
Chapter 12 – Plate Bending Elements

Learning Objectives
• To introduce basic concepts of plate bending.

• To derive a common plate bending element 
stiffness matrix.

• To present some plate element numerical 
comparisons.

• To demonstrate some computer solutions for plate 
bending problems.
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Development of the Plate Bending Element

Introduction

In this section we will begin by describing elementary concepts 
of plate bending behavior and theory. 

The plate element is one of the more important structural 
elements and is used to model and analyze such structures as 
pressure vessels, chimney stacks, and automobile parts. 

A large number of plate bending element formulations exist that 
would require lengthy chapter to cover. 
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Development of the Plate Bending Element

Introduction

The purpose in this chapter is to present the derivation of the 
stiffness matrix for one of the most common plate bending 
finite elements and then to compare solutions to some 
classical problems for a variety of bending elements in the 
literature. 

Development of the Plate Bending Element

Basic Concepts of Plate Bending 

A plate can be considered the two-dimensional extension of a 
beam in simple bending. 

Both plates and beams support loads transverse or 
perpendicular to their plane and through bending action. 

A plate is flat (if it were curved, it would be a shell). 

A beam has a single bending moment resistance, while a plate 
resists bending about two axes and has a twisting moment.

We will consider the classical thin-plate theory or Kirchhoff 
plate theory.
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Development of the Plate Bending Element

Basic Behavior of Geometry and Deformation 

Consider the thin plate in the x-y plane of thickness t measured 
in the z direction shown in the figure below:

The plate surfaces are at z = ±t/2, and its midsurface is at z = 0.

1.The plate thickness is much smaller than its inplane 
dimensions b and c (that is, t << b or c)

Development of the Plate Bending Element

Basic Behavior of Geometry and Deformation 

Consider the thin plate in the x-y plane of thickness t measured 
in the z direction shown in the figure below:

If t is more than about one-tenth the span of the plate, then 
transverse shear deformation must be accounted for and the 
plate is then said to be thick.
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Development of the Plate Bending Element

Basic Behavior of Geometry and Deformation 

Consider the thin plate in the x-y plane of thickness t measured 
in the z direction shown in the figure below:

2. The deflection w is much less than the thickness t
(than is, w/t << 1).

Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

Loading q causes the plate to deform laterally or upward in the 
z direction and, the defection w of point P is assumed to be 
a function of x and y only; that is w = w(x, y) and the plate 
does not stretch in the z direction.
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Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

The line a-b drawn perpendicular to the plate surface before 
loading remains perpendicular to the surface after loading.

Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

1. Normals remain normal. This implies that transverse shears 
strains yz = 0 and xz = 0. However xy does not equal to zero. 
Right angles in the plane of the plate may not remain right 
angles after loading. The plate may twist in the plane.
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Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

2. Thickness changes can be neglected and normals undergo 
no extension. This means that z = 0.

Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

3. Normal stress z has no effect on in-plane strains x and y in 
the stress-strain equations and is considered negligible.
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Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

4. Membrane or in-plane forces are neglected here, and the 
plane stress resistance can be superimposed later (that is, 
the constant-strain triangle behavior of Chapter 6 can be 
superimposed with the basic plate bending element 
resistance). 

Development of the Plate Bending Element

Kirchhoff Assumptions 

Consider the differential slice cut from the plate by planes 
perpendicular to the x axis as show in the figure below:

4. Therefore, the in-plane deflections in the x and y directions at 
the midsurface, z = 0, are assumed to be zero; u(x, y, 0) = 0 
and v(x, y, 0) = 0.

CIVL 7/8117 Chapter 12 - Plate Bending Elements 8/34



Development of the Plate Bending Element

Kirchhoff Assumptions 

Based on Kirchhoff assumptions, at any point P the 
displacement in the x direction due to a small rotation  is: 

At the same point, the displacement in the y direction is:

 
      

w
v z z

y


w
u z z

x
        

The curvatures of the plate are then given as the rate of change 
of the angular displacements of the normals and defined as: 

  
     

   

2 2 2

2 2

2
x y xy

w w w

x y x y
  

Development of the Plate Bending Element

Kirchhoff Assumptions 

Using the definitions for in-plane strains, along with the 
curvature relationships, the in-plane strain/displacement 
equations are: 

  
     

   

2 2 2

2 2
2x y xy

w w w
z z z

x y x y
  

The first of the above equations is used in beam theory. 

