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Chapter 10 — Isoparametric Elements

Learning Objectives

BE = -

A First Course in the

Finite Element Method

To formulate the isoparametric formulation of the
bar element stiffness matrix

To present the isoparametric formulation of the
plane four-noded quadrilateral (Q4) element
stiffness matrix

To describe two methods for numerical
integration— Newton-Cotes and Gaussian
Quadrature —used for evaluation of definite
integrals

To solve an explicit example showing the
evaluation of the stiffness matrix for the plane
quadrilateral element by the four-point Gaussian
quadrature rule

Chapter 10 — Isoparametric Elements

Learning Objectives

BE =

A First Course in the

Finite Element Method

To illustrate by example how to evaluate the
stresses at a given point in a plane quadrilateral
element using Gaussian quadrature

To evaluate the stiffness matrix of the three-noded
bar using Gaussian quadrature and compare the
result to that found by explicit evaluation of the
stiffness matrix for the bar

To describe some higher-order shape functions for
the three-noded linear strain bar, the improved
bilinear quadratic (Q6), the eight- and nine-noded
quadratic quadrilateral (Q8 and Q9) elements, and
the twelve-noded cubic quadrilateral (Q12)
element

To compare the performance of the CST, Q4, Q6,
Q8, and Q9 elements to beam elements
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Isoparametric Elements

Introduction

In this chapter, we introduce the isoparametric formulation of
the element stiffness matrices.

After considering the linear-strain triangular element (LST) in
Chapter 8, we can see that the development of element
matrices and equations expressed in terms of a global
coordinate system becomes an enormously difficult task (if
even possible) except for the simplest of elements such as
the constant-strain triangle of Chapter 6.

Hence, the isoparametric formulation was developed.

Isoparametric Elements

Introduction

The isoparametric method may appear somewhat tedious
(and confusing initially), but it will lead to a simple computer
program formulation, and it is generally applicable for two-
and three-dimensional stress analysis and for nonstructural

problems.

The isoparametric formulation allows elements to he created
that are nonrectangular and have curved sides.

Numerous commercial computer programs (as described in
Chapter 1) have adapted this formulation for their various

libraries of elements.
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Isoparametric Elements

Introduction

First, we will illustrate the isoparametric formulation to develop
the simple bar element stiffness matrix.

Use of the bar element makes it relatively easy to understand
the method because simple expressions result.

Then, we will consider the development of the isoparametric
formulation of the simple quadrilateral element stiffness
matrix.

Isoparametric Elements

Introduction

Next, we will introduce numerical integration methods for
evaluating the quadrilateral element stiffness matrix.

Then, we will illustrate the adaptability of the isoparametric
formulation to common numerical integration methods.

Finally, we will consider some higher-order elements and their
associated shape functions.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The term isoparametric is derived from the use of the same
shape functions (or interpolation functions) [N] to define the
element's geometric shape as are used to define the
displacements within the element.

Thus, when the interpolation function is u = a, + a,s for the
displacement, we use x = a, + a,s for the description of the
nodal coordinate of a point on the bar element and, hence, the
physical shape of the element.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Isoparametric element equations are formulated using a natural
(or intrinsic) coordinate system s that is defined by element
geometry and not by the element orientation in the global-
coordinate system.

In other words, axial coordinate s is attached to the bar and
remains directed along the axial length of the bar, regardless
of how the bar is oriented in space.

There is a relationship (called a transformation mapping)
between the natural coordinate systems and the global
coordinate system x for each element of a specific structure.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

First, the natural coordinate s is attached to the element, with
the origin located at the center of the element.

The s axis need not be parallel to the x axis-this is only for
convenience.

Consider the bar element to have two degrees of freedom-axial
displacements u, and u, at each node associated with the

global x axis.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

For the special case when the s and x axes are parallel to each
other, the s and x coordinates can be related by:

L
X=X, +—=S
2

Using the global coordinates x, and x, with x_ =(x; + X,)/2, we
can express the natural coordinate s in terms of the global

coordinates as:
it
2 (X, —%,)
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The shape functions used to define a position within the bar are
found in a manner similar to that used in Chapter 3 to define
displacement within a bar (Section 3.1).

We begin by relating the natural coordinate to the global
coordinate by:

X=a +a,5s

Note that -1 <s<1.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Solving for the a's in terms of x, and x,, we obtain:

X = [%)[(1—s)x1 +(1+5)%, |

In matrix form:

N S S
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The linear shape functions map the s coordinate of any point in
the element to the x coordinate.

For instance, when s = -1, then x = x, and
when s =1, then x = X,

N S S

Isoparametric Elements

Isoparametric Formulation of the Bar Element

$ N
fi
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

u= N’] Iy +N2M2 —'
L]
i
Node ] | ¥ Node 2
s=-1 s=0 s=1
X 1-s 1+s
xp=[Ny N Jq Ny =—— N, =——
X, 2 2

Isoparametric Elements

Isoparametric Formulation of the Bar Element

When a particular coordinate s is substituted into [N] yields the
displacement of a point on the bar in terms of the nodal
degrees of freedom u, and u,.

Since u and x are defined by the same shape functions at the
same nodes, the element is called isoparametric.

X 1-s 1+s
R B

2
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Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships
We now want to formulate element matrix [B] to evaluate [K].

We use the isoparametric formulation to illustrate its
manipulations.

For a simple bar element, no real advantage may appear
evident.

However, for higher-order elements, the advantage will become
clear because relatively simple computer program
formulations will result.

Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships

To construct the element stiffness matrix, determine the strain,
which is defined in terms of the derivative of the displacement
with respect to x.

The displacement u, however, is now a function of s so we must
apply the chain rule of differentiation to the function u as
follows:

du dudx du du du /dx
—_— —_—— E = — j— E =—=— [/ —
ds dxds *dx * dx ds/ ds
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

The derivative of u with respect to s is: g_u _U Uy ;u1
S
The derivative of x with respect to s is: d_x _ X T X L
ds 2 2

1 1|ju
Therefore the strain is: {SX} = {—E EHU}
2

Since {&} = [B]{d}, the strain-displacement matrix [B] is:

o ]

Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 3 - Strain-Displacement and Stress-Strain Relationships

Recall that use of linear shape functions results in a constant [B]
matrix, and hence, in a constant strain within the element.

For higher-order elements, such as the quadratic bar with three
nodes, [B] becomes a function of natural coordinates s.

The stress matrix is again given by Hooke's law as:

{o} =E{s} =E[B]{d]
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

L
The stiffness matrix is: [k] = “B]T E[B] Adx
0

However, in general, we must transform the coordinate x to s
because [B] is, in general, a function of s.

jf(x)dx = If(s)‘[\]]‘ds

where [J] is called the Jacobian matrix.

In the one-dimensional case, we have |[J]| = J.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

For the simple bar element: ‘[J ]‘ = 3—)8( =%

The Jacobian determinant relates an element length (dx) in the
global-coordinate system to an element length (ds) in the
natural-coordinate system.

In general, |[J]| is a function of s and depends on the numerical
values of the nodal coordinates.

This can be seen by looking at for the equations for a
quadrilateral element.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix in natural coordinates is:
L T
kl==1||B| E|B|Ads
[K]=5 ][] Efe]
For the one-dimensional case, we have used the modulus of
elasticity E = [D].

Performing the simple integration, we obtain:

et

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

For higher-order one-dimensional elements, the integration in
closed form becomes difficult if not impossible.

Even the simple rectangular element stiffness matrix is difficult
to evaluate in closed form.

However, the use of numerical integration, as described in
Section 10.3, illustrates the distinct advantage of the
isoparametric formulation of the equations.

12/108
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations
Determine the body-force matrix using the natural coordinate
system s. The body-force matrix is:

X2

() =[INI"{X,}dv  {f,} = [IN]"{X,} Adx

v X

Substituting for N, and N, and using dx = (L/2)ds

RN
|
(72}

{fb} = AJ:

—

+ N
~—
X
o
——

N
o
I

>

N

X
o

f—/\ﬁ

— —

;\/——/

N ‘

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The physical interpretation of the results for {f,} is that since AL
represents the volume of the element and X, the body force
per unit volume, then ALX, is the total body force acting on the
element.

The factor 7z indicates that this body force is equally distributed
to the two nodes of the element.

L ALX, [1
X, —ds =20
S { b}2 ST {1}

RN
(72}

{fb} = AJ:

—
I\)‘-l‘ N
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Determine the surface-force matrix using the natural coordinate
system s. The surface-force matrix is:

{fs} = '[[Ns]T {Tx} dS

Assuming the cross section is constant and the traction is
uniform over the perimeter and along the length of the
element, we obtain:

{6} = [IN,T" {7, dx

where we now assume {Tx} is in units of force per unit length.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting for N, and N, and using dx = (L/2)ds

2

Since {T,} is in force-per-unit-length {T,}L is now the total force.

The %2 indicates that the uniform surface traction is equally
distributed to the two nodes of the element.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Substituting for N, and N, and using dx = (L/2)ds

1-s

2 L L (1
fl= T t=ds ={T !=
{S} -[1 1+s {X}Z {X}2{1}
2
Note that if {T,} were a function of x (or s), then the amounts of

force allocated to each node would generally not be equal and
would be found through integration.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Recall that the term isoparametric is derived from the use of the
same interpolation functions to define the element shape as
are used to define the displacements within the element.

