Development of the Plate Bending Element

Introduction

• To introduce basic concepts of plate bending
• To derive a common plate bending element stiffness matrix
• To present some plate element numerical comparisons
• To demonstrate some computer solutions for plate bending problems
Development of the Plate Bending Element

Introduction

In this section we will begin by describing elementary concepts of plate bending behavior and theory.

The plate element is one of the more important structural elements and is used to model and analyze such structures as pressure vessels, chimney stacks, and automobile parts.

A large number of plate bending element formulations exist that would require lengthy chapter to cover.

Development of the Plate Bending Element

Introduction

The purpose in this chapter is to present the derivation of the stiffness matrix for one of the most common plate bending finite elements and then to compare solutions to some classical problems for a variety of bending elements in the literature.
Development of the Plate Bending Element

Basic Concepts of Plate Bending

A plate can be considered the two-dimensional extension of a beam in simple bending.

Both plates and beams support loads transverse or perpendicular to their plane and through bending action.

A plate is flat (if it were curved, it would be a shell).

A beam has a single bending moment resistance, while a plate resists bending about two axes and has a twisting moment.

We will consider the classical thin-plate theory or Kirchhoff plate theory.

Development of the Plate Bending Element

Basic Behavior of Geometry and Deformation

Consider the thin plate in the x-y plane of thickness t measured in the z direction shown in the figure below:

![Diagram of a thin plate with load q and thickness t]

The plate surfaces are at $z = \pm t/2$, and its midsurface is at $z = 0$.

1. The plate thickness is much smaller than its inplane **dimensions** b and c (that is, $t << b$ or c)
Development of the Plate Bending Element

Basic Behavior of Geometry and Deformation

Consider the thin plate in the x-y plane of thickness t measured in the z direction shown in the figure below:

![Diagram of a thin plate](image)

If t is more than about one-tenth the span of the plate, then transverse shear deformation must be accounted for and the plate is then said to be thick.

2. The deflection w is much less than the thickness t (than is, $w/t << 1$).
Development of the Plate Bending Element

Kirchhoff Assumptions

Consider the differential slice cut from the plate by planes perpendicular to the x axis as shown in the figure below:

- The line a-b drawn perpendicular to the plate surface before loading remains perpendicular to the surface after loading.

Loading q causes the plate to deform laterally or upward in the z direction and, the deflection w of point P is assumed to be a function of x and y only; that is $w = w(x, y)$ and the plate does not stretch in the z direction.
Development of the Plate Bending Element

Kirchhoff Assumptions

Consider the differential slice cut from the plate by planes perpendicular to the x axis as shown in the figure below:

1. Normals remain normal. This implies that transverse shears strains $\gamma_{yz} = 0$ and $\gamma_{xz} = 0$. However, γ_{xy} does not equal to zero. Right angles in the plane of the plate may not remain right angles after loading. The plate may twist in the plane.

2. Thickness changes can be neglected and normals undergo no extension. This means that $\varepsilon_z = 0$.
Development of the Plate Bending Element

Kirchhoff Assumptions

Consider the differential slice cut from the plate by planes perpendicular to the x axis as shown in the figure below:

3. Normal stress σ_z has no effect on in-plane strains ε_x and ε_y in the stress-strain equations and is considered negligible.

Development of the Plate Bending Element

Kirchhoff Assumptions

Consider the differential slice cut from the plate by planes perpendicular to the x axis as shown in the figure below:

4. Membrane or in-plane forces are neglected here, and the plane stress resistance can be superimposed later (that is, the constant-strain triangle behavior of Chapter 6 can be superimposed with the basic plate bending element resistance).
Development of the Plate Bending Element

Kirchhoff Assumptions

Consider the differential slice cut from the plate by planes perpendicular to the x axis as show in the figure below:

4. Therefore, the in-plane deflections in the x and y directions at the midsurface, \(z = 0 \), are assumed to be zero; \(u(x, y, 0) = 0 \) and \(v(x, y, 0) = 0 \).

