
Chapter 11 – Three-Dimensional Stress Analysis

Learning Objectives
• To introduce concepts of three-dimensional stress

and strain.

• To develop the tetrahedral solid-element stiffness
matrix.

• To describe how body and surface tractions are
treated.

• To illustrate a numerical example of the tetrahedral
element stiffness matrix.

Chapter 11 – Three-Dimensional Stress Analysis

Learning Objectives
• To describe the isoparametric formulation of the

stiffness matrix for three dimensional hexahedral
(brick) elements, including the linear (eight-noded)
brick, and the quadratic (20 noded) brick.

• To present some commercial computer program
examples of three-dimensional solid models and
results for real-world applications.

• To present a comparison of the four-noded
tetrahedral, the ten-noded tetrahedral, the eight-
noded brick, and the twenty-noded brick.
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Three-Dimensional Stress Analysis

Introduction

In this chapter, we consider the three-dimensional, or solid, 
element. 

This element is useful for the stress analysis of general three-
dimensional bodies that require more precise analysis than is 
possible though two-dimensional and/or axisymmetric 
analysis. 

Examples of three dimensional problems are arch dams, thick-
walled pressure vessels, and solid forging parts as used, for 
instance, in the heavy equipment and automotive industries.

Three-Dimensional Stress Analysis

Introduction

The tetrahedron is the basic three-dimensional element, and it 
is used in the development of the shape functions, stiffness 
matrix, and force matrices in terms of a global coordinate 
system. 

We follow this development with the isoparametric formulation 
of the stiffness matrix for the hexahedron, or brick element. 

Finally, we will provide some typical three-dimensional 
applications.
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Three-Dimensional Stress Analysis

Introduction

Finite elements can be use for analyzing linear and nonlinear 
stress characteristics of structures and mechanical 
components.

Three-Dimensional Stress Analysis

Introduction

Finite element discretization, stresses, and deformations of a 
wheel rim in a structural analysis.

CIVL 7/8117 Chapter 11 - Three-Dimensional Stress Analysis 3/39



Three-Dimensional Stress Analysis

Introduction

Cooling fan blade vibration, which was predicted by structural 
mechanics mode shape analysis.

Three-Dimensional Stress Analysis

Introduction

The model of a wrench and bolt that has been imported, 
meshed, and solved for an applied load.
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Three-Dimensional Stress Analysis

Introduction

Below is a cross brace, supported at the left-hand edge by two 
lugs and loaded at the right-hand edge through two additional 
lugs. The structure is sitting in the global XY plane.

Three-Dimensional Stress Analysis

Introduction

The figure shows stress contour plot of the maximum principal 
stress P1. This is a useful way of seeing the biggest tensile 
stress flow direction.
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Three-Dimensional Stress Analysis

Introduction

The figure shows the P3 stress distribution through the 
structure. The plot shows only compressive stresses. 

Three-Dimensional Stress Analysis

Introduction

A mesh with smaller elements will allow the solver to more 
accurately calculate stress distribution across an area. 
Smaller elements mean more nodes for calculation. More 
calculation helps to average the stresses in a more accurate 
manner through the material.
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Three-Dimensional Stress Analysis

Introduction

Finite element model of 
human skull showing 
stress distribution in 
bite at 2nd molar.

Three-Dimensional Stress Analysis

Introduction

We begin by considering the three-dimensional infinitesimal 
element in Cartesian coordinates with dimensions dx, dy, 
and dz.

Normal stresses are perpendicular to the faces of the elements 
given by x, y, and z.
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Three-Dimensional Stress Analysis

Introduction

We begin by considering the three-dimensional infinitesimal 
element in Cartesian coordinates with dimensions dx, dy, 
and dz.

Shear stresses act parallel to the faces and are represented by 
xy, yz, and zx.

