d d t d d       
   

5. Solve for  2d

 1 1
2 24.59 (0.1) (1 )35.4 1.27     

6.42 in
s

t (s) F(t) lb (in/s2) (in/s) di (in)

0.0 100 56.4972 0.0000 0.0000

0.1 80 35.4155 4.5956 0.2473

0.2 60 1.1939 6.4261 0.8270

0.3 48.5714 -28.9276 5.0394 1.4253

0.4 45.7143 -43.7731 1.4044 1.7599

0.5 42.8571 -42.3776 -2.9031 1.6838

Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

The following table summarizes the results for the time steps 
through t = 0.5 seconds. 

id id
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Structural Dynamics

Newmark’s Method – Example Problem

Procedure for solution:

Plotting the motion for about 4 s gives:
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Structural Dynamics

Natural Frequencies of a One-Dimensional Bar

Before solving the structural stress dynamic analysis problem, 
let’s consider how to determine the natural frequencies of 
continuous elements. 

Natural frequencies are necessary in vibration analysis and 
important when choosing a proper time step for a structural 
dynamics analysis.

Natural frequencies are obtained by solving the following 
equation:

      0d d M K

CIVL 7/8117 Chapter 16 - Structural Dynamics 32/85



Structural Dynamics

Natural Frequencies of a One-Dimensional Bar

The standard solution for {d} is given as:

where {d } is the part of the nodal displacement matrix called 
natural modes that is assumed to independent of time, i is the 
standard imaginary number, and  is a natural frequency.  

    2' i td d e  

   ( ) ' i td t d e 

Differentiating the above equation twice with respect to time 
gives:

Substituting the above expressions for {d} and       into the 
equation of motion gives:

 d

      2 ' ' 0i t i td e d e   M K

Structural Dynamics

Natural Frequencies of a One-Dimensional Bar

Combining terms gives:      2 ' 0i te d  K M

Since eit is not zero, then:     2 0 K M

   2 0 K M

The above equations are a set of linear homogeneous 
equations in terms of displacement mode {d }. 

There exists a non-trivial solution if and only if the determinant 
of the coefficient matrix of  is zero.
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One-Dimensional Bar - Example Problem

Determine the first two natural frequencies for the bar shown in 
the figure below. 

Assume the bar has a length 2L, modulus of elasticity E, mass 
density , and cross-sectional area A.

Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as 
shown below.

We need to develop the stiffness matrix and the mass matrix 
(either the lumped- mass of the consistent-mass matrix). 

In general, the consistent-mass matrix has resulted in solutions 
that compare more closely to available analytical and 
experimental results than those found using the lumped-mass 
matrix. 
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One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as 
shown below.

However, when performing a long hand solution, the 
consistent-mass matrix is more difficult and tedious to 
compute; therefore, we will use the lumped-mass matrix 
in this example.

Structural Dynamics

One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as 
shown below.

The elemental stiffness matrices are:

(1)

1 2

1 1

1 1

AE
k

L

 
       

The global stiffness matrix is:

 

1 2 3

1 1 0

1 2 1

0 1 1

AE
K

L

 
    
  

(2)

2 3

1 1

1 1

AE
k

L
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One-Dimensional Bar - Example Problem

Let’s discretize the bar into two elements each of length L as 
shown below.

The lumped-mass matrices are:
1 2

(1)

1 0

2 0 1

AL
m

  
     

 

The global lumped-mass matrix is:

 

1 2 3

1 0 0

0 2 0
2

0 0 1

AL
M


 
   
  

2 3

(2)

1 0

2 0 1

AL
m

  
     

 

Structural Dynamics

One-Dimensional Bar - Example Problem

Substituting the above stiffness and lumped-mass matrices into 
the natural frequency equation:

and applying the boundary condition {u1} = 0 (or {d1} = 0) 
gives:

     2 ' 0d K M

22

3

'2 1 2 0 0

'1 1 2 0 1 0

dAE AL
dL


        

               

Set the determinant of the coefficient matrix equal to zero as:

2 1 2 0
0

1 1 2 0 1

AE AL

L


   

       
where  = 2
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One-Dimensional Bar - Example Problem

2
0

2

  
 

 


 

Dividing the above equation by AL and letting                  gives:2
E

L





Evaluating the determinant of the above equations gives:

2 2   

For comparison, the exact solution gives  = 0.616, whereas 
the consistent-mass approach yields  = 0.648.