\[
\begin{align*}
\text{Development of the Plate Bending Element} \\
\text{Kirchhoff Assumptions} \\
\end{align*}
\]

Based on Kirchhoff assumptions, at any point \(P \) the displacement in the \(x \) direction due to a small rotation \(\alpha \) is:

\[
u = -z\alpha = -z \left(\frac{\partial W}{\partial x} \right)
\]

At the same point, the displacement in the \(y \) direction is:

\[
v = -z\alpha = -z \left(\frac{\partial W}{\partial y} \right)
\]

The curvatures of the plate are then given as the rate of change of the angular displacements of the normals and defined as:

\[
\kappa_x = -\frac{\partial^2 w}{\partial x^2}, \quad \kappa_y = -\frac{\partial^2 w}{\partial y^2}, \quad \kappa_{xy} = -\frac{2\partial^2 w}{\partial x \partial y}
\]
Development of the Plate Bending Element

Kirchhoff Assumptions

Using the definitions for in-plane strains, along with the curvature relationships, the in-plane strain/displacement equations are:

\[
\varepsilon_x = -z \frac{\partial^2 w}{\partial x^2} \quad \varepsilon_y = -z \frac{\partial^2 w}{\partial y^2} \quad \gamma_{xy} = -2z \frac{\partial^2 w}{\partial x \partial y}
\]

The first of the above equations is used in beam theory.

The remaining two equations are new to plate theory.

Development of the Plate Bending Element

Stress/Strain Relationship

Based on the third Kirchhoff assumption, the plane stress equations that relate in-plane stresses to in-plane strains for an isotropic material are:

\[
\sigma_x = \frac{E}{1-\nu^2} (\varepsilon_x + \nu \varepsilon_y)
\]

\[
\sigma_y = \frac{E}{1-\nu^2} (\varepsilon_y + \nu \varepsilon_x)
\]

\[
\tau_{xy} = G \gamma_{xy}
\]
Similar to the stress variation in a beam, the stresses vary linearly in the z direction from the midsurface of the plate.

The transverse shear stresses τ_{yz} and τ_{xz} are also present, even though transverse shear deformation is neglected.

These stresses vary quadratically through the plate thickness.
Development of the Plate Bending Element

Stress/Strain Relationship

The bending moments acting along the edge of the plate can be related to the stresses by:

\[
M_x = \int_{-t/2}^{t/2} z\sigma_x \, dz \\
M_y = \int_{-t/2}^{t/2} z\sigma_y \, dz \\
M_{xy} = \int_{-t/2}^{t/2} z\tau_{xy} \, dz
\]

Substituting strains for stresses gives:

\[
M_x = \int_{-t/2}^{t/2} z\left(\frac{E}{1-\nu^2} \left(\varepsilon_x + \nu \varepsilon_y\right)\right) \, dz \\
M_y = \int_{-t/2}^{t/2} z\left(\frac{E}{1-\nu^2} \left(\varepsilon_y + \nu \varepsilon_x\right)\right) \, dz \\
M_{xy} = \int_{-t/2}^{t/2} zG_{xy} \, dz
\]
Development of the Plate Bending Element

Stress/Strain Relationship

Using the strain/curvature relationships, the moment expression become:

\[
M_x = D \left(\kappa_x + \nu \kappa_y \right) \quad M_y = D \left(\kappa_y + \nu \kappa_x \right) \quad M_{xy} = \frac{D(1-\nu)}{2} \kappa_{xy}
\]

where \(D = \frac{Et^3}{12(1-\nu^2)} \) is called the bending rigidity of the plate.

The maximum magnitude of the normal stress on each edge of the plate are located at the top or bottom at \(z = t/2 \).

For example, it can be shown that: \(\sigma_x = \frac{6M_x}{t^2} \)

Development of the Plate Bending Element

Stress/Strain Relationship

The equilibrium equations for plate bending are important in selecting the element displacement fields.