From moment equilibrium of the element, we show in Appendix 
C that:

The element strain-displacement relationships are:
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Three-Dimensional Stress Analysis

Introduction
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Where u, v, and w are the displacements associated with the x, 
y, and z directions. The shears strains  are now given by:
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Three-Dimensional Stress Analysis

Introduction

The stresses and strains can be represented by column 
matrices as:
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For an isotropic material the stress/strain as:     D 

Three-Dimensional Stress Analysis

Introduction
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The constitutive matrix [D] is given by:

    
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Three-Dimensional Stress Analysis

Introduction

The Tetrahedral Element

We now develop the tetrahedral stress element stiffness matrix 
by again using the steps outlined in Chapter 1. 

The development is seen to be an extension of the plane 
element previously described  in Chapter 6. 

Three-Dimensional Stress Analysis
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Step 1 - Discretize and Select Element Types 

Consider the tetrahedral element with corner nodes 1-4.

The nodes of the element must be 
numbered such that when viewed 
from the last node, the first three 
nodes are numbered in a 
counterclockwise manner.

This ordering of nodes avoids 
calculation of negative volumes.

The Tetrahedral Element

Three-Dimensional Stress Analysis

Step 1 - Discretize and Select Element Types 

Consider the tetrahedral element with corner nodes 1-4.

If the last node is say, node 4, the 
first three nodes are numbered in 
a counterclockwise manner, such 
as 1, 2, 3, 4 or 2, 3, 1, 4.

Using an isoparametric formulation 
to evaluate the [k] matrix for the 
tetrahedral element enables us to 
use the element node numbering 
in any order (we will discuss this 
later).

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Step 1 - Discretize and Select Element Types 

The unknown nodal displacements are given by:

The Tetrahedral Element

Three-Dimensional Stress Analysis

 
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

Hence, there are 3 degrees of freedom per node, or 12 total 
degrees of freedom per element.

Step 2 - Select Displacement Functions

For a compatible displacement field, the element displacement 
functions u, v, and w must be linear along each edge. We 
select the linear displacement function as:

The Tetrahedral Element

Three-Dimensional Stress Analysis

In the same manner as in Chapter 6, we can express the a's in 
terms of the known nodal coordinates (x1, y1, z1, ..., z4) and 
the unknown nodal displacements (u1, v1, w1, ..., w4) of the 
element.

  1 2 3 4, ,u x y z a a x a y a z   

  5 6 7 8, ,v x y z a a x a y a z   

  9 10 11 12, ,w x y z a a x a y a z   
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Step 2 - Select Displacement Functions

Skipping the straightforward but tedious details, we obtain:

The Tetrahedral Element

Three-Dimensional Stress Analysis

where 6V is obtained by evaluating 
the determinant:

   1 1 1 1 1

1
, ,

6
u x y z x y z u

V
      

 2 2 2 2 2x y z u      

 3 3 3 3 3x y z u      

 4 4 4 4 4x y z u        
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Step 2 - Select Displacement Functions

The coefficients i, i, i, and i (i = 1, 2, 3, 4) are given by;

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Step 2 - Select Displacement Functions

The coefficients i, i, i, and i (i = 1, 2, 3, 4) are given by;

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Step 2 - Select Displacement Functions

The coefficients i, i, i, and i (i = 1, 2, 3, 4) are given by;

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Step 2 - Select Displacement Functions

The coefficients i, i, i, and i (i = 1, 2, 3, 4) are given by;

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Step 2 - Select Displacement Functions

Expressions for v and w are obtained by simply substituting vi s 
for all ui s and then wi s for all ui s.

The Tetrahedral Element

Three-Dimensional Stress Analysis

The displacement expression for u can be written in expanded 
form in terms of the shape functions and unknown nodal 
displacements as:
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Step 2 - Select Displacement Functions

The shape functions are given by:

The Tetrahedral Element

Three-Dimensional Stress Analysis

 1 1 1 1 1

1

6
N x y z

V
      

 2 2 2 2 2

1

6
N x y z

V
      
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6
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V
      
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1

6
N x y z

V
      

Step 3 - Define the Strain-Displacement and 
Stress-Strain Relationships

The element strains for the three-dimensional stress state are 
given by:

The Tetrahedral Element

Three-Dimensional Stress Analysis

u

x
v

y

w

z
u v

y x

v w

z y

w u

x z

 
  