The approximation for displacement is:

u=a +a,s+a,t +a,st
The description of a coordinate point in the plane element is:
X=a +a,s+a;t +a,st

The natural-coordinate systems s-t defined by element
geometry and not by the element orientation in the global-
coordinate system x-y.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Much as in the bar element example, there is a transformation
mapping between the two coordinate systems for each
element of a specific structure, and this relationship must be
used in the element formulation.

We will now formulate the isoparametric formulation of the
simple linear plane quadrilateral element stiffness matrix.

This formulation is general enough to be applied to more
complicated (higher-order) elements such as a quadratic
plane element with three nodes along an edge, which can
have straight or quadratic curved sides.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Higher-order elements have additional nodes and use different
shape functions as compared to the linear element, but the
steps in the development of the stiffness matrices are the
same.

We will briefly discuss these elements after examining the linear
plane element formulation.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element
Step 1 Select Element Type

The natural s-t coordinates are attached to the element, with
the origin at the center of the element.

4 3 orthogonal, and neither has to be

-1,1) 1 Tf R The s and t axes need not be
|
| !

parallel to the x or y axis.
—

— 5

| The orientation of s-t coordinates is
such that the four corner nodes and

the edges of the quadrilateral are
bounded by +1 or -1

(-1,-1) (1,-1)

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element
Step 1 Select Element Type

The natural s-t coordinates are attached to the element, with
the origin at the center of the element.

14

L)1 T L This orientation will later allow us to
4 | 3 take advantage more fully of
| ' common numerical integration
—

— s schemes.
1

(-1,-1) (1,-1)
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider the quadrilateral to have eight degrees of freedom u,,
V4, ..., Uy, and v, associated with the global x and y directions.
The element then has straight sides but is otherwise of
arbitrary shape.

A r

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

For the special case when the distorted element becomes a
rectangular element with sides parallel to the global x-y
coordinates, the s-t coordinates can be related to the global
element coordinates x and y by

X =X, +bs y=y,+ht

where x. and y, are the global coordinates of the element
centroid.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Assuming global coordinates x and y are related to the natural
coordinates s and t as follows:

X=a +a,s+a;t +a,st y =a; +a;s +a,t +agst

Solving for the a's in terms of X4, Xy, X3, X4, Y1, Y2, Y3, Y4, WE
obtain

x=2[(1-8)(1-0)x,+(1+5)(1-1), +(1+5) (1+8)x, +(1-3) (1+1)x,]

y :%[(1—5)(1—t)y1 +(1+8)(1-t)y, +(1+s)(1+t)y, +(1-5)(1+t)y, |

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type X,
In matrix form: Y,
X2

X N, 0O N, 0 N, 0 N, O]y,
{y}{o N, 0N, O N, O NJ X,

Ys

where: X,
N - (1_51(14) N (1+s£(1_t) v,

N, = 048)0+Y o (1=s)(1+Y

3 4 4 4

19/108
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element
Step 1 Select Element Type
N, t
i t 4 / 3
"; <
1 2 1 ’ 2
3

. . S
77

w

4

I

X
-Q

=N

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

These shape functions are seen to map the s and t coordinates
of any point in the square element to those x and y
coordinates in the quadrilateral element.

Edger =1
t A Vs
(-LD1 | (X4, ¥a)

[J
P(s,t)

[3¥]
—_
-
-

-

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider square element node 1 coordinates, where s = -1 and
t=-1thenx=x,andy=y;,.

Edger =1

(-L11 D (X2 ¥a)

351
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Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Other local nodal coordinates at nodes 2, 3, and 4 on the
square element in s-t isoparametric coordinates are mapped
into a quadrilateral element in global coordinates x,, y, through

X4, .
a Ya Edger =1

t Ay \
(-1, 1 1 (LD (X4, ¥q)

351

Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Also observe the property that N; + N, + N5 + N, = 1 for all
values of s and t.

Edger =1

(-L11 D (X2 ¥a)

351
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

We have always developed the element interpolation functions
either by assuming some relationship between the natural and
global coordinates in terms of the generalized coordinates a's
or, similarly, by assuming a displacement function in terms of
the a's.

However, physical intuition can often guide us in directly
expressing shape functions based on the following two criteria
set forth in Section 3.2 and used on numerous occasions:

N, =1 i=12,..n
=1

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 2 Select of Displacement Functions

The displacement functions within an element are now similarly
defined by the same shape functions as are used to define the
element geometric shape:

iy

-

N

N

ul [N, 0O N, O N, O N, O
vl |lON, O N, O N, O N,

w w

<AC<C<C<C

N
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We now want to formulate element matrix [B] to evaluate [K].

However, because it becomes tedious and difficult (if not
impossible) to write the shape functions in terms of the x and

y coordinates, as seen in Chapter 8, we will carry out the
formulation in terms of the isoparametric coordinates s and t.

This may appear tedious, but it is easier to use the s- and t-
coordinate expressions.

This approach also leads to a simple computer program
formulation.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

To construct an element stiffness matrix, we must determine the
strains, which are defined in terms of the derivatives of the
displacements with respect to the x and y coordinates.

The displacements, however, are now functions of the s and t
coordinates.

The derivatives ou/ox and ov/oy are now expressed in terms of
s and t.

Therefore, we need to apply the chain rule of differentiation.
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Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element
Step 3 Strain-Displacement and Stress-Strain Relationships
The chain rule yields:

_ax +8y g_ax Lot Joy
oxJos |oy)os ot |ox)ot |oy)et

The strains can then be found; for example, g = ou/ox

We want to get solve the two equations for of/ox and of/oy.

.

ox oy ||[of of
as os|lled _|as
ox oy ||of of
at atlloy) et

Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

N RN

¢, b a, ¢
X = C2 b2 y= a2 C2
a b a b
a2 b2 a'2 b2
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

RS

3

C2

X = y:
a, b, a, b,
a2 b2 a2 b2

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

a b, |[x C, ox oy ﬂ ﬂ
[az bHy}z{c} ds 0Os|]Oox|_]os
2 ? ox oy [|of | |of

o atlloy] et

¢, b a G
X = C'2 b2 y — a2 C2
a, b a, b
a'2 b2 a'2 b2
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

o oy x o
0s 0s 0s 0s
of oy ox of
o ot ot o _|a e
ox [ox oy oy |ox oy
0s 0s 0s 0s
ox oy oxX oy
ot at at ot

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

of  ay

8s  0s
of oyl ofey oyof of oy oy of

of _lot o] _asat osot _os ot osét

ox [ox oyl |x oy 9]
0s 0s 0s 0s
oxX oy oxX oy

at ot ot at
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:

x o
os 0s
ox of ox of ox of ox of ox of

of ot o]l _esot otos _asot et os

oy |x oy fx oy 9]
0s 0s 0s 0s
oxX oy oxX oy
ot ot ot ot

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant in the denominator is the determinant of the
Jacobian matrix [J].
oxX oy
O e e S A X
oxX oy os ot 0s ot
oot

We now want to express the element strains as: {¢} =[B]{d}

Where [B] must now be expressed as a function of s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The usual relationship between strains and displacements given
in matrix form as:

au o0
c OX OX
i 0
{31 2
x
oou v 1a() o)
oy OX oy OX

Where the rectangular matrix on the right side is an operator
matrix; that is, o( )/ox and o( )/oy represent the partial
derivatives of any variable we put inside the parentheses.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
Evaluating the determinant in the numerators, we have

o()_ 1 ]aya() ey o )}

OX [J]_@t 0os 0s ot

oy [[3]les ot ot os

o()_ 1 [axa() axaf )}

Where |[J]| is the determinant of [J].
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can obtain the strains expressed in terms of the natural
coordinates (s-t) as:

ayo() ayo()
ot os 0s ot

0 A W e W

oxo()_axo() ayo()_aya()

os ot ot os ot os  os ot

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can express the previous equation in terms of the shape
functions and global coordinates in compact matrix form as:

tey=[D"][N]{d]

ayo() aya()
ot o0s 0s ot

0

1 0 xo() axo()
9] os ot ot os

xo() axo() ayo() ayo()
0s ot ot os ot os o0Os ot

0]
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
We can express the previous equation in terms of the shape

functions and global coordinates in compact matrix form as:

tey=[D"][N]{d]

20 20
0s ot

q_ 1 o() _420)

e ¢ cwm Y
o0)_4o0) a0)_,2()
ot 0s 0s ot

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
We can express the previous equation in terms of the shape

functions and global coordinates in compact matrix form as:

ad Ly X
ot 0s oS ot
6() b@ 0
0s ot
a1 o() ,o()
[D]=m 0 o 9%
20420 La0)_ a(0)
ot 0s oS ot

31/108
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
The shape function matrix [N] is the 2 x 8 {d} is the column

matrix. [B] _ [D'] [N]
3x8 3x2 2x8
The matrix multiplications yield

[B(st)] -7

[B,]= 0 c(N; )—d(N;)

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
Here i is a dummy variable equal to 1, 2, 3, and 4, and

a:%:%[y1(s—1)+yz(—s—1)+y3(1+s)+y4(1—s)]

b2?_52%[)/10_1)+y2(1_t)+y3(1+t)+Y4(_1_t):|
C:Z—::% X, (t=1)+ %, (1=t) + X, (1+) + X, (-1-1) ]

ox 1
d =" X (s=1)+ X, (-5 = 1)+ X, (1+5)+ %, (1-5)]
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element
Step 3 Strain-Displacement and Stress-Strain Relationships
Using the shape functions, we have
1 1
N1,S :Z(t—1) N1,l 22(3—1)

where the comma followed by the variable s or t indicates
differentiation with respect to that variable; that is,
N, s = ON,/0s and so on.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant |[J]| is a polynomial in s and t and is tedious to
evaluate even for the simplest case of the linear plane
quadrilateral element.