The governing differential equations are:

\[
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q = 0 \\
\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} - Q_x = 0 \\
\frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x} - Q_y = 0
\]

where \(q \) is the transverse distributed loading and \(Q_x \) and \(Q_y \) are the transverse shear line loads.
Development of the Plate Bending Element

Stress/Strain Relationship

The transverse distributed loading \(q \) and the transverse shear line loads \(Q_x \) and \(Q_y \) are the shown below:

\[
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + q = 0
\]

\[
\frac{\partial M_x}{\partial x} + \frac{\partial M_{xy}}{\partial y} - Q_x = 0
\]

\[
\frac{\partial M_y}{\partial y} + \frac{\partial M_{xy}}{\partial x} - Q_y = 0
\]

Substituting the moment/curvature expressions in the last two differential equations list above, solving for \(Q_x \) and \(Q_y \), and substituting the results into the first equation listed above, the governing partial differential equation for isotropic, thin-plate bending may be derived as:

\[
D \left(\frac{\partial^4 W}{\partial x^4} + 2\frac{\partial^4 W}{\partial x^2 \partial y^2} + \frac{\partial^4 W}{\partial y^4} \right) = q
\]

where the solution to the thin-plate bending is a function of the transverse displacement \(w \).
Development of the Plate Bending Element

Stress/Strain Relationship

Substituting the moment/curvature expressions in the last two differential equations list above, solving for Q_x and Q_y, and substituting the results into the first equation listed above, the governing partial differential equation for isotropic, thin-plate bending may be derived as:

$$D\left(\frac{\partial^4 w}{\partial x^4} + 2\frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4}\right) = q$$

If we neglect the differentiation with respect to the y direction, the above equation simplifies to the equation for a beam and the flexural rigidity D of the plate reduces to the EI of the beam when the Poisson effect is set to zero.

Development of the Plate Bending Element

Potential Energy of a Plate

The total potential energy of a plate is given as:

$$U = \frac{1}{2} \int_V \left(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \tau_{xy} \gamma_{xy}\right) dV$$

The potential energy can be expressed in terms of moments and curvatures as:

$$U = \frac{1}{2} \int_A \left(M_x \kappa_x + M_y \kappa_y + M_{xy} \kappa_{xy}\right) dA$$
Development of the Plate Bending Element

Derivation of a Plate Bending Element Stiffness

Numerous finite elements for plates bending have been developed over the years, references cite 88 different elements.

In this section, we will introduce the basic 12-degree-of-freedom rectangular element shown below.

The formulation will be developed consistently with the stiffness matrix and equations for the bar, beam, plane stress/strain elements of previous chapters.

Step 1 - Discretize and Select Element Types

Consider the 12-degree-of-freedom plate element shown in the figure below.

Each node has 3 degrees of freedom – a transverse displacement \(w \) in the \(z \) direction, a rotation \(\theta_x \) about the \(x \) axis, and a rotation \(\theta_y \) about the \(y \) axis.
Development of the Plate Bending Element

Step 1 - Discretize and Select Element Types

The nodal displacements at node i are: $\{d\} = \begin{bmatrix} w_i \\ \theta_{xi} \\ \theta_{yi} \end{bmatrix}$

where the rotations are related to the transverse displacements by:

$$\theta_x = \frac{\partial w}{\partial y} \quad \theta_y = -\frac{\partial w}{\partial x}$$

The negative sign on θ_y is due to the fact that a negative displacement w is required to produce a positive rotation about the y axis.

The total element displacement matrix is: $\{d\} = \begin{bmatrix} d_i \\ d_j \\ d_m \\ d_n \end{bmatrix}$

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Since the plate element has 12 degrees of freedom, we select a 12-term polynomial in x and y as:

$$w(x,y) = a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 x^3$$

$$+ a_8 x^2 y + a_9 xy^2 + a_{10} y^3 + a_{11} x^3 y + a_{12} xy^3$$

The function given above is an incomplete quartic polynomial; however, it is complete up to the third order (first ten terms), and the choice of the two more terms from the remaining five terms of the complete quartic must be made.

