
Chapter 10 – Isoparametric Elements

Learning Objectives
• To formulate the isoparametric formulation of the

bar element stiffness matrix

• To present the isoparametric formulation of the
plane four-noded quadrilateral (Q4) element
stiffness matrix

• To describe two methods for numerical
integration— Newton-Cotes and Gaussian
Quadrature —used for evaluation of definite
integrals

• To solve an explicit example showing the
evaluation of the stiffness matrix for the plane
quadrilateral element by the four-point Gaussian
quadrature rule

Chapter 10 – Isoparametric Elements

Learning Objectives
• To illustrate by example how to evaluate the

stresses at a given point in a plane quadrilateral
element using Gaussian quadrature

• To evaluate the stiffness matrix of the three-noded
bar using Gaussian quadrature and compare the
result to that found by explicit evaluation of the
stiffness matrix for the bar

• To describe some higher-order shape functions for
the three-noded linear strain bar, the improved
bilinear quadratic (Q6), the eight- and nine-noded
quadratic quadrilateral (Q8 and Q9) elements, and
the twelve-noded cubic quadrilateral (Q12)
element

• To compare the performance of the CST, Q4, Q6,
Q8, and Q9 elements to beam elements
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Isoparametric Elements

Introduction

In this chapter, we introduce the isoparametric formulation of 
the element stiffness matrices. 

After considering the linear-strain triangular element (LST) in 
Chapter 8, we can see that the development of element 
matrices and equations expressed in terms of a global 
coordinate system becomes an enormously difficult task (if 
even possible) except for the simplest of elements such as 
the constant-strain triangle of Chapter 6. 

Hence, the isoparametric formulation was developed. 

Isoparametric Elements

Introduction

The isoparametric method may appear somewhat tedious 
(and confusing initially), but it will lead to a simple computer 
program formulation, and it is generally applicable for two-
and three-dimensional stress analysis and for nonstructural 
problems. 

The isoparametric formulation allows elements to he created 
that are nonrectangular and have curved sides.

Numerous commercial computer programs (as described in 
Chapter 1) have adapted this formulation for their various 
libraries of elements.
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Isoparametric Elements

Introduction

First, we will illustrate the isoparametric formulation to develop 
the simple bar element stiffness matrix. 

Use of the bar element makes it relatively easy to understand 
the method because simple expressions result. 

Then, we will consider the development of the isoparametric 
formulation of the simple quadrilateral element stiffness 
matrix.

Isoparametric Elements

Introduction

Next, we will introduce numerical integration methods for 
evaluating the quadrilateral element stiffness matrix.

Then, we will illustrate the adaptability of the isoparametric 
formulation to common numerical integration methods. 

Finally, we will consider some higher-order elements and their 
associated shape functions.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The term isoparametric is derived from the use of the same 
shape functions (or interpolation functions) [N] to define the 
element's geometric shape as are used to define the 
displacements within the element. 

Thus, when the interpolation function is u = a1 + a2s for the 
displacement, we use x = a1 + a2s for the description of the 
nodal coordinate of a point on the bar element and, hence, the 
physical shape of the element.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Isoparametric element equations are formulated using a natural 
(or intrinsic) coordinate system s that is defined by element 
geometry and not by the element orientation in the global-
coordinate system. 

In other words, axial coordinate s is attached to the bar and 
remains directed along the axial length of the bar, regardless 
of how the bar is oriented in space. 

There is a relationship (called a transformation mapping) 
between the natural coordinate systems and the global 
coordinate system x for each element of a specific structure.

CIVL 7/8117 Chapter 10 – Isoparametric Elements 4/108



Isoparametric Elements

Isoparametric Formulation of the Bar Element

First, the natural coordinate s is attached to the element, with 
the origin located at the center of the element.

The s axis need not be parallel to the x axis-this is only for 
convenience.

Consider the bar element to have two degrees of freedom-axial 
displacements u1 and u2 at each node associated with the 
global x axis.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

For the special case when the s and x axes are parallel to each 
other, the s and x coordinates can be related by:

Using the global coordinates x1 and x2 with xc =(x1 + x2)/2, we 
can express the natural coordinate s in terms of the global 
coordinates as:

2c

L
x x s 
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2 1

2

2

x x
s x

x x
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The shape functions used to define a position within the bar are 
found in a manner similar to that used in Chapter 3 to define 
displacement within a bar (Section 3.1). 

We begin by relating the natural coordinate to the global 
coordinate by:

1 2x a a s 

Note that  -1 ≤ s ≤ 1.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Solving for the a's in terms of x1 and x2, we obtain:

   1 2

1
1 1

2
x s x s x

          

In matrix form:
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

The linear shape functions map the s coordinate of any point in 
the element to the x coordinate. 