The remaining two equations are new to plate theory.
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Development of the Plate Bending Element

Stress/Strain Relationship 

Based on the third Kirchhoff assumption, the plane stress 
equations that relate in-plane stresses to in-plane strains for 
an isotropic material are:  

  
 21x x y

E  


  
 21y y x

E  


xy xyG 

Similar to the stress variation in a beam, the stresses vary 
linearly in the z direction from the midsurface of the plate. 

Development of the Plate Bending Element

Stress/Strain Relationship 

The in-plane normal stresses and shear stress are shown acting 
on the edges of the plate shown in figure below:
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The transverse shear stresses yz and xz are also present, even 
though transverse shear deformation is neglected. 

These stresses vary quadratically through the plate thickness.

Development of the Plate Bending Element

Stress/Strain Relationship 

The in-plane normal stresses and shear stress are shown acting 
on the edges of the plate shown in figure below:

Development of the Plate Bending Element

Stress/Strain Relationship 

The bending moments acting along the edge of the plate can be 
related to the stresses by:

  

    
/2 /2 /2

/2 /2 /2

t t t

x x y y xy xy

t t t

M z dz M z dz M z dz  
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Development of the Plate Bending Element

Stress/Strain Relationship 

Substituting strains for stresses gives:

 


    
/2

2
/2 1

t

x x y

t

E
M z dz 



 


    
/2

2
/2 1

t

y y x

t

E
M z dz 





 
/2

/2

t

xy xy

t

M zG dz

Development of the Plate Bending Element

Stress/Strain Relationship 

Using the strain/curvature relationships, the moment expression 
become:

  x x yM D     y y xM D   


(1 )

2xy xy

D
M

 

where D = Et3/[12(1 -  2)] is called the bending rigidity of the 
plate.

The maximum magnitude of the normal stress on each edge of 
the plate are located at the top or bottom at z = t/2. 

For example, it can be shown that: 
2

6 x
x

M

t

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Development of the Plate Bending Element

Stress/Strain Relationship 

The equilibrium equations for plate bending are important in 
selecting the element displacement fields. 

The governing differential equations are:


  

 
0yx

QQ
q

x y


  

 
0xyx

x

MM
Q

x y

 
  

 
0y xy

y

M M
Q

y x

where q is the transverse distributed loading and Qx and Qy

are the transverse shear line loads.

Development of the Plate Bending Element

Stress/Strain Relationship 

The transverse distributed loading q and the transverse shear 
line loads Qx and Qy are the shown below:


  

 
0yx

QQ
q

x y


  

 
0xyx

x

MM
Q

x y

 
  

 
0y xy

y

M M
Q

y x
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Development of the Plate Bending Element

Stress/Strain Relationship 

Substituting the moment/curvature expressions in the last two 
differential equations list above, solving for Qx and Qy, and 
substituting the results into the first equation listed above, the 
governing partial differential equation for isotropic, thin-plate 
bending may be derived as:

   
       

4 4 4

4 2 2 4

2w w w
D q

x x y y

where the solution to the thin-plate bending is a function of the 
transverse displacement w. 

Development of the Plate Bending Element

Stress/Strain Relationship 

Substituting the moment/curvature expressions in the last two 
differential equations list above, solving for Qx and Qy, and 
substituting the results into the first equation listed above, the 
governing partial differential equation for isotropic, thin-plate 
bending may be derived as:

   
       

4 4 4

4 2 2 4

2w w w
D q

x x y y

If we neglect the differentiation with respect to the y direction, 
the above equation simplifies to the equation for a beam and 
the flexural rigidity D of the plate reduces to the EI of the beam 
when the Poisson effect is set to zero.
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Development of the Plate Bending Element

Potential Energy of a Plate

The total potential energy of a plate is given as:

   
1

2 x x y y xy xy

V

U dV     

The potential energy can be expressed in terms of moments 
and curvatures as: 

   
1

2 x x y y xy xy

A

U M M M dA  

Development of the Plate Bending Element

Derivation of a Plate Bending Element Stiffness

Numerous finite elements for plates bending have been 
developed over the years, references cite 88 different 
elements.