1 20.5858 3.4142    

2
2 2 0

2

   

Structural Dynamics

One-Dimensional Bar - Example Problem

Therefore, for bar elements, the lumped-mass approach can 
yield results as good as, or even better than, the results from 
the consistent-mass approach. 

However, the consistent-mass approach can be mathematically 
proven to yield an upper bound on the frequencies, whereas 
the lumped-mass approach has no mathematical proof of 
boundedness.

1 1 0.7654   

The first and second natural frequencies are given as:

2 2 1.8478   
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One-Dimensional Bar - Example Problem

The term  may be computed as:

2

E

L





Therefore, first and second natural frequencies are:

3
1 1.56 10  /  rad s  

2

4

6

2lb.s

in.

30 10 psi

(0.00073 )(100in.)


 6 -24.12 10 s 

3
2 3.76 10  /rad s  

Structural Dynamics

One-Dimensional Bar - Example Problem

In general, an n-degree-of-freedom discrete system has n
natural modes and frequencies. 

A continuous system actually has an infinite number of natural 
modes and frequencies. 

The lowest modes and frequencies are approximated most 
often; the higher frequencies are damped out more rapidly and 
are usually less important. 
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One-Dimensional Bar - Example Problem

Substituting 1 into the following equation

22

3

'2 1 2 0 0

'1 1 2 0 1 0

dAE AL
dL


        

               

Gives: (1) (1)
2 31.4142 ' ' 0d d  

where the superscripts indicate the natural frequency. 

It is customary to specify the value of one of the natural modes 
{d } for a given i or i and solve for the remaining values. 

For example, if                than the solution for  (1)
3' 1d   (1)

2' 0.7071d 

(1) (1)
2 3' 0.7071 ' 0d d   

Structural Dynamics

One-Dimensional Bar - Example Problem

Similarly, if we substitute 2 and let                 the solution of the 
above equations gives

 (2)
3' 1d 

 (2)
2' 0.7071d  

The modal responses for the first and second natural 
frequencies are shown in the figure below.

The first mode means that the bar is completely in tension or 
compression, depending on the excitation direction.

CIVL 7/8117 Chapter 16 - Structural Dynamics 39/85



Structural Dynamics

One-Dimensional Bar - Example Problem

Similarly, if we substitute 2 and let                 the solution of the 
above equations gives

 (2)
3' 1d 

 (2)
2' 0.7071d  

The modal responses for the first and second natural 
frequencies are shown in the figure below.

The second mode means that bar is in compression and tension 
or in tension and compression.

Structural Dynamics

One-Dimensional Bar - Example Problem

Similarly, if we substitute 2 and let                 the solution of the 
above equations gives

 (2)
3' 1d 

 (2)
2' 0.7071d  

The modal responses for the first and second natural 
frequencies are shown in the figure below.
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Time-Dependent One-Dimensional Bar - Example

Consider the one-dimensional bar system shown in the figure 
below.

Assume the boundary condition {d1x} = 0 and the initial 
conditions {d0} = 0 and  0 0d 

Let  = 0.00073 lb-s2/in.4, A = 1 in.2, E = 30 x 106 psi, and 
L = 100 in. 

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

The bar will be discretized into two elements as shown below.

The elemental stiffness matrices are:

(1)

1 2

1 1

1 1

AE
k

L

 
       

The global stiffness matrix is:

 

1 2 3

1 1 0

1 2 1

0 1 1

AE
K

L

 
    
  

(2)

2 3

1 1

1 1

AE
k

L
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Time-Dependent One-Dimensional Bar - Example

The bar will be discretized into two elements as shown below.

The lumped-mass matrices are:
1 2

(1)

1 0

2 0 1

AL
m

  
       

The global lumped-mass matrix is:

 

1 2 3

1 0 0

0 2 0
2

0 0 1

AL
M


 
   
  

2 3

(2)

1 0

2 0 1

AL
m

  
     

 

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Substitute the global stiffness and mass matrices into the global 
dynamic equations gives:

1 1 1

2 2

3 3 3

1 1 0 1 0 0

1 2 1 0 2 0 0
2

0 1 1 0 0 1 ( )

u u R
AE AL

u u
L

u u F t


         

                   
                 





where R1 denotes the unknown reaction at node 1.
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Time-Dependent One-Dimensional Bar - Example

For this example, we will use the central difference method, 
because it is easier to apply, for the numerical time integration.