However, we can evaluate |[J]| as

0 1-t t-s s-1
| t-1 0 s+1 —-s-t

s-t -s-1 0 t+1

1-s s+t -t-1 0

[3]-51x.}

{ve}

{XC}T:[X1 X3 X3 X4] {YC}T:[y1 Yo Y y4]
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a square global element

with the following coordinates:
(12) (22)

(X =[1 2 2 1] Y.} =[1 1 2 2]

(11) (21)
0 1-t t-s s-1
-1 0 s+1 -s-t
s—-t -s-1 0 t+1
1-s s+t —t-1 0

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a skewed global element
with the following coordinates:

(22)  (32)
X' =[1 2 3 2] v, =[1 1 2 2]
(11) (21)
0O 1-t t-s s-1
1 r|t-=1 0 s+1 -s-t
‘[ ]‘ 8{ o s-t -s-1 0 t+1 e} =2=2A

1-s s+t —t-1 0
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a trapezoidal global

element with the following coordinates:
(22) (32

(X.) =[1 25 2 15] {v.}) =[1 1 2 2] f i

(11) (251)
0 1-t t-s s-1
1 0 s+1 -s-t {Y} _ot
-t —-s-1 0 t+1 o)
S S+t —t-1 0

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a global element with the

following coordinates:
(12) (aa)

(X.) =[1 2 a 1 v,)'=[1 1 a 2]

(11) (21)
0 1-t t-s s-1

1 r|t-1 0 s+1 -s-t
PIl=g ot 51 0 e M

1-s s+t —t-1 0

=2a-2s-2t+as+at-2
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a global element with the
following coordinates:
(12) (aa)

(X.) =[1 2 a 1 v,)'=[1 1 a 2]

Let's evaluate the |[J]| at (s, t) = (1, 1) ) (21)

‘[J]‘=2a—25—2t+as+at—2 —4a-6

For the |[J]| to be positive, a > 3/2. If a < 3/2, then the |[J]| is
negative.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a element with the
following coordinates: (2.525)

Let's assume a > 3/2, say a = 2.5,
then the [[J]] is:

[3]=5(6+s+1)

|[J]] is positive over the
entire element.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a element with the
following coordinates:

(12)
Let's assume a > 3/2, say a = 1.6,
then the [[J]] is:

{ i (1.6,1.6)
[9] =1

= (6-2t-2s)

%
%9
.
9
A

0
o
"
i
%

[J]] is positive over the
entire element.

)
)
o0
W

j

[/

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a element with the
following coordinates:

(12)
Let's assume a < 3/2, say a = 1.4,
then the [[J]] is:

{i (1.4,1.4)
[9] =1

:5(4—3t —35)

[J]] is negative at (s, t) = (1, 1).
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Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let's compute the determinant |[J]| for a element with the
following coordinates: (12

Let's assume a < 3/2,say a= 1.1, ! (1.4,1.4)
then the [[J]] is:

[9] =5 (2-9t-0s)

|[J]] is negative at (s, t) = (1, 1).

Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

When the |[J]| is negative the mapping between local
coordinates to global coordinates is not 1-to-1.

Here is a plot of the
mapping as the
vales of a range
from 2 to 1.1:

38/108
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We observe that |[J]] is a function of s and t and the known
global coordinates X4, Xy, ... , V4.

Hence, [B] is a function of s and t in both the numerator and the
denominator and of the known global coordinates x, through

Ys-

The stress-strain relationship is a function of s and t.

to} =[D][BJ{d]

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We now want to express the stiffness matrix in terms of s-t
coordinates.

For an element with a constant thickness h, we have

[k] = [ [[BT [D][B]hdxdy

However, [B] is now a function of s and t, we must integrate with
respect to s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Once again, to transform the variables and the region from x
and y to s and t, we must have a standard procedure that
involves the determinant of [J].

”f(x,y)dxdy - Hf(s,t)\[J]\dsdt

where the inclusion of |[J]| in the integrand on the right side of
equation results from a theorem of integral calculus.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We also observe that the Jacobian (the determinant of the
Jacobian matrix) relates an element area (dx dy) in the global
coordinate system to an elemental area (ds dt) in the natural
coordinate system.

For rectangles and parallelograms, J is the constant value J =
Al4, where A represents the physical surface area of the
element.

[K] = j j [B]' [D][B]h|[J]|ds dt

~1-1

40/108
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element
Step 4 Derive the Element Stiffness Matrix and Equations

The |[J]| and [B] are complicated expressions within the integral.

Integration to determine the element stiffness matrix is usually
done numerically.

The stiffness matrix is of the order 8 x 8.

[K] = j j [B]' [D][B]h|[J]|ds dt

~1-1

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Body Forces - The element body-force matrix will now be
determined from

{f) =H [N]" {X,}h[3]dsdt

(8x1) _1E18><2) (2x1)

Like the stiffness matrix, the body-force matrix has to be
evaluated by numerical integration.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Surface Forces - The surface-force matrix, say, along edge
t = 1 with overall length L, is

f
P:

oyl I 1 fan L1 )
4 . {fs}:EJ; [N,J' {T}hds

' (4x1)  (4x2) (2x1)

-1,-1) a,-1 f

fs3t :Ej' N3 0 N4 0 ' ps dS
f 2°00 N, O N o}

-1 along t=1

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Surface Forces - For the case of uniform (constant) p,, and p,,
along edge t = 1, the total surface-force matrix is

f
P:

oyl I 1 fan L1
K 2 fl==1 [N_.T {T!hds
)= j NI {T}
(4x1)  (4x2) (2x1)
1 2
L-b t.-1 fs3s ps
fs3t :& pt
fs4s 2 ps

fs 4t pt

42/108



CIVL 7/8117 Chapter 10 — Isoparametric Elements

Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element
Steps 5-7

Steps 5 through 7, which involve assembling the global
stiffness matrix and equations, determining the unknown
nodal displacements, and calculating the stress, are
identical to those in presented in previous chapters.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1

For the four-noded linear plane quadrilateral element shown
below with a uniform surface traction along side 2-3, evaluate
the force matrix by using the energy equivalent nodal forces.

Let the thickness of the element be h = 0.1 in.

3

hL |
0.4 12 c5.4:7 \ ) | {fs} = 7J.1[NS]T {T}dS
T, = 2000 psi uniform

1 (E.40)]

43/108
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Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Example 1

With length of side 2-3 given by: L = \/(5—8)2 +(4 —0)2 =5

s2s

stt _&1 N2 0 N3 0 ' ps dt
fs3s 2 -1 0 N2 0 N3 ong s— pt
fs3t

(0.4) —
(5.4)
T, = 2000 psi uni form
x

1 (E.40)]

Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Example 1
Substituting for L, the surface traction matrix, and the thickness
h = 0.1 we obtain

sts

f, _(O.1in.)5in.j. N, 0 N, 0] (2000 it
foe| 2 J/0 N, 0 N, 0

f

v s3t

4 3
(0. 4) -
(5.4)
T, = 2000 psi uni form
x

1 (E.40)]

along s=1
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Isoparametric Elements
Isoparametric Formulation of the Quadrilateral Element

Example 1
Simplifying gives:

f,. 2,000N, N,
f 1 10

s2t :0.25in.2j dt =500|b.j dt
fs3s -1 2’000 N3 -1 N3

fs3t O 0

Y evaluated along s = 1 evaluated along s = 1

(0.4) —
(5.4)
T, = 2000 psi uni form
x

1 (E.40)]

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1
Substituting the shape functions, we have
[s—t—st+1]
sts 4 1-t
f ! 0 o
21 =500lb. dt  =2500b.| dt
foas Ll s+t+st+1 Sl t+1
fth 4 O
v 0 |

3 L

4 3
(0. 4) =
5.4
% evaluated along s = 1
T, = 2000 psi uni form
X

1 (E.40)]
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1
Performing the integration gives:
fo 1-t 1 500
foo o 0 0
*< 1 =2501b. dt =500Ib. = Ib.
foas J; t+1 1 500
f 0 0 0

4 3

(0.4) —
(5.4)
T, = 2000 psi uni form

1 (E.40)]

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

In this section, we will describe two methods for numerical
evaluation of definite integrals, because it has proven most
useful for finite element work.