In this section, we will introduce the basic12-degree-of-freedom 
rectangular element shown below.

The formulation will be developed consistently with the stiffness 
matrix and equations for the bar, beam, plane stress/strain 
elements of previous chapters. 
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Development of the Plate Bending Element

Step 1 - Discretize and Select Element Types 

Consider the 12-degree-of-freedom plate element shown in the 
figure below. 

Each node has 3 degrees of freedom – a transverse 
displacement w in the z direction, a rotation x about the x
axis, and a rotation y about the y axis. 

Development of the Plate Bending Element

Step 1 - Discretize and Select Element Types 

The nodal displacements at node i are:  
 
   
 
 

i

xi

yi

w

d 


where the rotations are related to the transverse 
displacements by:  

  
 x y

w w

y x
 

The negative sign on y is due to the fact that a negative 
displacement w is required to produce a positive rotation 
about the y axis.

The total element displacement matrix is:  

 
 
   
 
  

i

j

m

n

d

d
d

d

d
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Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Since the plate element has 12 degrees of freedom, we select a 
12-term polynomial in x and y as: 

      

    

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

( , )w x y a a x a y a x a xy a y a x

a x y a xy a y a x y a xy

The function given above is an incomplete quartic polynomial; 
however, it is complete up to the third order (first ten terms), 
and the choice of the two more terms from the remaining five 
terms of the complete quartic must be made. 

The choice of x3y and y3x ensure that we will have continuity in 
the displacement among the interelement boundaries.

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Since the plate element has 12 degrees of freedom, we select a 
12-term polynomial in x and y as: 

      

    

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

( , )w x y a a x a y a x a xy a y a x

a x y a xy a y a x y a xy

The terms x4 and y4 would yield discontinuities along the 
interelement boundaries. 

The final term x2y2 cannot be paired with any other term so it is 
also rejected. 
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Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Since the plate element has 12 degrees of freedom, we select a 
12-term polynomial in x and y as: 

      

    

2 2 3
1 2 3 4 5 6 7

2 2 3 3 3
8 9 10 11 12

( , )w x y a a x a y a x a xy a y a x

a x y a xy a y a x y a xy

The displacement function approximation also satisfies the 
basic differential equation over the unloaded part of the plate.

In addition, the function accounts for rigid-body motion and 
constant strain in the plate. 

However, interelement slope discontinuities along common 
boundaries of elements are not ensured. 

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

To observe these discontinuities in slope, evaluate the 
polynomial and its slopes along a side or edge. 

For example, consider side i-j, the function gives: 

   2 3
1 2 4 7( , )w x y a a x a x a x

The displacement w is cubic while the slope w/x is the same 
as in beam bending. 

Based on the beam element,  recall that the four constants a1, 
a2, a4, and a7 can be defined by invoking the endpoint 
conditions of wi, wj, yi, and yj.


  


2

2 4 72 3
w

a a x a x
x


   


2 3

3 5 8 11

w
a a x a x a x

y
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Development of the Plate Bending Element

Step 2 - Select Displacement Functions

To observe these discontinuities in slope, evaluate the 
polynomial and its slopes along a side or edge. 

For example, consider side i-j, the function gives: 

   2 3
1 2 4 7( , )w x y a a x a x a x

Therefore, w and w/x are completely define along this edge. 
The normal slope w/y is cubic in x: however; only two 
degrees of freedom remain for definition of this slope while 
four constant exist a3, a5, a8, and a11. 


  


2

2 4 72 3
w

a a x a x
x


   


2 3

3 5 8 11

w
a a x a x a x

y

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

To observe these discontinuities in slope, evaluate the 
polynomial and its slopes along a side or edge. 