It has been mathematically shown that the time step t must be 
less than or equal to two divided by the highest natural 
frequency.

2

max

t


 

For practical results, we should use a time step defined by:

3 2

4 max

t

 

   
 

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

An alternative guide (used only for a bar) for choosing the 
approximate time step is:

x

L
t

c
 

where L is the element length, and

3
3

3 2 1.5
0.40 10

4 3.76 10max

t s


 
       

x
x

Ec 
is the longitudinal wave velocity. 

Evaluating the time step estimates gives:

6

2

4

3

lb. s

in.

30 10

0.00073

psi

100in.
0.48 10

x

L
t s

c
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Time-Dependent One-Dimensional Bar - Example

Guided by these estimates for time step, we will select 
t = 0.25 x 10-3 s.

Procedure for solution:

1. At time t = 0:    0 00 0d d 

2. If the acceleration is not given, solve for  0d

         1

0 0 0M F Kd d


 

 
1

22
0

3 0

0 0 2 1 02

0 1 1,000 1 1 0
t

u AE
d

u AL L


          
                     




Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

Applying the boundary conditions u1 = 0 and            and
simplifying gives:

1 0u 

3. Solve for d-1 at t = -t

       
2

1 0 0 0

( )
( )

2

t
d d t d d


    

3 2
2 3

3 1

0 0 0(0.25 10 )
(0.25 10 )

0 0 2 27,400

u

u






       
          
      

  2
20

3 0

0 02000

1 27,400
t

u ind
su AL



     
       

    




3

0

0.856 10
in
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Time-Dependent One-Dimensional Bar - Example

4. Solve for d1 at t = t using the value of d-1 from Step 3 

                   1 2 2

1 0 0 12d t t d d



       M F M K M

 
1 222 3

3 1

0 0 2 02 2(0.073)
0.25 10

0.073 0 1 1,000 2 0 1

u

u
        

          
        

   23 4
3

2 1 0 2 0 00.073
0.25 10 30 10

1 1 0 2 0 1 0.856 10




        
                  

1
22

3 3
3 1

0 0 02

0.073 0 1 0.0625 10 0.0312 10

u

u  

        
                  

2
3

3 1

0

0.858 10

u
in

u 

   
     

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

5. With d0 given and d1 determined in Step 4 solve for d2

                   1 2 2

2 1 1 02d t t d d
        M F M K M

 
1 222 3

3 2

0 0 2 02 2(0.073)
0.25 10

0.073 0 1 1000 2 0 1

u

u
        

          
        

   23 4
3

2 1 0 2 0 00.073
0.25 10 30 10

1 1 0.858 10 2 0 1 0




        
                  

31
22

3 3
3 2

0 0 0.0161 102

0.073 0 1 0.0625 10 0.0466 10

u

u



 

       
                 

3
2

3
3 2

0.221 10

2.99 10

u
in

u
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Time-Dependent One-Dimensional Bar - Example

         1

1 1 1d d


 M F K

1
22 4

3
3 1

0 0 2 1 02
(30 10 )

0.073 0 1 1000 1 1 0.858 10

u

u 

          
                      




2
2

3 1

3,526

20,345

u in
su

   
   
  




6. Solve for  1d

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

     2 0
1 2( )

d d
d

t







 

3

3
2

3
3 1

00.221 10

02.99 10

2 0.25 10

u

u







    
    

      
 




7. Solve for  1d

0.442

5.98
in

s
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Time-Dependent One-Dimensional Bar - Example

8. Repeat Steps 5, 6, and 7 to obtain the displacement, 
acceleration, and velocity for other time steps.

Repeating Step 5:

                   1 2 2

3 2 2 12d t t d d
        M F M K M

 
1 222 3

3 3

0 0 2 02 2(0.073)
0.25 10

0.073 0 1 1000 2 0 1

u

u
        

          
        

   
3

23 4
33

2 1 2 0 00.221 10 0.073
0.25 10 30 10

1 1 2 0 1 0.858 102.99 10






                          

3
2

3
3 2

1.096 10

5.397 10

u
in

u





   
   

   

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example

         1

2 2 2d d


 M F K

31
22 4

3
3 2

0 0 2 1 0.221 102
(30 10 )

0.073 0 1 1000 1 1 2.99 10

u

u





          
                     




2
2

3 1

10,500

4,600

u in
su

   
   
  