For instance, when s = -1, then x = x1 and 
when s = 1, then x = x2
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Isoparametric Elements

Isoparametric Formulation of the Bar Element
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Isoparametric Elements

Isoparametric Formulation of the Bar Element
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Isoparametric Elements

Isoparametric Formulation of the Bar Element
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When a particular coordinate s is substituted into [N] yields the 
displacement of a point on the bar in terms of the nodal 
degrees of freedom u1 and u2.

Since u and x are defined by the same shape functions at the 
same nodes, the element is called isoparametric.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

We now want to formulate element matrix [B] to evaluate [k]. 

We use the isoparametric formulation to illustrate its 
manipulations. 

For a simple bar element, no real advantage may appear 
evident. 

However, for higher-order elements, the advantage will become 
clear because relatively simple computer program 
formulations will result.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

To construct the element stiffness matrix, determine the strain, 
which is defined in terms of the derivative of the displacement 
with respect to x. 

The displacement u, however, is now a function of s so we must 
apply the chain rule of differentiation to the function u as 
follows:

du du dx

ds dx ds
 x

du du dx
ds dsdx

  x

du

dx
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

The derivative of u with respect to s is: 2 1

2

u udu

ds




  1

2

1 1
x

u

uL L


         

The derivative of x with respect to s is: 2 1

2

x xdx

ds




2

L


Therefore the strain is:

Since {} = [B]{d}, the strain-displacement matrix [B] is:

  1 1
B

L L
    

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 3 - Strain-Displacement and Stress-Strain Relationships

Recall that use of linear shape functions results in a constant [B] 
matrix, and hence, in a constant strain within the element. 

For higher-order elements, such as the quadratic bar with three 
nodes, [B] becomes a function of natural coordinates s.

The stress matrix is again given by Hooke's law as:

   E    E B d
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix is:

However, in general, we must transform the coordinate x to s 
because [B] is, in general, a function of s.

     
0

L
T

k B E B Adx 

 
1

0 1

( ) ( )
L

f x dx f s J ds


 

where [J] is called the Jacobian matrix. 

In the one-dimensional case, we have |[J]| = J.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The Jacobian determinant relates an element length (dx) in the 
global-coordinate system to an element length (ds) in the 
natural-coordinate system. 

In general, |[J]| is a function of s and depends on the numerical 
values of the nodal coordinates. 

This can be seen by looking at for the equations for a 
quadrilateral element.

For the simple bar element:  
2

dx L
J

ds
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The stiffness matrix in natural coordinates is: 

     
1

12

TL
k B E B Ads



 

For the one-dimensional case, we have used the modulus of 
elasticity E = [D].

Performing the simple integration, we obtain:

  1 1

1 1

AE
k

L

 
   

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

For higher-order one-dimensional elements, the integration in 
closed form becomes difficult if not impossible.

Even the simple rectangular element stiffness matrix is difficult 
to evaluate in closed form. 

However, the use of numerical integration, as described in 
Section 10.3, illustrates the distinct advantage of the 
isoparametric formulation of the equations.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Determine the body-force matrix using the natural coordinate 
system s. The body-force matrix is:

   [ ]
V

f N X dV  T
b b    

2

1

[ ]
x

x

f N X Adx  T
b b

Substituting for N1 and N2 and using dx = (L/2)ds

   
1

1

1

2
1 2

2

s
L

f A X ds
s

 
     
  

b b
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ALX  
  

 
b

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

The physical interpretation of the results for {fb} is that since AL 
represents the volume of the element and Xb the body force 
per unit volume, then ALXb is the total body force acting on the 
element. 

The factor ½ indicates that this body force is equally distributed 
to the two nodes of the element.
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Determine the surface-force matrix using the natural coordinate 
system s. The surface-force matrix is:

   [ ]s s x

S

f N T dS  T

   
0

[ ]
L

s s xf N T dx  T

Assuming the cross section is constant and the traction is 
uniform over the perimeter and along the length of the 
element, we obtain:

where we now assume {Tx} is in units of force per unit length.

Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Since {Tx} is in force-per-unit-length {Tx}L is now the total force. 

The ½ indicates that the uniform surface traction is equally 
distributed to the two nodes of the element.

Substituting for N1 and N2 and using dx = (L/2)ds
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1

1

2
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2

s x

s
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Isoparametric Elements

Isoparametric Formulation of the Bar Element

Step 4 - Derive the Element Stiffness Matrix and Equations

Note that if {Tx} were a function of x (or s), then the amounts of 
force allocated to each node would generally not be equal and 
would be found through integration. 

Substituting for N1 and N2 and using dx = (L/2)ds

   
1

1

1

2
1 2

2

s x

s
L

f T ds
s
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Recall that the term isoparametric is derived from the use of the 
same interpolation functions to define the element shape as 
are used to define the displacements within the element.

1 2 3 4u a a s a t a st   

The approximation for displacement is:

The description of a coordinate point in the plane element is:

1 2 3 4x a a s a t a st   

The natural-coordinate systems s-t defined by element 
geometry and not by the element orientation in the global-
coordinate system x-y. 
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Much as in the bar element example, there is a transformation 
mapping between the two coordinate systems for each 
element of a specific structure, and this relationship must be 
used in the element formulation.