The choice of x^3y and y^3x ensure that we will have continuity in the displacement among the interelement boundaries.
Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Since the plate element has 12 degrees of freedom, we select a 12-term polynomial in \(x \) and \(y \) as:

\[
\begin{align*}
 w(x,y) &= a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 xy + a_6 y^2 + a_7 x^3 \\
 &+ a_8 x^2 y + a_9 xy^2 + a_{10} y^3 + a_{11} x^3 y + a_{12} xy^3
\end{align*}
\]

The terms \(x^4 \) and \(y^4 \) would yield discontinuities along the interelement boundaries.

The final term \(x^2y^2 \) cannot be paired with any other term so it is also rejected.

The displacement function approximation also satisfies the basic differential equation over the unloaded part of the plate.

In addition, the function accounts for rigid-body motion and constant strain in the plate.

However, interelement slope discontinuities along common boundaries of elements are not ensured.
Development of the Plate Bending Element

Step 2 - Select Displacement Functions

To observe these discontinuities in slope, evaluate the polynomial and its slopes along a side or edge.

For example, consider side $i-j$, the function gives:

$$w(x,y) = a_1 + a_2 x + a_4 x^2 + a_7 x^3$$

$$\frac{\partial w}{\partial x} = a_2 + 2a_4 x + 3a_7 x^2$$

$$\frac{\partial w}{\partial y} = a_3 + a_5 x + a_8 x^2 + a_{11} x^3$$

The displacement w is cubic while the slope $\partial w/\partial x$ is the same as in beam bending.

Based on the beam element, recall that the four constants $a_1, a_2, a_4,$ and a_7 can be defined by invoking the endpoint conditions of $w_i, w_j, \theta_{yi},$ and θ_{yj}.

Therefore, w and $\partial w/\partial x$ are completely define along this edge.

The normal slope $\partial w/\partial y$ is cubic in x; however, only two degrees of freedom remain for definition of this slope while four constant exist $a_3, a_5, a_8,$ and a_{11}.
Development of the Plate Bending Element

Step 2 - Select Displacement Functions

To observe these discontinuities in slope, evaluate the polynomial and its slopes along a side or edge. For example, consider side $i-j$, the function gives:

$$w(x,y) = a_1 + a_2 x + a_4 x^2 + a_7 x^3$$

$$\frac{\partial w}{\partial x} = a_2 + 2a_4 x + 3a_7 x^2$$

$$\frac{\partial w}{\partial y} = a_3 + a_5 x + a_6 x^2 + a_7 x^3$$

The normal slope $\frac{\partial w}{\partial y}$ is not uniquely defined and a slope discontinuity occurs. The solution obtained from the finite element analysis using this element will not be a minimum potential energy solution. However, this element has proven to give acceptable results.

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

The constant a_i through a_{12} can be determined by expressing the 12 simultaneous equations linking the values of w and its slope at the nodes when the coordinates take their appropriate values.

$$\begin{bmatrix} w \\ \frac{\partial w}{\partial y} \\ \frac{\partial w}{\partial x} \end{bmatrix} = \begin{bmatrix} 1 & x & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 & x^3y & xy^3 \\ 0 & 0 & 1 & 0 & 2y & 0 & x^2 & 2xy & 3y^2 & x^3 & 3xy^2 \\ 0 & -1 & 0 & -2x & -y & 0 & -3x^2 & -2xy & -y^2 & 0 & -3x^2y & -y^3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{12} \end{bmatrix}$$

or in matrix form as: $\{\psi\} = [P]\{a\}$

where $[P]$ is the 3 x 12 first matrix on the right-hand side of the above equation.
Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Next, evaluate the matrix at each node point

\[
\begin{bmatrix}
w_i \\
\theta_{n} \\
\theta_{w} \\
\vdots \\
\theta_{m}
\end{bmatrix} =
\begin{bmatrix}
1 & x_i & y_i & x_i^2 & y_i^2 & x_i y_i \\
0 & 0 & 1 & 0 & x_i & 2y_i \\
0 & -1 & 0 & -2x_i & -y_i & 0 & -3x_i^2 & -2x_i y_i & -y_i^2 \\
\vdots & \vdots
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
\vdots \\
a_{12}
\end{bmatrix}
\]