Repeating Step 6. Solve for  2d
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Time-Dependent One-Dimensional Bar - Example

     3 1
2 2( )

d d
d

t







 

3

33
2

3
3 2

01.096 10

0.858 105.397 10

2 0.25 10

u

u







    
          
 




Repeat Step 7:   Solve for 2d

2.192

9.078
in

s
 

  
 

Structural Dynamics

The following table summarizes the results for the remaining 
time steps as compared with the exact solution.

t (10-3 s) d2 d3 (in/s) (in/s) (104in/s2) (104in/s2)

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 2.7397

0.25 0.0000 0.0009 0.4398 5.9697 0.3518 2.0360

0.50 0.0002 0.0030 2.1870 9.0987 1.0459 0.4672

0.75 0.0011 0.0054 5.1477 8.6772 1.3227 -0.8044

1.00 0.0028 0.0073 7.6928 6.4426 0.7134 -0.9833

1.25 0.0049 0.0086 7.9409 4.8502 -0.5149 -0.2906

1.50 0.0068 0.0097 5.3555 4.8455 -1.5535 0.2868

3d2d

Time-Dependent One-Dimensional Bar - Example

3d 2d
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Plotting the displacements for 0.015 s gives:

Time-Dependent One-Dimensional Bar - Example

0 0.005 0.01 0.015
-2

0

2

4

6

8

10

12

14
10-3

Structural Dynamics

Plotting the velocities for 0.015 s gives:

Time-Dependent One-Dimensional Bar - Example

0 0.005 0.01 0.015
-15

-10

-5

0

5

10

15
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Structural Dynamics

Plotting the accelerations for 0.015 s gives:

Time-Dependent One-Dimensional Bar - Example

0 0.005 0.01 0.015
-3

-2

-1

0

1

2

3
104

Structural Dynamics

Time-Dependent One-Dimensional Bar - Example
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Beam Element Mass Matrices and Natural Frequencies

      ( ) { }F t K d M d  

We will develop the lumped- and consistent-mass matrices for 
time-dependent beam analysis. 

Consider the beam element shown in the figure below.

The basic equations of motion are:

Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

 

 
  
   
  

1 1 2 2

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L

 The stiffness matrix is:

The lumped-mass matrix is:

 

1 1 2 2

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m
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Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

The mass is lumped equally into each transitional degree of 
freedom; however, the inertial effects associated with any 
possible rotational degrees of freedom is assumed to be zero. 

A value for these rotational degrees of freedom could be 
assigned by calculating the mass moment of inertia about 
each end node using basic dynamics as:

2 3
21 1

3 3 2 2 24

AL L AL
mL

       
  

I

Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

The consistent-mass matrix can be obtained by applying

      
T

V

m N N dV

where

   

 
 
   
 
  

 

1

2
1 2 3 4

30

4

L

A

N

N
m N N N N dA dx

N

N



   3 2 3
1 3

1
2 3N x x L L

L
   3 2 2 3

2 3

1
2N x L x L xL

L

   3 2
3 3

1
2 3N x x L

L
  3 2 2

4 3

1
N x L x L

L
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Beam Element Mass Matrices and Natural Frequencies

The shape functions are shown below:

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 1.00

N1

N2

N3

N4

Structural Dynamics

Beam Element Mass Matrices and Natural Frequencies

Substituting the shape functions into the above mass 
expression and integrating gives:

 
  
 
    

2 2

2 2

156 22 54 13

22 4 13 3
[ ]

420 54 13 156 22

13 3 22 4

L L

L L L LAL
m

L L

L L L L



CIVL 7/8117 Chapter 16 - Structural Dynamics 53/85



Structural Dynamics

Beam Element - Example 1

Determine the first natural frequency for the beam shown in the 
figure below. Assume the bar has a length 2L, modulus of 
elasticity E, mass density , and cross-sectional area A.

Let’s discretize the beam into two elements each of length L.

We will use the lumped-mass matrix. 

Structural Dynamics

Beam Element - Example 1

We can obtain the natural frequencies by using the following 
equation.

The boundary conditions are v1 = 1 = 0 and v3 = 3 = 0.

   2 0 K M

 
         
  

1 1 2 2

2 2
(1)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L

 
2 2 3 3

2 2
(2)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L
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Beam Element - Example 1

We can obtain the natural frequencies by using the following 
equation.

The boundary conditions are v1 = 1 = 0 and v3 = 3 = 0.