 
 
 

 
     
  

   
  

   
  

       
1

2
1 2 3 4

3

4

{ }

d

d
B B B B

d

d



 
 
     
 
  

{ } [ ]{ }B d 

 

x

y

x

xy

yz

zx










 
 
 
 

  
 
 
 
 

CIVL 7/8117 Chapter 11 - Three-Dimensional Stress Analysis 16/39



Step 3 - Define the Strain-Displacement and 
Stress-Strain Relationships

The submatrix [B1] is defined by:

The Tetrahedral Element

Three-Dimensional Stress Analysis

 
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 
 
 
 
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 
 
 

where the comma indicates differentiation with respect to that 
variable.

Step 3 - Define the Strain-Displacement and 
Stress-Strain Relationships

Submatrices [B2], [B3], and [B4] are defined by simply indexing 
the subscript from 1 to 2, 3, and then 4, respectively. 

Substituting in the shape functions, [B1] is expressed as:

The Tetrahedral Element

Three-Dimensional Stress Analysis

 
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   
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Step 4 - Derive the Element Stiffness Matrix and Equations

The element stresses are related to the element strains by:

The Tetrahedral Element

Three-Dimensional Stress Analysis

    D       D B d 

The stiffness matrix can be defined as:

      T

V

k B D B dV 
Because both matrices [B] and [D] are constant for the simple 

tetrahedral element, the element stiffness matrix can be 
simplified to:

      T
k B D B V where V is the volume of the 

tetrahedral element. 

The element body force matrix is given by:

Step 4 - Derive the Element Stiffness Matrix and Equations

The Tetrahedral Element

Three-Dimensional Stress Analysis

Treatment of Body and Surface Forces

     T

b

V

f N X dV 
where

 
b

b

b

X

X Y

Z

 
   
 
 

For constant body forces, the nodal components of the total 
resultant body forces can be shown to be distributed to the 
nodes in four equal parts, that is:

   
4

T

b b b b b b b b b b b b b

V
f X Y Z X Y Z X Y Z X Y Z
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The surface force matrix is given by:

Step 4 - Derive the Element Stiffness Matrix and Equations

The Tetrahedral Element

Three-Dimensional Stress Analysis

Treatment of Body and Surface Forces

where [NS] is the shape function matrix evaluated on the 
surface where the surface traction occurs.

For example, consider the case of a uniform pressure p 
acting on a face with nodes 1-3 of the element. 

     T

s S

S

f N T dS 

   
evaluatedon
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x
T

s y

S
z

p

f N p dS

p

 
   
 
 



Simplifying and integrating we can show that:

Step 4 - Derive the Element Stiffness Matrix and Equations

The Tetrahedral Element

Three-Dimensional Stress Analysis

Treatment of Body and Surface Forces
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 
 
 
 
 
 
 
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 
 
 
  

Where S123 is the area of the surface 
associated with nodes 1-3. 

The use of volume coordinates facilitates 
the integration surface forces.
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Step 5 - Assemble the Element Equations and 
Introduce Boundary Conditions

The Tetrahedral Element

Three-Dimensional Stress Analysis

The final assembled or global equation written in matrix form is:

where {F} is the equivalent global nodal loads obtained by 
lumping distributed edge loads and element body forces at the 
nodes and [K] is the global structure stiffness matrix.

   [ ]F K d

Step 6 - Solve for the Nodal Displacements

Once the element equations are assembled and modified to 
account for the boundary conditions, a set of simultaneous 
algebraic equations that can be written in expanded matrix 
form as:

   [ ]F K d

Step 7 - Solve for the Element Forces (Stresses)

For the structural stress-analysis problem, important secondary 
quantities of strain and stress (or moment and shear force) 
can be obtained in terms of the displacements determined in 
Step 6. 

The Tetrahedral Element

Three-Dimensional Stress Analysis
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Evaluate the matrices necessary to determine the stiffness 
matrix for the tetrahedral element shown below. 

Let E = 30 x 106 psi and  = 0.30. The coordinates are in units 
of inches.