In compact matrix form the above equations are:

\[
\{d\} = [C]\{a\}
\]

Therefore, the constants \{a\} can be solved for by:

\[
\{a\} = [C]^{-1}\{d\}
\]

Development of the Plate Bending Element

Step 2 - Select Displacement Functions

Substituting the above expression into the general form of the matrix gives:

\[
\{\psi\} = [P][C]^{-1}\{d\} \quad \text{or} \quad \{\psi\} = [N]\{d\}
\]

where \([N] = [P][C]^{-1}\) is the shape function matrix.
Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and Stress (Moment)/Curvature Relationships

Recall the general form of the curvatures:

\[
\kappa_x = -\frac{\partial^2 W}{\partial x^2} \quad \kappa_y = -\frac{\partial^2 W}{\partial y^2} \quad \kappa_{xy} = -\frac{2\partial^2 W}{\partial x \partial y}
\]

The curvature matrix can be written as:

\[
\begin{bmatrix}
\kappa_x \\
\kappa_y \\
\kappa_{xy}
\end{bmatrix} = \begin{bmatrix}
-2a_4 - 6a_1x - 2a_2y - 6a_{11}xy \\
-2a_5 - 2a_8x - 6a_{10}y - 6a_{12}xy \\
-2a_6 - 4a_9x - 4a_9y - 6a_{11}x^2 - 6a_{12}y^2
\end{bmatrix}
\]

or in matrix form as: \(\kappa = [Q] \{a\} \)

Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and Stress (Moment)/Curvature Relationships

The \([Q]\) matrix is the coefficient matrix multiplied by the \(a\)'s in the curvature matrix equations.

\[
\begin{bmatrix}
0 & 0 & 0 & -2 & 0 & 0 & -6x & -2y & 0 & 0 & -6xy & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & -2x & -6y & 0 & -6xy \\
0 & 0 & 0 & -2 & 0 & 0 & -4x & -4y & 0 & -6x^2 & -6y^2
\end{bmatrix}
\]

Therefore:

\(\kappa = [Q] \{a\} \Rightarrow \kappa = [Q][C]^{-1}\{d\} \quad \text{or} \quad \kappa = [B]\{d\} \)

where: \([B] = [Q][C]^{-1} \)
Development of the Plate Bending Element

Step 3 - Define the Strain (Curvature)/Displacement and Stress (Moment)/Curvature Relationships

The moment/curvature matrix for a plate is given by:

$$\{M\} = \begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = D \begin{bmatrix} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{bmatrix} = [D] [B] \{d\}$$

where the $[D]$ matrix for isotropic materials is:

$$[D] = \frac{E t^3}{12 (1-\nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 0.5(1-\nu) \end{bmatrix}$$

Development of the Plate Bending Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix is given by the usually form of the stiffness matrix as:

$$[k] = \int \int [B]^T [D][B] \, dx \, dy$$

The stiffness matrix for the four-node rectangular element is of a 12×12.

The surface force due to distributed loading q acting per unit area in the z direction is:

$$[F_s] = \int \int [N_s]^T q \, dx \, dy$$
Development of the Plate Bending Element

Step 4 - Derive the Element Stiffness Matrix and Equations

For a uniform load \(q \) acting over the surface of an element of dimensions \(2b \times 2c \) the forces and moments at node \(i \) are:

\[
\begin{bmatrix}
 f_{wi} \\
 f_{\theta xi} \\
 f_{\theta yi}
\end{bmatrix} = \frac{qc}{3} \begin{bmatrix}
 3 \\
 c \\
 b
\end{bmatrix}
\]

with similar expression at nodes \(j, m, \) and \(n \).