   2 0 K M

1 1 2 2

(1)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 


 
 
      
 
 

2 2 3 3

(2)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 


 
 
      
 
 

Structural Dynamics

Beam Element - Example 1

We can obtain the natural frequencies by using the following 
equation.

The boundary conditions are v1 = 1 = 0 and v3 = 3 = 0.

   2 0 K M

   
  

 

2 2

3 2

24 0

0 8

v

EI

L L



K    
  

 

2 2

2 0

2 0 0

v

AL




M

Therefore, the global stiffness and lumped-mass matrices are:
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Structural Dynamics

Beam Element - Example 1

Substituting the global stiffness and mass matrices into the 
global dynamic equations gives:

   2 0 K M
   

    
   

2
3 2

24 0 1 0
0

0 8 0 0

EI
AL

L L
 

2
4

24EI

AL




Dividing by AL and simplify

2

4.8990 EI

L A





The exact solution for the first natural frequency is:


2

5.59 EI

L A




Structural Dynamics

Beam Element - Example 2

Determine the first natural frequency for the beam shown in the 
figure below. Assume the bar has a length 3L, modulus of 
elasticity E, mass density , and cross-sectional area A.

Let’s discretize the beam into three elements each of length L.

We will use the lumped-mass matrix. 
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Structural Dynamics

Beam Element - Example 2

We can obtain the natural frequencies by using the following 
equation.

The boundary conditions are v1 = 1 = 0 and v4 = 4 = 0.

Therefore the elements of the stiffness matrix for element 1 are:

   2 0 K M

1 1 2 2

2 2
(1)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L

 

 
         
  

Structural Dynamics

Beam Element - Example 2

Element 2:

 
         
  

2 2 3 3

2 2
(2)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L

 

Element 3:

 
         
  

3 3 4 4

2 2
(3)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L
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Structural Dynamics

Beam Element - Example 2

Assembling the global stiffness matrix as:

 

2 2 3 3

2 2 2

3

2 2 2

12 12 6 6 12 6

6 6 4 2 6 2

12 6 12 12 6 6

6 2 6 6 4 4

v v

L L L

L L L L L LEI
K

L L L L

L L L L L L

 

    
     
     
     

 

2 2 3 3

2 2

3

2 2

24 0 12 6

0 8 6 2

12 6 24 0

6 2 0 8

v v

L

L L LEI
K

L L

L L L

 

 
  
  
 
 

Structural Dynamics

Beam Element – Example 2

We can obtain the natural frequencies by using the following 
equation.

Therefore the elements of the mass matrix for element 1 are:

   2 0 K M

 
 
      
 
 

1 1 2 2

(1)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m
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Structural Dynamics

Beam Element – Example 2

Element 2:

 
 
      
 
 

2 2 3 3

(2)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 



Element 3:

The assembled mass matrix is:

 

 
 
 
 
 
 

2 2 3 3

1 1 0 0 0

0 0 0 0

2 0 0 1 1 0

0 0 0 0

v v

AL
m

 

  

 
 
 
 
 
 

2 2 3 3

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

v v

M AL

 



 
 
      
 
 

3 3 4 4

(2)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 



Structural Dynamics

Beam Element – Example 2

We can obtain the frequency equation as:    2 0 K M

2 2
2

3

2 2

24 0 12 6 1 0 0 0

0 8 6 2 0 0 0 0
0

12 6 24 0 0 0 1 0

6 2 0 8 0 0 0 0

L

L L LEI
AL

L L

L L L

 

   
       
    
   
   

 




  

3 3 2

2

3 2 3

2

2

2

24 0 12 6

0 8 6 2
0

12 6 24 0

6 2 0 8

EI EI EI
L L L

EI EI EI
L LL

EI EI EI
L L L

EI EI EI
L LL

AL

AL
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Structural Dynamics

Beam Element – Example 2

Simplifying and assuming:  AL 

Evaluating the 4x4 determinate gives:

 




  

3 3 2

2

3 2 3

2

2

2

24 0 12 6

0 8 6 2
0

12 6 24 0

6 2 0 8

EI EI EI
L L L

EI EI EI
L LL

EI EI EI
L L L

EI EI EI
L LL

 

 

4 2 2 2 2 3 3 4 4

2 5 8

60 2,304 11,664
0

E I E I E I

L L L

   
  