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

To evaluate the element stiffness matrix, we first determine the 
element volume V and all ’s, ’s, ’s, and  ’s we have:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

1 1 1

2 2 2

3 3 3

4 3 4

1

1
6

1

1

x y z

x y z
V

x y z

x y z



1 1 1 2

1 0 0 0

1 0 2 0

1 2 1 0

 38 in

Also, we obtain:

1

0 0 0

0 2 0 0

2 1 0

   1

1 0 0

1 2 0 0

1 1 0

   
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To evaluate the element stiffness matrix, we first determine the 
element volume V and all ’s, ’s, ’s, and  ’s we have:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

1 1 1

2 2 2

3 3 3

4 3 4

1

1
6

1

1

x y z

x y z
V

x y z

x y z



1 1 1 2

1 0 0 0

1 0 2 0

1 2 1 0

 38 in

Also, we obtain:

1

1 1 2

1 0 0 0

1 0 0

    1

1 0 0

1 0 2 4

1 2 1

   

The remaining values for the ’s, ’s, ’s, and  ’s are:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

Note that ’s typically have units of cubic inches or cubic 
meters, where ’s, ’s, and  ’s have units of square inches or 
square meters.

2 2 2 28 2 4 1         

3 3 3 30 2 4 1        

4 4 4 40 4 0 2       
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Next, the shape functions are:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

Note that N1 + N2 + N3 + N4 = 1 is again satisfied.

1

4

8

z
N  2

8 2 4

8

x y z
N

  


3

2 4

8

x y z
N

  
 4

4 2

8

x z
N




The 6 x 3 submatrices of the matrix [B] are now evaluated as:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

 
1

2
1

1
2

1
2

0 0 0

0 0 0

0 0

0 0 0

0 0

0 0

B

 
 
 
 

  
 
 
 
 

 

1
4

1
2

1
8

2 1 1
2 4

1 1
8 2

1 1
8 4

0 0

0 0

0 0

0

0

0

B

 
  
 

    
  
   
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The 6 x 3 submatrices of the matrix [B] are now evaluated as:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

 

1
4

1
2

1
8

3 1 1
2 4

1 1
8 2

1 1
8 4

0 0

0 0

0 0

0

0

0

B

 
 
 
 

   
 
   

 

1
2

1
4

4 1
2

1
4

1 1
4 2

0 0

0 0 0

0 0

0 0

0 0

0

B

 
 
 
 

  
 
 
  

Next, the [D] matrix is evaluated as:

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

    
6

0.7 0.3 0.3 0 0 0

0.3 0.7 0.3 0 0 0

0.3 0.3 0.7 0 0 030 10

1 0.3 1 0.6 0 0 0 0.2 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.2

D

 
 
 
 

     
 
 
 
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Finally, substituting the results for V, [B], and [D], we obtain the 
element stiffness matrix. 

The Tetrahedral Element – Example 1

Three-Dimensional Stress Analysis

  610k





 
















      T
k B D B V

The basic (linear) hexahedral element has eight corner nodes 
with isoparametric natural coordinates given by s, t, and z’.

The formulation of the stiffness matrix follows step analogous to 
the isoparametric formulation of the stiffness matrix for the 
plane element in Chapter 10.

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis
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The function used to describe the element geometry for x in 
terms of the generalized degrees of freedom ai s is:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

1 2 3 4 5 6 7 8' ' ' 'x a a s a t a z a st a tz a z s a stz       

9 10 11 12 13 14 15 16' ' ' 'y a a s a t a z a st a tz a z s a stz       

17 18 19 20 21 22 23 24' ' ' 'z a a s a t a z a st a tz a z s a stz       

8

1

0 0

0 0

0 0

i i

i i
i

i i

x N x

y N y

z N z

      
          
           



First, expand the coordinate definition from Chapter 10 to 
include the z coordinate as follows:

The shape functions are:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

   1
1 1 1 ' '

8i i i iN ss tt z z   

where si, ti, and z’i = 1 and i = 1, 2, … , 8. For N1:

   1

1
1 1 1 ' '

8 i i iN ss tt z z   

where s1 = -1, t1 = -1 and z’1 = 1, 
we obtain: 

   1

1
1 1 1 '

8
N s t z   
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The shape functions are:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

   1

1
1 1 1 '

8
N s t z   

Explicit forms of the other shape functions follow similarly. 