The element equations are given by:

\[
\begin{bmatrix}
 f_{wi} \\
 f_{\theta xi} \\
 f_{\theta yi} \\
 f_{w,j} \\
 f_{\theta,j}
\end{bmatrix} = \begin{bmatrix}
 k_{11} & k_{12} & \cdots & k_{1,12} \\
 k_{21} & k_{22} & \cdots & k_{2,12} \\
 k_{31} & k_{32} & \cdots & k_{3,12} \\
 k_{41} & k_{42} & \cdots & k_{4,12} \\
 \vdots & \vdots & \cdots & \vdots \\
 k_{12,1} & k_{12,2} & \cdots & k_{12,12}
\end{bmatrix} \begin{bmatrix}
 W_i \\
 \theta_{xi} \\
 \theta_{yi} \\
 W_j \\
 \vdots \\
 \theta_{yn}
\end{bmatrix}
\]

The remaining steps of assembling the global equations, applying boundary conditions, and solving the equations for nodal displacements and slopes follow the standard procedures introduced in previous chapters.
Development of the Plate Bending Element

Plate Element Numerical Comparisons

The figure to the right shows a number of plate element formulations results for a square plate simply supported all around and subjected to a concentrated vertical load applied at the center of the plate.

The results show the upper and lower bound solutions behavior and demonstrate convergence of solution for various plate elements.

Included in these results is the 12-term polynomial plate element introduced in this chapter.
Development of the Plate Bending Element

Plate Element Numerical Comparisons

The figure on the right shows comparisons of triangular plate formulations for the same centrally loaded simply supported plate.

From both figures, we can observe a number of different formulations with results that converge for above and below.

Some of these elements produce better results than others.
The exact solution for the displacement at the center of the plate is \(w = 0.0056PL^2/D \).
Substituting the values for the variables gives a numerical value of \(w = 0.0815 \) in.

The table below shows the results of modeling this plate structure using SAP2000 (the educational version allows only 100 nodes) compares to the exact solution.

<table>
<thead>
<tr>
<th>Number of square elements</th>
<th>Displacement at the center (in)</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.09100</td>
<td>11.6</td>
</tr>
<tr>
<td>16</td>
<td>0.09334</td>
<td>14.5</td>
</tr>
<tr>
<td>36</td>
<td>0.08819</td>
<td>8.2</td>
</tr>
<tr>
<td>64</td>
<td>0.08584</td>
<td>5.3</td>
</tr>
<tr>
<td>256</td>
<td>0.08300</td>
<td>1.8</td>
</tr>
<tr>
<td>1,024</td>
<td>0.08209</td>
<td>0.7</td>
</tr>
<tr>
<td>4,096</td>
<td>0.08182</td>
<td>0.3</td>
</tr>
<tr>
<td>Exact Solution</td>
<td>0.08154</td>
<td>--</td>
</tr>
</tbody>
</table>
Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The figures below show non-node-averaged contour plot for the normal stress σ_x and σ_y.

![Contour plots for normal stress σ_x and σ_y.]

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the non-node-averaged moments M_x and M_y.

![Contour plots for moments M_x and M_y.]
Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the shear stress τ_{xy} and the node-average shear stress τ_{xy}.

![Shear Stress Plots](image1)

Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

The next set of plots shows the twisting moment M_{xy} and the node-average twisting moment M_{xy}.

![Twisting Moment Plots](image2)
Development of the Plate Bending Element

Computer Solution for a Plate Bending Problem

Both sets of plots indicate interelement discontinuities for shear stress and twisting moment.

However, if the node-average plots are viewed, the discontinuities are smoothed out and not visible.
Development of the Plate Bending Element

Problems

End of Chapter 12