1 2

2.4495 EI

L A



  2 2

5.6921 EI

L A



 

Structural Dynamics

Beam Element – Example 2

Ignoring the negative root as it is not physically possible gives:

To compare with the two-element solution, assume L = ⅔L:

1 2

2.4495 EI

L A



 2 2

5.6921 EI

L A





 1 22
3

2.4495
L

EI

A





2

5.5113 EI

L A
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Structural Dynamics

Beam Element – Example 1 Revisited

In summary:

Two elements:

Three elements:

Exact solution:
2

4.90 EI

L A





2

5.59 EI

L A



2

5.5114 EI

L A





Determine the first natural frequency for the beam shown in the 
figure below. Assume the bar has a length 2L, modulus of 
elasticity E, mass density , and cross-sectional area A.

Structural Dynamics

Beam Element – Example 3

Determine the first natural frequency for the beam shown in the 
figure below. 

Assume the bar has a length L = 30 in, modulus of elasticity 
E = 3 x 107 psi, mass density  = 0.00073 lb-s2/in4, and cross-
sectional area A = 1 in2, moment of inertia I = 0.0833 in4, and 
Poisson’s ratio  = 0.3.
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Structural Dynamics

Beam Element – Example 3

Determine the first natural frequency for the beam shown in the 
figure below. 

Let’s discretize the beam into two elements each of length 
L = 15 in. We will use the lumped-mass matrix. 

We can obtain the natural frequencies by using the following 
equation.

   2 0 K M

Structural Dynamics

Beam Element – Example 3

In this example, the elemental stiffness matrices are:

Element 1:

Element 2:  
         
  

2 2 3 3

2 2
(2)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L

 

 
         
  

1 1 2 2

2 2
(1)

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

v v

L L

L L L LEI
k

L L L

L L L L
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Structural Dynamics

Beam Element – Example 3

In this example, the elemental mass matrices are:

Element 1:

Element 2:  
 
      
 
 

2 2 3 3

(2)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 



 
 
      
 
 

1 1 2 2

(1)

1 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
m

 



Structural Dynamics

Beam Element – Example 3

The boundary conditions are u1 = 1 = 0. Therefore the global 
stiffness and lumped mass matrices is:

 

 
  
   
  

2 2 3 3

2 2

3

2 2

24 0 12 6

0 8 6 2

12 6 12 6

6 2 6 4

v v

L

L L LEI
K

L L L

L L L L

 

 
 
 
 
 
 

2 2 3 3

2 0 0 0

0 0 0 0

2 0 0 1 0

0 0 0 0

v v

AL
M
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Structural Dynamics

Beam Element – Example 3

Substituting the global stiffness and mass matrices into the 
global dynamic equations gives:

   
       
     
      

2 2
2

3

2 2

24 0 12 6 2 0 0 0

0 8 6 2 0 0 0 0
0

12 6 12 6 2 0 0 1 0

6 2 6 4 0 0 0 0

L

L L LEI AL

L L L

L L L L



   
       
     
      

2 2
2

1
2

2 2

24 0 12 6 1 0 0 0

0 8 6 2 0 0 0 0
0

12 6 12 6 0 0 0

6 2 6 4 0 0 0 0

L

L L L

L L

L L L L

 


4

EI

AL




Structural Dynamics

Beam Element – Example 3

Evaluating the determinant of the above equations gives:

  4 4 3 2 414 240 144 0    

1 2

0.7891 EI

L A





1 0.7891 

2 4.0645 

The solution for the first two natural frequencies are: 

2 2

4.0647 EI

L A
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Structural Dynamics

Beam Element – Example 3

In this example, the length of each element is actual L/2, 
therefore:

 
 1 2 2

2

0.7891 3.1564
L

EI EI

A L A


 

 2 2 2

2

4.0645 16.2580
L

EI EI

A L A


 
 

The exact solution for the first natural frequency is:


2

3.516 EI

L A




Structural Dynamics

Beam Element – Example 3

In the exact solution of the vibration of a clamped-free beam, 
the higher natural frequencies to the first natural frequency 
can be given as:

2

1

6.2669



 3

1

17.5475
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Structural Dynamics

Beam Element – Example 3

The figures below shows the first and second mode shapes 
corresponding to the first two natural frequencies for a 2-
element FEA cantilever beam.

First mode shape Second mode shape

Structural Dynamics

Beam Element – Example 3

The figures below shows the first and second mode shapes 
corresponding to the first two natural frequencies for a 8-
element FEA cantilever beam.