The shape functions map the natural coordinates (s, t, z') of 
any point in the element to any point in the global coordinates 
(x, y, z).

For instance, when we let i = 8 and substitute s8 = 1, t8 = 1, 
and z8= 1, we obtain:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

   8

1
1 1 1 '

8
N s t z   
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Similar expressions are obtained for the other shape functions. 

Then evaluating all shape functions at node 8, we obtain N8 = 
1, and all other shape functions equal zero at node 8. 

We see that N1 = 0 when s = 1 or when t = 1. Therefore, we 
obtain:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

8 8 8x x y y z z  

We see that indeed our geometric shape functions map any
point in the natural-coordinate system to one in the global-
coordinate system.

The displacement functions in terms of the generalized 
degrees of freedom are of the same form as used to describe 
the element geometry given by:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

There are now a total of 24 degrees of freedom in the linear 
hexahedral element. 

Therefore, we use the same shape functions as used to 
describe the geometry.

1 2 3 4 5 6 7 8' ' ' 'u a a s a t a z a st a tz a z s a stz       

9 10 11 12 13 14 15 16' ' ' 'v a a s a t a z a st a tz a z s a stz       

17 18 19 20 21 22 23 24' ' ' 'w a a s a t a z a st a tz a z s a stz       
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The displacement functions is given by:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

with the same shape functions, the size of the shape function 
matrix now 3 X 24.

8

1

0 0

0 0

0 0

i i

i i
i

i i

u N u

v N v

w N w

      
          
           



The Jacobian matrix in three dimensions is: 

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

 

' ' '

x y z

s s s
x y z

J
t t t
x y z

z z z

   
    
   

   
    
    
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The strain-displacement relationships, in terms of global 
coordinates are:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

 
' ' '

f y z
s s s
f y z
t t t
f y z

f z z z
x J

  
  
  
  
  

   
  

' ' '

x f z
s s s
x f z
t t t
x f z

f z z z
y J

  
  
  
  
  

   
  

' ' '

x y f
s s s
x y f
t t t
x y f

f z z z
z J

  
  
  
  
  

   


Substituting u, v, and then w for f and using the definitions
of the strains, we can express the strains in terms of
natural coordinates (s, t, z’).

The matrix [B] is now a function of s, t, and z' and is of order 
6 x 24.

The 24 x 24 stiffness matrix is now given by:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

It is best to evaluate [k] by numerical integration; that is, we 
evaluate (integrate) the eight-node hexahedral element 
stiffness matrix using a 2 x 2 x 2 rule (or two-point rule). 
Actually, eight points defined in Table 11-1are used to 
evaluate [k] as

      
1 1 1

1 1 1

[ ] '
T

k B D B J dsdt dz
  

   
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Gauss points and weights for the linear hexahedral are: 

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

1 1 1
3 3 3

Points, '

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

i i i ii s t z w

 



  

 


 

Using the eight Gauss points to evaluate [k] give:

Isoparametric Formulation and Hexahedral Element

Three-Dimensional Stress Analysis

As is true with the bilinear quadrilateral element, the eight-
noded linear hexahedral element cannot model beam-
bending action well because the element sides remain 
straight during the element deformation. 

During the bending process, the elements will be stretched 
and can shear lock. 

The quadratic hexahedral element described subsequently 
remedies the shear locking problem.