The Newton-Cotes methods for one and two intervals of
integration are the well known trapezoid and Simpson's one-

third rule, respectively.

We will then describe Gauss' method for numerical evaluation of
definite integrals.

After describing both methods, we will then understand why the
Gaussian quadrature method is used in finite element work.
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The Newton-Cotes method is a common technique for
evaluation of definite integrals.

]
To evaluate the integral 1= Iydx
-1

we assume the sampling points of y(x) are spaced at equal
intervals.

Since the limits of integration are from -1 to 1 using the
isoparametric formulation, the Newton-Cotes formula is given

by
1 n
I= jde = hzciyi = h[Coyo +Cy, + Gy, +"'+Cnyn]
-1 i=0

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The constants C, are the Newton-Cotes constants for numerical
integration with i intervals.

The number of intervals will be one less than the number of
sampling points, n.

The term h is the interval between the limits of integration (for
limits of integration between -1 and 1 this makes h = 2).

1

I= jde = hzciyi = h[Coyo +Cy, + Gy, +"'+Cnyn]
i=0

-1

47/108
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The Newton-Cotes constants have been published and are
summarized in the table below fori =1 to 6.

Intervals, No. of

i Points, n Co (o C, C; Cy Cs Ce

1 2 1/2 1/2 (trapezoid rule)

2 3 1/6 4/6 1/6 (Simpson's 1/3 rule)

3 4 1/8 3/8 3/8 1/8 (Simpson's 3/8 rule)

4 5 7/90 32/90 12/90 32/90 7/90

5 6 19/288  75/288  50/288  50/288  75/288 19/288

6 7 41/840  216/840  27/840  272/840 27/840  216/840  41/840

1 n
I= jde = hzciyi = h[Coyo +Cy, + Gy, +"'+Cnyn]
-1 i=0

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The case i = 1 corresponds to the well known trapezoid rule
illustrated below.

1 n
I= jde = hzciyi = 2(%) = [yo +y1]
-1 i=0
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The case i = 2 corresponds to the well-known Simpson one-
third rule.

It has been shown that the formulas for i = 3 and i = 5 have the
same accuracy as the formulas fori = 2 and i = 4, respectively.

Therefore, it is recommended that the even formulas with i = 2
and i = 4 be used in practice.

1 n
I= jde = hzciyi = h[Coyo +Cy, + Gy, +"'+Cnyn]
-1 i=0

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

To obtain greater accuracy one can then use a smaller interval
(include more evaluations of the function to be integrated).

This can be accomplished by using a higher-order Newton-
Cotes formula, thus increasing the number of intervals i.

It has been shown that we need to use n equally spaced
sampling points to integrate exactly a polynomial of order at
mostn - 1.

1

I= jde = hzciyi = h[Coyo +Cy, + Gy, +"'+Cnyn]
i=0

-1
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

On the other hand, using Gaussian quadrature we will show that
we use unequally spaced sampling points n and integrate
exactly a polynomial of order at most 2n - 1.

For instance, using the Newton-Cotes formula with n = 2

sampling points, the highest order polynomial we can integrate
exactly is a linear one.

However, using Gaussian quadrature, we can integrate a cubic
polynomial exactly.

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

Gaussian quadrature is then more accurate with fewer sampling
points than Newton-Cotes quadrature

This is because Gaussian quadrature is based on optimizing the
position of the sampling points (not making them equally
spaced as in the Newton-Cotes method) and also optimizing
the weights W, (see the table below).

Order N Points u; Weights w;

I= le dx = Zn:Wiy( X, ) 1 0.000000000 2.00000000
e i=1

2 +0.577350269 1.00000000
3 0.000000000 0.88888889

+0.774596669 0.55555556
4 +0.339981044 0.65214515

+0.861136312 0.34785485

50/108
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Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3
sampling points), evaluate the integrals:

1

Izj.{x“rcos(gﬂdx I=J.[3x—x]dx

-1 -1

Using three sampling points means we evaluate the function
inside the integrand at x = -1, x = 0, and x = 1, and multiply
each evaluated function by the respective Newton-Cotes
numbers.

1 n
I= Iydx =h> Cy, =2[3y, +&Y:+2Y,)
i=0

2

Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3
sampling points), evaluate the integrals:

1

I:J{x2+cos gﬂdx Izj.[3x—x]dx

-1 -1

1
1= [x2+cos(gj dx ~ 2] 1(1.8775826) + £ (1) + £(1.8775826) |
1

=2.5850550 0.027% error

1
=] [xz + Cos(gﬂdx — 2.5843688
1



CIVL 7/8117 Chapter 10 — Isoparametric Elements

Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3

sampling points), evaluate the integrals:

I:j{x2+cos(gﬂdx Izj.[3x—x]dx

-1 -1

I= j[sx —x]dx ~2[£(1.3333333)+£(1)+£(2)]

=2.4444444 0.706% error

1= j[s - x]dx =2.427305
-1

Isoparametric Elements

Gaussian Quadrature
1

To evaluate the integral: 1= jy dx
-1

where y = y(x), we might choose (sample or evaluate) y at the
midpoint y(0) =y, and multiply by the length of the interval, as
shown below to arrive at I = 2y,, a result that is exact if the

curve happens to be a straight line.

¥

—T

BEEELS '

| ]
__—=- Approximate area =2y,

/ ) » |

1

-1 0 1

52/108
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Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:
1 n
1= Iydx =>Wy(x)
-1 i=1

That is, to approximate the integral, we evaluate the function at
several sampling points n, multiply each value y, by the
appropriate weight W, , and add the terms.

Gauss's method chooses the sampling points so that for a given
number of points, the best possible accuracy is obtained.

Sampling points are located symmetrically with respect to the
center of the interval.

Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:

I:jydx:iwiy(xi)

i=1

In general, Gaussian quadrature using n points (Gauss points)
is exact if the integrand is a polynomial of degree 2n - 1 or
less.

In using n points, we effectively replace the given function
y = f(x) by a polynomial of degree 2n- 1.

The accuracy of the numerical integration depends on how well
the polynomial fits the given curve.

53/108
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Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:
1 n
1= Iydx =>Wy(x)
-1 i=1

If the function f(x) is not a polynomial, Gaussian quadrature is
inexact, but it becomes more accurate as more Gauss points
are used.

Also, it is important to understand that the ratio of two
polynomials is, in general, not a polynomial; therefore,
Gaussian quadrature will not yield exact integration of the
ratio.

Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

To illustrate the derivation of a two-point (n = 2) consider:
1
1= _[ydx =W,y (X,)+W,y (X,)
-1

There are four unknown parameters to determine: W,, W,, X,
and X,.

Therefore, we assume a cubic function for y as follows:

y =C, +Cx +C,x* +C,x°

54/108
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Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

In general, with four parameters in the two-point formula, we

would expect the Gauss formula to exactly predict the area
under the curve.

1

A=[(Cy+Cx+Cpx* +Cx* )dx =2C, +§C2

-1

However, we will assume, based on Gauss's method, that

W, =W, and that x, = X, as we use two symmetrically located

Gauss points at x = +a with equal weights.

The area predicted by Gauss's formula is

A =W y(-a)+W y(a) =2W (C, +C,a%)

Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

If the error, e = A - Ag, is to vanish for any C, and C,, we must
have, in the error expression:

e=A-A,=(2C,+2C,)-(C, +C,a’)2w
—=0=2-2W = W=1
aC,

% _0-2 22w = a- y=0.5773....
ac, 3

Now W =1 and a=0.5773 ... are the W;'s and a’s (x;'s) for the
two-point Gaussian quadrature as given in the table.

55/108
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Isoparametric Elements

Gaussian Quadrature Example

Use three-point Gaussian Quadrature evaluate the integrals:

I:j{xzjtcos(gﬂdx I:j[[Sx—x]dx

-1 -1

3 2 X Order N Points u; Weights w,
I~ ZWi X;~ +CO0S E 1 0.000000000 2.00000000
i=1 2 +0.577350269 1.00000000
5 3 0.000000000 0.88888889
~ (1 52 5932 8) +0.774596669 0.55555556
9 4 +0.339981044 0.65214515
8 +0.861136312 0.34785485
+—(1.0)
5

+§(’I .5259328) =2.5843698 0.00004% error

Isoparametric Elements

Gaussian Quadrature Example

Use three-point Gaussian Quadrature evaluate the integrals:

I:j{xzjtcos(gﬂdx I:j[[Sx—x]dx

-1 -1

3 X Order N Points u; Weights w,

~ LI
I~ ZWi [3 Xi ] 1 0.000000000 2.00000000
i=1 2 +0.577350269 1.00000000
5 3 0.000000000 0.88888889
~> (1 201 5923) +0.774596669 0.55555556
9 4 +0.339981044 0.65214515
8 +0.861136312 0.34785485

+—(1 5673475) =2.4271888 0.00477% error
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Isoparametric Elements

Gaussian Quadrature Example

In two dimensions, we obtain the quadrature formula by
integrating first with respect to one coordinate and then with

respect to the other

151
1=j1 Lf(s,t)o‘sdt ~ ij(s,.,t)]dt
o v

w, L w, f(s,.,tj)}

le—
1
3

1=l

Q

J

zziwiwjf(si,tj)

n
i=1 j=1

Il
-

Isoparametric Elements

Gaussian Quadrature Example

For example, a four-point Gauss rule (often described asa 2 x 2

rule) is shown below withi=1,2 andj=1, 2 yields

2 2
I~ ZZ\M WJ' f (Si’tJ’ ) ~W,W, f (31’t1)+W1W2f (51’t2)
i=1 j=1
+W, W, f(s,,t,) +W, W, f(s,,t,)
s=-05113...G=1 f s=05773...(i=2)
g:é_____@gﬂ____ [=0STT3 .. (i =2) The four sampling points
2 ! are ats;andt, = +0.5773...
andW,;=1.0

\

\

|

1

I

I

1 h 2 !