For example, consider side i-j, the function gives: 

   2 3
1 2 4 7( , )w x y a a x a x a x

The normal slope w/y is not uniquely defined and a slope 
discontinuity occurs.  

The solution obtained from the finite element analysis using this 
element will not be a minimum potential energy solution.

However, this element has proven to give acceptable results.


  


2

2 4 72 3
w

a a x a x
x


   


2 3

3 5 8 11

w
a a x a x a x

y
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Development of the Plate Bending Element

Step 2 - Select Displacement Functions

The constant a1 through a12 can be determined by expressing 
the 12 simultaneous equations linking the values of w and its 
slope at the nodes when the coordinates take their appropriate 
values.  

1
2 2 3 2 2 3 3 3

2
2 2 3 2

3
2 2 2 3

12

1

0 0 1 0 2 0 2 3 3

0 1 0 2 0 3 2 0 3

aw

x y x xy y x x y xy y x y xy a
w

x y x xy y x xy a
y

x y x xy y x y y
w

a
x

                                   
     



or in matrix form as:     P a 

where [P] is the 3 x 12 first matrix on the right-hand side of the 
above equation.

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Next, evaluate the matrix at each node point
2 2 3 2 2 3 3 3

2 2 3 2

2 2 2 3

2 2 3 2 2 3 3 3

1

0 0 1 0 2 0 2 3 3

0 1 0 2 0 3 2 0 3

1

0 1 0 2 0 3

i i i i i i i i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

j j j j j j j j j j j j j j

n n

i

xi

yi

j

yn n

x y x x y y x x y x y y x y x y

x y x x y y x x y

x y x x y y x y y

x y x x y y x x y x y y x y x y

x y x

w

w






       

   

 
 
 
 

 
 
 
 
 


2 2 3

1

2

3

4

2
122 0 3n n n n n nx y y x y y

a

a

a

a

a   

   
   
   
   
   
   
   
   
    



In compact matrix form the above equations are:     d C a

Therefore, the constants {a} can be solved for by:      


1
a C d
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Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Substituting the above expression into the general form of the 
matrix gives:

       


1
P C d

where [N] = [P][C]-1 is the shape function matrix. 

     or N d

Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and 
Stress (Moment)/Curvature Relationships

Recall the general form of the curvatures:

The curvature matrix can be written as:

  
     

   

2 2 2

2 2

2
x y xy

w w w

x y x y
  

      
          
         

4 7 8 11

6 9 10 12
2 2

5 8 9 11 12

2 6 2 6

2 2 6 6

2 4 4 6 6

x

y

xy

a a x a y a xy

a a x a y a xy

a a x a y a x a y





or in matrix form as:      Q a
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Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and 
Stress (Moment)/Curvature Relationships

The [Q] matrix is the coefficient matrix multiplied by the a’s in 
the curvature matrix equations.

 

 
                 
         
  

1

2

3
2 2

12

0 0 0 2 0 0 6 2 0 0 6 0

0 0 0 0 0 2 0 0 2 6 0 6

0 0 0 0 2 0 0 4 4 0 6 6

a

x y xy a

x y xy a

x y x y

a




Therefore:

     Q a      or B d       
 

1
Q C d

where:      
1

B Q C

Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and 
Stress (Moment)/Curvature Relationships

The moment/curvature matrix for a plate is given by:

      
   
        
   
   

x x

y y

xy xy

M

M M D D B d

M





where the [D] matrix for isotropic materials is:

   

 
      

3

2

1 0

[ ] 1 0
12 1

0 0 0.5 1

Et
D




 
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Development of the Plate Bending Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix is given by the usually form of the stiffness 
matrix as:

 [ ] [ ] [ ][ ]Tk B D B dxdy

The stiffness matrix for the four-node rectangular element is of a 
12 x 12.