First mode shape Second mode shape
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Structural Dynamics

Beam Element – Example 3

The figures below shows the third and fourth mode shapes 
corresponding to the first two natural frequencies for a 8-
element FEA cantilever beam.

Third mode shape Forth mode shape

Structural Dynamics

Beam Element – Example 3

The table below shows various finite element solutions 
compared to the exact solution.

1 (rad/s) 2 (rad/s)

Exact Solution 228 1,434

FE Solution

Using 2 elements 205 1,286

Using 6 elements 226 1,372

Using 10 elements 227.5 1,410

Using 30 elements 228.5 1,430

Using 60 elements 228.5 1,432
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Structural Dynamics

Truss Analysis

The dynamics of trusses and plane frames are preformed by 
extending the concepts of bar and beam element. 

The truss element requires the same transformation of the mass 
matrix from local to global coordinates as that used for the 
stiffness matrix given as:

      
T

m mT T

Structural Dynamics

Truss Analysis

Considering two-dimensional motion, the axial and the 
transverse displacement are given as:

1

1

2

2

0 01

0 0

u

vL x x

uL L x x

v

 
             
  

The shape functions for the matrix are:

 
  

    

0 01

0 0

L x x
N

L L x x

1

1 2 1

1 2 2

2

0 0

0 0

u

N N vu

N N uv

v
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Structural Dynamics

Truss Analysis

The consistent-mass matrix can be obtained by applying:

  [ ] [ ] [ ]T

V

m N N dV

The lumped-mass matrix for two-dimensional motion is obtained 
by simply lumping mass at each node (mass is the same in 
both the x and y directions):

 

 
 
  
 
 
 

2 0 1 0

0 2 0 1

6 1 0 2 0

0 1 0 2

AL
m



 

 
 
  
 
 
 

1 0 0 0

0 1 0 0

2 0 0 1 0

0 0 0 1

AL
m



Structural Dynamics

Plane Frame Analysis

The plane frame element requires combining the bar and beam 
elements to obtain the local mass matrix. 

There are six degrees of freedom associated with a plane frame 
element. 
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Structural Dynamics

Plane Frame Analysis

The plane frame analysis requires first expanding and then 
combining the bar and beam mass matrices to obtain the local 
mass matrix. 

The bar and beam mass matrices are expanded to a 6 x 6 and 
superimposed

 







  

 
 
 
 

   
 
 
 
 

22

2 2

2 1
6 6

156 54 1322
420 420 420 420

13 322 4
420 420 420 420

1 2
6 6

54 13 156 22
420 420 420 420

13 3 22 4
420 420 420 420

0 0 0 0

0 0

0 0

0 0 0 0

0 0

0 0

LL

L LL L

L L

L L L L

m AL

Structural Dynamics

Plane Frame Analysis

Combining the local axis consistent-mass matrices for the bar 
and beam elements gives:

- Beam element components
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Structural Dynamics

Plane Frame Analysis

The resulting lumped-mass matrix for a plane frame element is 
give as:

 

 
 
 
 

   
 
 
 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

2 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

AL
m



Structural Dynamics

Plane Frame Analysis

The global mass matrix for the plane frame element arbitrarily 
oriented in x-y coordinates is transformed by:

 

 
  
 

  
 
 
 
 

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

C S

S C

C S

S C

T

      
T

m mT T

where the transformation matrix is given as:
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Structural Dynamics

Plane Stress/Strain Elements

The plane stress/strain constant-strain triangle consistent-mass 
matrix is obtained using the shape functions given below as: 

   
  
 

1 2 3

1 2 3

0 0 0

0 0 0

N N N
N

N N N

The linear triangular shape functions are illustrated below:

2

1

1

N1

y

x

2

1
3

1

N2

y

x

2

1
3

1

N3

y

x3

Structural Dynamics

Plane Stress/Strain Elements

The linear triangular shape functions are illustrated below:

2

1

1

N1

y

x

2

1
3

1

N2

y

x

2

1
3

1

N3

y

x3
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Structural Dynamics

Plane Stress/Strain Elements

The consistent-mass matrix can be obtained by applying:

 [ ] [ ] [ ]T

V

m N N dV

where dV = tdA

The CST global consistent-mass matrix is:

 
 
 
 

  
 
 
 
 

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0
[ ]

12 0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

tA
m



Structural Dynamics

Frame Example Problem 1

Use SAP2000 to determine the motion of the frame structure 
below.
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Structural Dynamics

Frame Example Problem 1

Assume the modulus of elasticity E = 3 x 107 psi. The nodal 
lumped mass values are obtained by dividing the total weight 
(dead loads included) of each floor or wall section by gravity. 