—————— e $———t=-05773...(j=1)

\
|
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Isoparametric Elements

Gaussian Quadrature Example

In three dimensions, we obtain the quadrature formula by
integrating first with respect to one coordinate and then with
respect to the other two as

=]

f(s,t,z)dsdtdz ~ W, W, W, f(s.t;,2,)

i=1 =1 k=1

Le—

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

For the two-dimensional element, we have shown in previous
chapters that

[k] = [ [[BI' [D][B]hdxdy

where, in general, the integrand is a function of x and y and
nodal coordinate values.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

We have shown that [k] for a quadrilateral element can be
evaluated in terms of a local set of coordinates s-t, with limits
from -1 to 1within the element.

[K] = j j [B]' [D][B]h[[J] dsdt

—1-1

Each coefficient of the integrand [B]" [D] [B] |[J]| evaluated by
numerical integration in the same manner as f(s, t) was
integrated.

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

A flowchart to evaluate [k] for an element using four-point
Gaussian quadrature is shown here.

Read in four Gauss points and weight functions
Sp p=205773 WL Wo =L L

Zero [k©)]

Lets=s,r=1

Compute |[/ (s, n)]|, [B(s. n]. [D]

!

Compute [k] = [B)T[D1[B|[J]h

K] = K] + [KIW,W,
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

The explicit form for four-point Gaussian quadrature (now using
the single summation notation with i =1, 2, 3, 4), we have

[K] = j j [B]' [D][B]h|[J]|ds dt

-1-1

T

+[B(s,ut,) (5:5,) | W, W,

=[B(sut))] [P][B(spt) ][I (s0ts) Wy W,
(syt5) ‘
JIE

J(B(
)] [o][B
+[B(ssty)] [D][B(S5.ts) ][I (s5.ts) ] W W4
+[B(saty) ] [D][B(suty) ][I (s0rts) | WaW,

where s,=t,= -0.5773, 5,=-0.5773, ,=0.5773, 5,=0.5773,

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Evaluate the stiffness matrix for the quadrilateral element shown
below using the four-point Gaussian quadrature rule.

Let E = 30 x 108 psi and v = 0.25. The global coordinates are
shown in inches. Assume h =1 in.

Al
¥ 3, 4) (5, 4)
4 3
-
1 2

(3,2 (52
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
Using the four-point rule, the four points are:

(syt,) = (-0.5773, -0.5773)

(s,.t,) = (-0.5773, 0.5773)
(Syt,) = ( 0.5773,-0.5773)
(s,t,)=( 0.5773, 0.5773)

With W, = W, = W, =W, = 1.0

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

First evaluate |[J]| at each Gauss, for example:

[3(-05773,-0.5773)]
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Recall:
0 1-t t-s s-1
1 | t—1 0 s+1 —-s-—t
‘[J]‘ 8{ o} s-t -s-1 0 t+1 )
1-s s+t -t-1 0
{Xc}T:[X1 Xy X3 X4] {YC}T:[V1 Y, Ys y4]

For this example:

(X.)'=[3 5 5 3] Y.} =[2 2 4 4]

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
Recall:

[3(-05773,-0.5773)]

0 1-(-0.5773) (-0.5773)—(-0.5773) (-0.5773) -1 2
1 (-0.5773)-1 0 (-0.5773)+1 ~(-0.5773)~(-0.5773) 21
Bl o 8 7 (-0.5773)-(-0.5773)  —(-0.5773)-1 0 (-0.5773)+1 4
1-(-0.5773) (-0.5773)+(-0.5773)  —(-0.5773)-1 0 4J

=1.000

Similarly: |[3(~0.5773,0.5773)]|=1.000

[3(0.5773,-0.5773) ] =1.000

[3(0.5773,0.5773) ]| =1.000
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
To evaluate [B] consider:

[B(-0.5773,-0.5773) |
1

- [[B.] [B.] [B:] [B,]]

[J(-0.5773,-0.5773) ]

where

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
For this example:
a:%[y1(s—1)+y2(—s—1)+y3(1+s)+y4(1—s)]
1
=Z[z((—o.5773)—1)+2(—(—0.5773)—1)
+4(1+(-0.5773))+ 4(1-(-0.5773)) |

=1.000

Similar computations are used to obtain b, ¢, and d.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
The shape functions are computed as:

Ny, = (t-1) =7((-05773)-1) =-0.3943

4

N, = %(s -1) = %((—0.5773) -1) =-0.3943

Similarly, [B,], [B,], and [B,] must be evaluated like [B,] at
(-0.5773, -0.5773).

We then repeat the calculations to evaluate [B] at the other
Gauss points.

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Using a computer program written specifically to evaluate [B], at
each Gauss point and then [K], we obtain the final form of
[B(-0.5773, -0.5773)], as

[B(-0.5773,-0.5773) |

-0.3943 0 ' 0.3943 0 10.1057 0 '-0.1057 O
=l 0 —0.39435 0 —0.105750 0.10575 0 0.3943
-0.3943 -0.3943! -0.1057 0.3943 ' 0.1057 0.1057 ! 0.3943 -0.1057

With similar expressions for [B(-0.5773, 0.5773)], and so on.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
The matrix [D] is:

1Tv 0 32 8 0
[Dl=—|v 1 0 = 8 32 0 |x10°psi
[0 0 05(1-v)| |0 0 12
Finally, [K] is:

(1466 500 -866 —100 5—733 -500 133 100
500 1466 100 133 1-500 -733 -100 -866
-866 100 1466 -500

[K]=10°| T o2----=8n - o20e 2200, L1909, 2000 oD fs

Isoparametric Elements

Evaluation of Element Stresses

The stresses are not constant within the quadrilateral element.
{} =[D][B]{d}

In practice, the stresses are evaluated at the same Gauss
points used to evaluate the stiffness matrix [K].

The common method used in computer programs is to evaluate
the stresses in all elements at a shared node and then use an
average of these element nodal stresses to represent the
stress at the node.
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Isoparametric Elements

Evaluation of Element Stresses

The stresses are not constant within the quadrilateral element.
{o} =[D][B]{d}

Stress plots obtained in these programs are based on this
average nodal method.

The following example illustrates the use of Gaussian

quadrature to evaluate the stress matrix atthes=0,t=0
locations of the element.

Isoparametric Elements

Evaluation of Element Stresses

For the rectangular element shown below, assume plane stress
conditions with E = 30 X 108 psi, v= 0.3, and displacements
u,=0,v,=0,u, =0.001in.,v, =0.0015in., u; =0.003 in.,
v, =0.0016in.,u, =0,and v, =0.

Evaluate the stresses, o, g;, and g ats =0, t = 0.

First, evaluate [B]ats =0,t=0.

1‘[[81] B, [B] [B]]

Bl= 7
[°]
:m[mo,o)} [B.(0.0)] [B,(0.0)] [, (0.0)]]
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Isoparametric Elements

Evaluation of Element Stresses

For the rectangular element shown below, assume plane stress
conditions with E = 30 X 108 psi, v= 0.3, and displacements
u,=0,v,=0,u, =0.001in.,v, =0.0015in., u; =0.003 in.,
v, =0.0016in.,u, =0,and v, =0.

O 1 0 -1[[2
1 -1 0 1 0}|2
\[J(o,o)]\_gp 553 0 o 4la
1 0 -1 0}|4
[3(00)]-1
Isoparametric Elements
Evaluation of Element Stresses
Recall, [B] is:
a(N,.)-b(N;,) 0
[B,]= 0 c(N; )—-d(N;)

with: a=1 b=0 c¢c=1 d=0

Differentiating the shape functions with respect to s and t and
then evaluating at s = 0, t = 0, we obtain:

1
S 4 2s Z
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Isoparametric Elements

Evaluation of Element Stresses
Therefore [B] is:

0
[B1]= 0 -

o

1
4

[B4]: 0

ENEN

EN{EN
Lo |
oy}
w
| S
Il
O &=

[Bz]: g -

1
4
1
4

I/ NN

ENEN

1 1 1
vy 4 7

The element stress matrix {o} is then obtained by substituting
[B] and the plane stress [D] matrix into the definition as:

Isoparametric Elements

Evaluation of Element Stresses

to} =[D][B]{d}

o 10° 03 0
X
= o0s %3 1O ;
1o 0 035 0
-0.25 0 0.25 0 0.25 0 -0.25 0 000%9];
x 0 -0.25 0 -0.25 0 0.25 0 0.25 O 003
-0.25 -0.25 -0.25 0.25 0.25 0.25 0.25 -0.25 j
0.0016
0
3.321 0

{o} =11.071:10% psi
1.417
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Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

In general, higher-order element shape functions can be

developed by adding additional nodes to the sides of the linear
element.