 [ ] [ ]Ts sF N q dx dy

The surface force due to distributed loading q acting per unit 
area in the z direction is:

Development of the Plate Bending Element

Step 4 - Derive the Element Stiffness Matrix and Equations

For a uniform load q acting over the surface of an element of 
dimensions 2b x 2c the forces and moments at node i are:

   
       
   

  

3

3

wi

xi

yi

f
qcb

f c

f b




with similar expression at nodes j, m, and n. 
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Development of the Plate Bending Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The element equations are given by:

    
    
    
    

    
    
    
    

    









   



 

11 12 1,12

21 22 2,12

31 32 3,12

41 42 4,12

12,1 12,2 12,12

wi i

xi xi

yi yi

w j j

yn yn

k k k

k k k

k k k

k k k

k k k

f w

f

f

f w

f












The remaining steps of assembling the global equations, 
applying boundary conditions, and solving the equations for 
nodal displacements and slopes follow the standard 
procedures introduced in previous chapters.

Development of the Plate Bending Element

Plate Element Numerical Comparisons

The figure to the right shows 
a number of plate element 
formulations results for a 
square plate simply sup-
ported all around and sub-
jected to a concentrated 
vertical load applied at the 
center of the plate. 
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Development of the Plate Bending Element

Plate Element Numerical Comparisons

The results show the upper 
and lower bound solutions 
behavior and demonstrate 
convergence of solution for 
various plate elements. 

Included in these results is 
the 12-term polynomial 
plate element introduced in 
this chapter. 

Development of the Plate Bending Element

Plate Element Numerical Comparisons

The figure on the right shows 
comparisons of triangular plate 
formulations for the same centrally 
loaded simply supported plate. 

From both figures, we can observe a 
number of different formulations 
with results that converge for 
above and below. 

Some of these elements produce 
better results than others. 
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Development of the Plate Bending Element

Plate Element Numerical Comparisons

The figure below shows results for some selected Mindlin plate 
theory elements. 

Mindlin plate elements account for bending deformations and 
for transverse shear deformation. 

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Consider the clamped plate show below subjected to a 100 lb
load applied at the center (let E = 30 x 106 psi and  = 0.3).

The exact solution for the displacement at the center of the 
plate is w = 0.0056PL2/D.  

Substituting the values for the variables gives a numerical value 
of w = 0.0815 in.
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The table below shows the results of modeling this plate 
structure using SAP2000 (the educational version allows only 
100 nodes) compares to the exact solution. 

Number of 
square elements

Displacement 
at the center (in) % error

4 0.09100 11.6

16 0.09334 14.5

36 0.08819 8.2

64 0.08584 5.3

256 0.08300 1.8

1,024 0.08209 0.7

4,096 0.08182 0.3

Exact Solution 0.08154 --

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The figures below show non-node-averaged contour plot for the 
normal stress x and y.
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the non-node-averaged moments 
Mx and My.

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the shear stress xy and the node-
average shear stress xy.
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the twisting moment Mxy and the 
node-average twisting moment Mxy.

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Both sets of plots indicate interelement discontinuities for shear 
stress and twisting moment. 
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

However, if the node-average plots are viewed, the 
discontinuities are smoothed out and not visible. 

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

A C-channel section structural steel beam of 2-in. wide flanges, 
3 in. depth and thickness of both flanges and web of 0.25 in. is 
loaded as shown with 100 lb. acting in the y-direction on the 
free end. Determine the free end deflection and angle of twist. 
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

A C-channel section structural steel beam of 2-in. wide flanges, 
3 in. depth and thickness of both flanges and web of 0.25 in. is 
loaded as shown with 100 lb. acting in the y-direction on the 
free end. Determine the free end deflection and angle of twist. 

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

C-channel displacements are shown
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Maximum stresses in the C-channel (no stress averaging):

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Maximum stresses in the C-channel (stress averaging):
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Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Stresses in the x-direction is:

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Shear stresses in the xy-direction is:
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Development of the Plate Bending Element

Problems

21. Do problems 12.1 and 12.5 on pages 590 - 598 in your 
textbook “A First Course in the Finite Element Method” by 
D. Logan using SAP2000.

End of Chapter 12
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