       
8

1

[ ] , , ' , , ' , , '
T

i i i i i i i i i i
i

k B s t z D B s t z J s t z W


           
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The quadratic hexahedral element has a total of 20 
nodes with the inclusion of a total of 12 mid-side nodes

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

The function describing the element geometry for x in 
terms of the 20 a’s is:

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

2 2
1 2 3 4 5 6 7 8 9' ' 'x a a s a t a z a st a tz a z s a s a t        

2 2 2 2 2 2
10 11 12 13 14 15' ' ' 'a z a s t a st a t z a tz a z s     

2 2 2 2
16 17 18 19 20' ' ' ' 'a z s a stz a s tz a st z a stz    

Similar expressions describe the y and z coordinates.
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The function describing the element geometry for x in 
terms of the 20 a’s is:

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

2 2
1 2 3 4 5 6 7 8 9' ' 'x a a s a t a z a st a tz a z s a s a t        

2 2 2 2 2 2
10 11 12 13 14 15' ' ' 'a z a s t a st a t z a tz a z s     

2 2 2 2
16 17 18 19 20' ' ' ' 'a z s a stz a s tz a st z a stz    

The x-displacement function u is described by the same 
polynomial used for the x element geometry. 

Similar expressions are used for displacement functions 
v and w. 

The function describing the element geometry for x in 
terms of the 20 a’s is:

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

2 2
1 2 3 4 5 6 7 8 9' ' 'x a a s a t a z a st a tz a z s a s a t        

2 2 2 2 2 2
10 11 12 13 14 15' ' ' 'a z a s t a st a t z a tz a z s     

2 2 2 2
16 17 18 19 20' ' ' ' 'a z s a stz a s tz a st z a stz    

In order to satisfy interelement compatibility, the three 
cubic terms s3 , t3, and z' 3 are not included.

Instead the three quartic terms s2tz’, st2z', and stz' 2 are 
used.
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The development of the stiffness matrix follows the same 
steps we outlined before for the linear hexahedral 
element, where the shape functions now take on new 
forms. 

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

Again, letting si, ti, and z’i = 1, we have for the corner  
nodes (i = 1, 2, ..., 8):

     1 1 1 ' '
' ' 2

8
i i i

i i i i

ss tt z z
N ss tt z z

  
   
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For the mid-side nodes at si = 0, ti = 1, and z’i = 1, (i = 17, 
18, 19, and 20), we get:

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

   21 1 1 ' '

4
i i

i

s tt z z
N

  


Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

For the mid-side nodes at si = 1, ti = 0, and z’i = 1, (i = 10, 
12, 14, and 16), we get:

   21 1 1 ' '

4
i i

i

ss t z z
N

  

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For the mid-side nodes at si = 1, ti = 1, and z’i = 0, (i = 9, 11, 
13, and 15), we get:

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

   21 1 1 '

4
i i

i

ss tt z
N

  


Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

The [B] matrix is now a 60 x 60 matrix. 

The stiffness matrix of the quadratic hexahedral element is of 
order 60 x 60.

This is consistent with the fact that the element has 20 nodes 
and 3 degrees of freedom (ui, vi, and wi) per node
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The stiffness matrix for this 20-node quadratic solid element 
can be evaluated using a Gaussian quadrature with ther 3 x 
3 x 3 rule (27 points). 

However, a special 14-point rule may be a better choice.

As with the eight-noded plane element of Chapter 10, the 20-
node solid element is also called a serendipity element.

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

The 20-node solid uses a different type of integration point 
scheme. 

This scheme places points close to each of the 8 corner 
nodes and close to the centers of the 6 faces for a total of 
14 points. 

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

z’
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The 20-node solid uses a different type of integration point 
scheme. 

This scheme places points close to each of the 8 corner 
nodes and close to the centers of the 6 faces for a total of 
14 points. 

Quadratic Hexahedral Element

Three-Dimensional Stress Analysis

Type Integration Point Location Weighting Factor

8 Corner Points s = ±0.75878 69106 39328 0.33518 00554 01662

t =  ±0.75878 69106 39329

z’ = ±0.75878 69106 39329

6 Center Points s = ±0.79582 24257 54222, t=z’=0.0 0.88642 65927 97784

t =  ±0.79582 24257 54222, s=z’=0.0

z’ = ±0.79582 24257 54222, s=t=0.0

Problems

25. Work problems 11.1, 11.3, 11.6a, and 11.9 in your textbook.

26. Use the solid elements in SAP2000 to solve problem 11.14
in your textbook.

Isoparametric Elements
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End of Chapter 11
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