This results in higher-order strain variations and convergence
occurs at a faster rate using fewer elements.

The trade-off is that there is a substantial increase in required
computational power.

Another advantage of higher-order elements is that curved
boundaries of irregularly-shaped bodies can be approximated
more closely than simple straight-sided linear elements.

Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

We have been working with the linear strain bar element
throughout the text.

The linear strain bar (also called a quadratic isoparametric bar

element) shown below has three coordinates of nodes in the
global coordinates.

L L
2

a
g
Kl W]
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Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

For the three-noded linear strain bar isoparametric element we
will determine the shape functions, N;, N,, and N, and the
strain-displacement matrix [B].

Assume the general axial displacement function to be a
quadratic:

X =a +a;s+a;s’
Evaluating the a’s in terms of the nodal coordinates, we obtain
X(-1)=x,=a,—-a,+a,
x(0)=x, =a,
x(1)=x, =a,+a, +a,

Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

Substituting the values for a,, a,, and a; into the general
equation for x, we obtain

X =a, +a,s +a,s’ :x3+(ngx1js+(%_2x3]sz

Combining like terms gives:

x=[@}1 {@sz L (1-57)x,

=[Ny N, NG i {S(S‘” S(e+1) 1_52} .
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Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

Therefore the shape functions

N1=¥ szs(STH) N, = 1-s2

Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

Now determine the strain-displacement matrix [B] as:
du dud .
u uds
o= = =[Blju,
dx ds dx
u3

Using an isoparametric formulation the displacement function is:

u=u3+_25_ﬁs+ﬁ52+u_252_2&52

2 2 2 2
du u, u 1 1
E:§—§+u1s+uzs—2u35 :(s—§]u1 +(s +Eju2 —(2s)u,
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Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

We have previously showed that: ax _ % =|19]

ds

This relationship holds for the higher-order one-dimensional
elements as well as for the two-noded constant strain bar

element as long as node 3 is at the geometry center of the
bar.

Using this relationship gives:

du duds 2 1 1
— =—— ==lIs—— |u+| s+ |u, —(2s)u,
dx dsdx L 2 2

2s -1 2s +1 4s
= C u, + C uz—Tu3

Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

In matrix form:

u

du _[2s-1 2541 4s]]

dx | L L L[] 2

u3

The axial strain becomes:

_lu, u,

du 2s-1 2s+1 4s
&, =—= —— |{u, ¢ =[B]{u,

dx L L L
- u3 u3

Where the gradient matrix [B] is:

2s—-1 2s+1 4s
[B]:{ L L _T}
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Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

Substituting the expression for [B] in the stiffness matrix, we
obtain

[k]:%i[B]TE[B]Ads

| (2s-1F  (2s-1)(2s+1) (-4s)(25-1)]
L? L? L?
AELj- (2s-1)(2s+1)  (2s-1°  (-4s)(2s+1) i
2 7 L? L2 L?
(-4s)(2s-1) (-4s)(2s+1)  (2s-1)
2 2 2

Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

Substituting the expression for [B] in the stiffness matrix, we
obtain

[k]—%i[B]TE[B]Ads

4s® —4s +1
AE

1 4s? -1 —-8s% +4s
I-[ 4s* -1  4s®+4s+1 -8s®-4s|ds
1 —8s?+4s —-8s®’—4s 16s?
i5,3—232+s ~s-s —§sa+232
3 3 3
_AE

= is3—s is3+252+s
2L 3 3

-5.33 -5.33 10.67
—§33+232 —§53—232 Es3
3 3 3

: 467 0667 -533
25252 | 2Bl 667 467 -533
3 2L

-1
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Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

Now let’s illustrate how to evaluate the stiffness matrix for the

three-noded bar element using two-point Gaussian
quadrature.

We will compare the results to that obtained by the explicit
integration performed.

m|:-|
N|r-

Kl W]

Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

Recall the stiffness matrix for this element is:
L T
kl==1|[B| E[B|Ads
K= /1BTE[5]
.| 4s? —4s +1 4s% —1 —8s? +4s
_AE

= 4s% -1 4s® +4s +1 -8s®—4s |ds
1 —8s?+4s -8s%-4s 16s2

Using two-point Gaussian quadrature, we evaluate the stiffness
matrix at two points:

1

S=-z=-05773 s, =%=0.57735
w, =1 w, =1
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Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

We then evaluate each term in the integrand at each Gauss
point and multiply each term by its weight (here weights are1).

We then add those Gauss point evaluations together to obtain
the final term for each element of the stiffness matrix.

For two-point evaluation, there will be two terms added together
to obtain each element of the stiffness matrix. We proceed to
evaluate the stiffness matrix term by term.

Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

We will evaluate the stiffness matrix term by term as follows:
2
[kii]=Dw, (25, -1)"=[2(-0.57735) - 1] +[2(0.57735) 1]
i=1
=4.6667

[k,,]= zw (25, - 1)(25, +1)
=[2(-0.57735)-1][2(-0.57735) +1]°
+[2(0.57735)-1][2(0.57735) +1]°

=0.6667
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Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar
We will evaluate the stiffness matrix term by term as follows:

[Ks]= Zz:wi (-4s,)(2s, - 1) =[-4(-0.57735)][ 2(-0.57735) - 1]

+[-4(0.57735)][2(0.57735) - 1]
= -5.3333

[k ]= > w, (25, +1) = [2(-0.57735)+1] +[2(0.57735)+ 1]

i=1

=4.6667

Isoparametric Elements

Higher-Order Shape Functions — Linear Strain Bar

We will evaluate the stiffness matrix term by term as follows:
[Kys] = iwi (-4s,)(2s, +1) =[ -4(-0.57735) ][ 2(-0.57735) +1]
=

| +[-4(0.57735)][2(0.57735) +1]
=-5.3333

2
[ks]= D w, (165, )’ = 16(-0.57735)" +16(0.57735)
i=1

=10.6667
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Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

By symmetry, the [k,,] equals the [k,,], etc. Therefore, from the
evaluations of the terms, the final stiffness matrix is

4.67 0.667 -5.33
0.667 4.67 -5.33
-5.33 -5.33 10.67

_AE

(k]

The results obtained from Gaussian quadrature are identical to
those obtained analytically by direct explicit integration of each
term in the stiffness matrix.

Isoparametric Elements
Higher-Order Shape Functions — Linear Strain Bar

To further illustrate elements with improved physical behavior,
we start with the Q6 element, and then to further illustrate the
concept of higher-order elements, we will consider the
quadratic (Q8 and Q9) elements and cubic (Q12) element
shape functions.

We then compare results for a cantilever beam model meshed
with the numerous element types described in this and
previous chapters, such as the CST, Q4, Q6, Q8, and Q9
elements.
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Isoparametric Elements

Higher-Order Shape Functions — Bilinear Quadratic (Q6)

An improved element to remove the shear locking inherent in
the Q4 element is to add two internal degrees of freedom per
displacement function (g, —g,) to the Q4 element displacement
functions.

This element is then called a Q6 element.

u(s,t):iZ:1:Niui +0,(1-5%)+9,(1-t?)

Z‘ENivi

i=1

v(sit)= 0, (1-5%)+0, (1-t%)

These are the shape functions derived for the
isoparametric Q4 element

Isoparametric Elements
Higher-Order Shape Functions — Bilinear Quadratic (Q6)

The displacement field is enhanced by modes that describe the
state of constant curvature (also called bubble modes) that are
represented by g, through g,

These corrections allow the elements to curve between the
nodes and can then model bending with either s or t axis as
the neutral axis.

+31 g3
(—1,1) &= “ (1, 1) - =
\14 $T_f>1 3 \1 \4 f}. B 3 \\
g7 —= }f —— },-7 bip) Bq —= :‘7 ’ — - lf B4
| y_ S I i 4 Su |
X SN S SN
(=1, - (1,—1)
fgl fgz
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Higher-Order Shape Functions — Bilinear Quadratic (Q6)

The magnitude of these modes is determined by minimizing the
internal strain energy in the element.

The additional degrees of freedom are condensed out before
the element stiffness matrix is developed.

-1 1)

(1. -1

Isoparametric Elements

(1, 1)
- Oy

i
(1, —1)

g4+

| —~— g4

Higher-Order Shape Functions — Bilinear Quadratic (Q6)

Hence, only the degrees of freedom associated with the four

corner nodes appear.

The element can model pure bending exactly if it is a
rectangular shape.

-1 1)

(1. -1

(1, 1)
- Oy

i
(1, —1)

g4+

| —~— g4

-
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Isoparametric Elements
Higher-Order Shape Functions — Bilinear Quadratic (Q6)

Because the g, —g, degrees of freedom are internal and not
nodal degrees of freedom, they are not connected to other

elements.