Structural Dynamics

Frame Example Problem 1

Below is the SAP2000 model for this example: 

WALLB

WALLT

FLOORT

FLOORB
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Structural Dynamics

Frame Example Problem 1

For example, compute the total mass of the uniform vertical 
load on elements 4, 5, and 6:

      
2

2
4

4

50 30 15
58.28

386.04 in
s

psf ft ftW lb sM ing

      
2

2
5

5

104 30 15
121.23

386.04 in
s

psf ft ftW lb sM ing

      
2

2
6

6

104 30 15
121.23

386.04 in
s

psf ft ftW lb sM ing

Structural Dynamics

Frame Example Problem 1

Next, lump the mass equally to each node of the beam element. 

For this example calculation, a lumped mass of 29.14 lbs2/in
should be added to nodes 7 and 8 and a mass of 60.62 
lbs2/in should be added to nodes 3, 4, 5, and 6, all in 
the x direction. 
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Structural Dynamics

Frame Example Problem 1

In an identical manner, masses for the dead loads for additional 
wall sections should be added to their respective nodes. 

In this example, additional wall loads should be converted to 
mass added to the appropriate loads.

Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on 
element 7 is:

      
2

2
7

7

20 10 15
7.77

386.04 in
s

psf ft ftW lb sM ing

Therefore, an additional 3.88 lbs2/in should be added to nodes 
6 and 8. 
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Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on 
element 8 is:

      
2

2
8

8

20 10 15
7.77

386.04 in
s

psf ft ftW lb sM ing

Therefore, an additional 3.88 lbs2/in should be added to nodes 
4 and 6. 

Structural Dynamics

Frame Example Problem 1

For example, the additional mass due to the wall load on 
element 9 is:

      
2

2
9

9

20 15 15
11.66

386.04 in
s

psf ft ftW lb sM ing

Therefore, an additional 5.83 lbs2/in should be added to node 4.  
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Structural Dynamics

Frame Example Problem 1

The final values for the nodal masses on this frame are shown 
below.

Structural Dynamics

Frame Example Problem 1

The deflected shape from SAP2000 is shown below:
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Structural Dynamics

Frame Example Problem 1

A trace of the displacements of nodes 8, 6, and 4 as a function 
of time can be generated using the SAP2000 Display Menu.

Structural Dynamics

Frame Example Problem 1

A plot of the displacements of nodes 8, 6, and 4 over the first 5 
seconds of the analysis generate by SAP2000 is shown 
below:
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Structural Dynamics

Frame Example Problem 1
The maximum displacement of node 8 is 3.16 in. and the period 

of the vibration is approximately 1.2 seconds.

Structural Dynamics

Frame Example Problem 1
The maximum velocity of node 8 is 8.08 in/s
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Structural Dynamics

Frame Example Problem 1
The maximum acceleration of node 8 is -41.9 in/s2

Structural Dynamics

Frame Example Problem 1
A plot of the displacement, velocity, and acceleration of node 8 

is show below: 
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Structural Dynamics

Frame Example Problem 2

Use SAP2000 to determine the motion of the frame structure 
below.

Structural Dynamics

Frame Example Problem 2

A trace of the displacements as a function of time of nodes 8, 6, 
and 4 over the first 5 seconds of the analysis generate by 
SAP2000 is shown below:
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Structural Dynamics

Frame Example Problem 2

The maximum displacement of node 8 is 0.877 in. and the 
period of the vibration is approximately 1.3 seconds.

Structural Dynamics

Frame Example Problem 2

The maximum velocity of node 8 is 4.68 in/s
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Structural Dynamics

Frame Example Problem 2

The maximum acceleration of node 8 is -75.2 in/s2

Structural Dynamics

Frame Example Problem 2

A plot of the displacement, velocity, and acceleration of node 8 
is show below: 
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Development of the Plate Bending Element

Problems

23. Do problems 16.6 and 16.11c in your textbook.

24.Do problems 16.14 and 16.16 in your textbook using 
SAP2000.

End of Chapter 16
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