There is a possibility that the edges of two adjacent elements
may have different curvatures and thus the displacement field

along this common edge may be incompatible.
*83

+31
CLD =T T S
4 by 3\ a4 4 3\
\ T_-’:' \ \ v \
gy —= }f —— },-7 bip) Bq —= :‘7 +—-+ lf B4
| y_ S I I o Su
T N /. I T T~ |/
(=1, -1 —% (1,—1) - =
fgl fgz

Isoparametric Elements
Higher-Order Shape Functions — Bilinear Quadratic (Q6)

This incompatibility will occur under certain loading conditions,
such as shown:

T 7 ) =7
F ¢ F F F
\ / \ i
A\ Q4 ! A\ Q6 !
\ I \ I
\ / \ /
I N T~y
T T ="\
2F j: \\ 2F 2F J.f \\ 2F
! \ ! \
i Q4 \ / Q6 \
l \ [ \
'’ A s — A
Treee F
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

A quadratic isoparametric element with four corner nodes and
four additional mid-side nodes. This eight-noded element is
often called a Q8 element.

1
¥y \ Edge 1 = +1
Y.

— Edges = +1

1=

5

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the
incomplete cubic polynomial such that coordinates x and y
are:

X =a, +a,8 +a,t +a,St +a;s” +agt’ +a,s’t +a.st”
y =a, +a,S+a,t+a,st +a,s8° +a,t’ +a,s’t +a,,st’
These functions have been chosen so that the number of

generalized degrees of freedom (2 per node times 8 nodes
equals 16) are identical to the total number of a's.
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the
incomplete cubic polynomial such that coordinates x and y
are:

X =a, +a,8 +a,t +a,st +a;s” +agt’ +a,s’t +a.st”
Yy =a, +a,S+a,t+a,st +a,s8° +a,t’ +a,s’t +a,,st’

The literature also refers to this eight-noded element as a
"serendipity" element as it is based on an incomplete cubic,
but it yields good results in such cases as beam bending.

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the
incomplete cubic polynomial such that coordinates x and y
are:

X =a, +a,8 +a,t +a,St +a;s” +agt’ +a,s’t +a.st”
y =a, +a,S+a,t+a,st +a,s8° +a,t’ +a,s’t +a,,st’
We are also reminded that because we are considering an

isoparametric formulation, displacements u and v are of
identical form as x and y, respectively.
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

To describe the shape functions, two forms are required: one for
corner nodes and one for mid-side nodes. The four corner
nodes are:

N, = (1-s)(1-t)(-s—t-1)

N, = (1+3)(1-t)(s -t -1)

N = (1+3)(1+1)(s +t 1)

N, = (1-3)(1+1)(-s +t-1)

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

The four mid-side nodes are:
Ny =2 (1+5)(1-t)(1-5)
Ny =5 (1+5)(1+1)(1-1)

N, =2 (1+5)(1+t)(1-3)

Ny =2 (1-8)(1+t)(1-1)
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

The displacement functions are given by:

{U}Z{N10N20N30N40N50N60N70N80}

v/ ]ON, ON, ON, ON ON ON, O N, 0 N,

. <c<c<c

&= =[D']IN{d} [B]=[D][N]

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Recall the [D’] operator is:

ayo() aya() 0
ot 0os o0s ot

D- 1 0 axa()_axa()
| ]_m os ot ot os
xo() axo() ayo() eyo()
s ot ot os ot os os ot
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’s compute the determinant |[J]| for a global element with the
following coordinates: (13)  (23) (33)

(X)'=[13312a21]

: (12) (a.2)
v.)'=[11331232

1) @) (3

The [[J] is: |[9] =%(a—at2 +3t° 1)

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’s compute the determinant |[J]| for
a element with (xg, Yg) = (3, 2): (13) (23)  (33)

(X)'=[13312321

Y.} =[1133123 2]

The |[J]| is:
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let's compute the determinant |[J]| for
a element with (xg, yg) = (2, 2): (13)  (23) (33)

(X,)'=[13312221)

Y.} =[1133123 2]

The |[J]| is: W @) ()

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let's compute the determinant |[J]| for
a element with (x4, Yg) = (1.1, 2): (13)  (23) (33)

(X' =[133121121

Y.} =[1133123 2]

The |[J]| is:

]| — 0
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let's compute the determinant |[J]| for
a element with (xg, yg) = (4, 2): (13)  (23) (33)

(X)'=[13312421
Y.}'=[1133123 2]

The |[J]] is: 21 (3

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let's compute the determinant |[J]| for

a element with (xg, yg) = (10, 2): (13)  (23) (33)

(X.)'=[13312102 1]

\\
\,
\

(12) (102) ¢
Y)'=[11331232

The |[J]| is:

87/108
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let's compute the determinant |[J]| for a element with the
following coordinates: (13)  (23) (aa)

(X)'=[13a12321]
(12) (3.2)
v} =[11a31232]

Let's evaluate the |[J]| at (s, t) = (1, 1): ) @) (1)
[3]=3a-8

For the |[J]| to be positive, a > 8/3. If a < 8/3, then the |[J]| is
negative.

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’'s compute the determinant |[J]| for

a element with (x5, ;) = (4, 4): (13)  (23) (4.4)

(X)) =[13412321
(12) (3.2)
Y)'=[11431232]

At (s, t) = (1, 1) |[J]| > . @) @G

88/108
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’'s compute the determinant |[J]| for
a element with (x5, y;) = (8/3, 8/3):

(13)  (23)
(X =[13¢12321] (%)
(12) (3,2)
(v)'=[11231232]
At(s, t)= (1, 1) |] = 0. 21  (39)
IJlI =0

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’'s compute the determinant |[J]| for
a element with (x5, y3) = (2, 2):

(13)  (23)
(X.)'=[13212321 22)
(12) (3.2)
Y.} =[11231232]
At (s, t) = (1, 1) |[J]| < O. 1 2) (39
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

Let’'s compute the determinant |[J]| for
a element with (x5, y;) = (1.1, 1.1):

(X' =[131112321

Y)'=[111131232]

At (s, 1) = (1, 1) |[J]| < O. 21) (3

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q8)

When the |[J]| is negative the mapping between local
coordinates to global coordinates is not 1-to-1.

Here is a plot of the
mapping as the
vales of a range 1
from 3 to 1.1:

-

-
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q8)

To evaluate the matrix [B] and the matrix [K] for the eight-noded
quadratic isoparametric element, we now use the nine-point
Gauss rule (often described as a 3 X 3 rule).

Results using 2 x 2 and 3 x 3 rules have shown significant
differences, and the 3 x 3 rule is recommended.

s = —0.7745 d e § = 0.7745...
i
7
T e 4 .42 i=omas..
4 5 6
.____*_ » Y
|
|
e p—— 1 =—0.7745 ...
1 2 3

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

By adding a ninth node at s = 0, t = 0, we can create an element
called a Q9.

This is an internal node that is not connected to any other
nodes. We then add the a,,s?t? and a,¢st? terms to x and y
equations, respectively, and to u and v.
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

The element is then called a Lagrange element as the shape

functions can be derived using Lagrange interpolation
formulas.

The shape function for the Q9 element have three general

forms: a set for the corner nodes, a set for the nodes along the
edges, and the center node.

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

The shape functions for the four corner nodes are:

N, = (2 =s)(t-1)
N, =5 (s"+s)(t 1)
N, =5 (5" +s)(t7 +1)
N, = (s =)t ) |
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

The four mid-side nodes are:

N, = (1-57)(¢ 1)
Ny = (s +3)(1-t?)

N, =2 {1-87)(¢" +1)

N, =55 -5)(1-¢)

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

The center node is:

Ng =(1-s%)(1-t?)
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let’'s compute the determinant |[J]| for
a element with (x5, yg) = (2, 2): (13)  (23) (33)

(X' =[13312a21 2

Y.} =[113312322] e
) @) G
The |[J]| is: [J] :%(a—Bs +2as —at” +6st’ + 3t* - 2ast” - 1)

At (s, t)=(1,0): ] :%(Sa—7)

For the |[J]| to be positive, a > 7/3.

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let’s compute the determinant |[J]| for
a element with (x4, Yg) = (7/3, 2): 13 (23) (33)

(X.,)'=[133127%212]

. (12) (.2)
v.)'=[113312322)

The |[J]| is: (11 (21) (31
S

C S Id=0
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let's compute the determinant |[J]| for
a element with (x4, Yg) = (2.1, 2): (13)  (23) (33)

(X,)'=[133122121 2]

(12) (2.12)
v,)'=[11331232 2]

The |[J]| is: 1) (39

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let's compute the determinant |[J]| for
a element with (xg, yg) = (3, 2): (13)  (23)  (33)

(X,)'=[13312321 2]

v.)'=[11331232 2] ] e

The |[J]| is:
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let's compute the determinant |[J]| for
a element with (xg, yg) = (4, 2): (13)  (23) (33)

(X,)'=[13312421 2]

v.)'=[11331232 2] ] 22

The |[J]| is: W @) ()

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let's compute the determinant |[J]| for
a element with (xg, yg) = (10, 2): (13)  (23) (33)

(X.)'=[133121021 2]

12 10,2\‘
Y.} =[113312322] 2) (2,2). ( )°

The |[J]] is: V]| < 0 ) 2y (B




CIVL 7/8117 Chapter 10 — Isoparametric Elements 97/108

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let’'s compute the determinant |[J]| for
a element with (x5, yg) = (2, 2): (13)  (23)  (33)

(X)'=[13312a21 2
v.)'=[11331232 2] ] e

) @2 6
The |[J]| is: [[J] :%(a—Bs +2as —at” +6st’ + 3t* - 2ast” - 1)
1
At (s, t)=(-1,0): [[J] =E(5—a)

For the |[J]| to be positive, a < 5.

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Let’s compute the determinant |[J]| for

a element with (xg, yg) = (5, 2): (13)  (23) (33)
(X,)'=[13312521 2]

12 5,2

v.)'=[11331232 2] 2 (22) o2

The |[J]] is: 0] < O ) 2y (B
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Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

We now present a comparison of results for a cantilever beam
meshed with the various plane elements as described in this

and previous Chapters 6 and 8.

P

CST 40 dof p = 1568
N N N N S N N N N
|\ NANAN \\ NN
(a)
P
Q6 (rectangle) 40 daod y F= 6695
<)
((parallel 15°) P
Q6 V" 4odaf § &= 6.005 %
AT,
(e
P
Q9 24 dof y =6338x
. .
- - -
g

107%m

107'm

107%m

167'm

Isoparametric Elements

P

Q4 a0dof h“_mx 107%m
)]
P
Q6 (trapezoidal 15 40 d.0.1 l &= 26693 107 m
id)
P
Q8 20dof L F= 6,208 x 107'm

One two-noded beam element l = 6672% 107m

()

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Below, the CST, Q4, Q6, Q8, and Q9 element mesh solutions

are compared to the classical beam element.

P
CST 40dof y 8= 1668 % 107'm
T
|\ NANAN \\ NN
(a)
P
06 (rectangle) 40 daof § 5= 6698 % 107'm
<)
(paralial 15%), P
o8 V" 40dof y §=6.005% 107 'm
F 7.7 7 7 7 7.7 7
P AT A A |
(e
P
Q9 24 dof t 8=6338x107'm
. . +
- - -
g

P

Q4 a0dof h“_mx 107%m
)]
P
Q6 (trapezoidal 15 40 d.0.1 l &= 26693 107 m
id)
P
Q8 20dof L F= 6,208 x 107'm
} 4
. .
in
P

One two-noded beam element l = 6672% 107m

()
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Note that the Q6 element (or Q4 incompatible) removes the
shear locking that occurs with the Q4 element and yields
excellent results for the displacement even with a single row of
rectangular elements.

P P
ST A0 dof y &= 1668 % 107'm o4 40dof L F=4.527%10"m
| T ~ | I | | | |
\ONNNNNANNNN L LI TTT]
im
P F
06 (rectangle) 40 daof § 5= 6698 % 107'm Q6 (trapernidal 15°) 40 dof L F= 26695 107 m
el )
utiminieditell/ | L .
o6 ' 0ot y 8= 6.005% 107m 08 Wdos &= 6,208 % 107 m
S G A A G S ey e e 1
L/ /! ol 4 !
(e in
P
= — P
Q9 24 dof P O=6338x 10T m
. One two-noded beam element L S= 6672 % 107 m
] *
- - -

g [}

Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

However, small angles of trapezoidal distortion (say 15° from
the vertical) make the elements much too stiff.

P P
ST A0 dof y &= 1668 % 107'm o4 40dof L F=4.527%10"m
S T | | ~ T~ | | |
SDNINNNNNNNN | LTI T
P N 3
Q6 (rectangle) 40 daog ,J:nw'\xlli"m Q6 l.&: 2669 % 107 m

(trapernidal 15°) 40 dof

4]

{ )
agpaliin®r T T .
o6 ' 0ot y 8= 6.005% 107m 08 Wdos l F= 6,208 x 107'm
(e in
P
5 4 P
4 =63
® i yi= ol m One two-noded beam element L S= 6672 % 107 m
1 1
- - -

g [}
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Isoparametric Elements
Higher-Order Shape Functions — Quadratic Rectangle (Q9)

Also parallel distortion reduces accuracy of the elements but to
a smaller amount than the trapezoidal distortion.

P P
ST A0 dof y &= 1668 % 107'm o4 40dof L F=4.527%10"m
S | T ~ | I | | | |
SDNINNNNNNNN | LTI T
P P
06 (rectangle) 40 d.of § 5= 6698 % 107'm Q6 (traperoddal 15°) 40 dod l F= 26695 107 m
5] )

Ny ri T 7 4
06 40 dof y 8= 6.005% 107m [+13 20 dos &= 6,208 % 10 m
~— ik ' 1
A, / bl A 4 !

21 in
]
P
2] T To=noan e o m
. One two-noded beam element L S= 6672 % 107 m
. *
- - *
(h

Isoparametric Elements

Higher-Order Shape Functions — Quadratic Rectangle (Q9)

The Q8 and Q9 elements perform very well considering only
one row and two elements or fewer total degrees of freedom
(d.o.f) are used compared to the Q6 mesh.

The Q9 element with the additional internal node yields slightly
better single row results than the Q8

CST 40dof y &= 1668 % 107m

NN

P

O (rectangle) 40 dof § 5= 6698 % 107'm

)
(paraliel 15%) P

P P
Q4 a0dof L F=4.527% 107m
HEEEEEEEN
im
P
6 (raperoidal 15%) 40 do } =2669% 10
™
P
Q8 0o L &= 6,205 % 107'm
! !
:

oV Atdor y §=6.005% 107 'm
: P —— 1

P
G 24 dof ¥ F=6338 % 107'm
' 1
- - *

in

One two-noded beam element

P
L S=6672% 107 m

(L]
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Plane Stress and Plane Strain Equations
Q8 Element Model

Rework this CST problem with
rectangular Q8 elements.

I
d— T = 1000 psi

942 20in. 3

10in. y

Plane Stress and Plane Strain Equations
Q8 Element Model

One Q8 element.
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Plane Stress and Plane Strain Equations
Q8 Element Model

.

0
0

e st c_ i.m

Stress y-direction

5 i0
0 5 10
Stress xy-direction

o

Plane Stress and Plane Strain Equations
Q8 Element Model

4 Q8 elements.
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Plane Stress and Plane Strain Equations
Q8 Element Model

4 Q8 elements.

Plane Stress and Plane Strain Equations
Q8 Element Model

Displacement x-direction

8 Q8 elements.

Displacementy-direction

10
10

g
s

5
6 4
N 3

2
2

1
0 o

0 5 10 15 20

0%
10

5
s
6

o
4
2

5
0

0 5 10 15 20
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Plane Stress and Plane Strain Equations
Q8 Element Model

8 Q8 elements.

Isoparametric Elements

Higher-Order Shape Functions — Cubic Rectangle (Q12)

The cubic (Q12) element has four corner nodes and additional
nodes taken to be at one-third and two-thirds of the length
along each side.

104/108
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Isoparametric Elements

Higher-Order Shape Functions — Cubic Rectangle (Q12)

The shape functions of the cubic element are based on the
incomplete quartic polynomial:

X =a, +a,s +a,t +a,5" +a;st +a.t’ +a,s’t +ast’

+a,s° +a,t’ +a,s’t +a,st’

Isoparametric Elements
Higher-Order Shape Functions — Cubic Rectangle (Q12)

For the corner nodes (i=1, 2, 3, 4),

— 1 (4ss)(1+1t)[9(s? +12) - s =|-111-1
N, =5 (1+ss)(1 tt,)|9(s*+t*)-10] ti=[[—1,—1,1,1]]
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Isoparametric Elements

Higher-Order Shape Functions — Cubic Rectangle (Q12)

Fornodesonsidess=%1(i=7,8, 11, 12),

9
N, :§(1+ssi)(1+9tti)(1—t2) s, =21 =t

Isoparametric Elements

Higher-Order Shape Functions — Cubic Rectangle (Q12)

Fornodes onsidest=+%1 (i=5,6, 9, 10),

9
N, :§(1+933i)(1+tti)(1—82) s, =1 t=%1
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Isoparametric Elements

Higher-Order Shape Functions — Cubic Rectangle (Q12)

Having the shape functions for the Q9 quadratic element or for
the Q12 cubic element, we can obtain [B] and then set up [K]
for numerical integration for plane element.

The cubic element requires a 3 X 3 rule (nine points) to evaluate
the matrix exactly.

We then conclude that what is really desired is a library of
shape functions that can be used in the general equations
developed for stiffness matrices, distributed load, and body
and can be applied not only to stress analysis but to
nonstructural problems as well.

Isoparametric Elements

Problems

20. Work problems 10.1, 10.6a, 10.8, 10.15dg, and 10.17b in
your textbook.

21. Write a computer program to evaluation of the [k] stiffness
matrix for the Q4 element by Gaussian quadrature. Check
your stiffness matrix values with the Example 10.4 in the
textbook. In addition, develop your code in such a way that
it could be easily extended to the Q8, Q9, and Q12
elements.
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End of Chapter 10