We will now formulate the isoparametric formulation of the 
simple linear plane quadrilateral element stiffness matrix. 

This formulation is general enough to be applied to more 
complicated (higher-order) elements such as a quadratic 
plane element with three nodes along an edge, which can 
have straight or quadratic curved sides. 

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Higher-order elements have additional nodes and use different 
shape functions as compared to the linear element, but the 
steps in the development of the stiffness matrices are the 
same. 

We will briefly discuss these elements after examining the linear 
plane element formulation.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

The natural s-t coordinates are attached to the element, with 
the origin at the center of the element.

The s and t axes need not be 
orthogonal, and neither has to be 
parallel to the x or y axis.

The orientation of s-t coordinates is 
such that the four corner nodes and 
the edges of the quadrilateral are 
bounded by +1 or -1

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

The natural s-t coordinates are attached to the element, with 
the origin at the center of the element.

This orientation will later allow us to 
take advantage more fully of 
common numerical integration 
schemes.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider the quadrilateral to have eight degrees of freedom u1,  
v1, ... , u4, and v4 associated with the global x and y directions. 
The element then has straight sides but is otherwise of 
arbitrary shape.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

For the special case when the distorted element becomes a 
rectangular element with sides parallel to the global x-y 
coordinates, the s-t coordinates can be related to the global 
element coordinates x and y by

cx x bs  cy y ht 

where xc and yc are the global coordinates of the element 
centroid.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Assuming global coordinates x and y are related to the natural 
coordinates s and t as follows:

Solving for the a's in terms of x1, x2, x3, x4, y1, y2, y3, y4, we 
obtain

1 2 3 4x a a s a t a st    5 6 7 8y a a s a t a st   

           1 2 3 4

1
1 1 1 1 1 1 1 1

4
x s t x s t x s t x s t x             

           1 2 3 4

1
1 1 1 1 1 1 1 1

4
y s t y s t y s t y s t y             

1

1

2

1 2 3 4 2

1 2 3 4 3

3

4

4

0 0 0 0

0 0 0 0

x

y

x

N N N N yx

N N N N xy

y

x

y

 
 
 
 
         

     
 
 
 
  

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

In matrix form:

where:

  
1

1 1

4

s t
N

 


  
2

1 1

4

s t
N

 


  
3

1 1

4

s t
N

 


  
4

1 1

4

s t
N

 


CIVL 7/8117 Chapter 10 – Isoparametric Elements 19/108



Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

1N

1 2

34
t

s

2N

1 2

34

t

s

3N

1 2

34

t

s

1 2

34

4N

t

s

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

These shape functions are seen to map the s and t coordinates 
of any point in the square element to those x and y
coordinates in the quadrilateral element. 

( , )P s t

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Consider square element node 1 coordinates, where s = -1 and 
t = -1 then x = x1 and y = y1.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Other local nodal coordinates at nodes 2, 3, and 4 on the 
square element in s-t isoparametric coordinates are mapped 
into a quadrilateral element in global coordinates x2, y2 through
x4, y4 .

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

Also observe the property that N1 + N2 + N3 + N4 = 1 for all 
values of s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 1 Select Element Type

We have always developed the element interpolation functions 
either by assuming some relationship between the natural and 
global coordinates in terms of the generalized coordinates a's 
or, similarly, by assuming a displacement function in terms of 
the a's.

However, physical intuition can often guide us in directly 
expressing shape functions based on the following two criteria 
set forth in Section 3.2 and used on numerous occasions:

1

1 1, 2, ,...,
n

i
i

N i n


 

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 2 Select of Displacement Functions

The displacement functions within an element are now similarly 
defined by the same shape functions as are used to define the 
element geometric shape:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We now want to formulate element matrix [B] to evaluate [k].

However, because it becomes tedious and difficult (if not 
impossible) to write the shape functions in terms of the x and 
y coordinates, as seen in Chapter 8, we will carry out the 
formulation in terms of the isoparametric coordinates s and t. 

This may appear tedious, but it is easier to use the s- and t-
coordinate expressions.

This approach also leads to a simple computer program 
formulation.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

To construct an element stiffness matrix, we must determine the 
strains, which are defined in terms of the derivatives of the 
displacements with respect to the x and y coordinates. 

The displacements, however, are now functions of the s and t
coordinates.

The derivatives u/x and v/y are now expressed in terms of 
s and t. 

Therefore, we need to apply the chain rule of differentiation.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The chain rule yields:

f f x f y

s x s y s

    
 

    
f f x f y

t x t y t

    
 

    

The strains can then be found; for example, x = u/x

We want to get solve the two equations for f/x and f/y. 

fx y f
xs s s
fx y f
yt t t

      
                     

          

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
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Consider Cramer’s rule for small systems:

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships
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Consider Cramer’s rule for small systems:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Consider Cramer’s rule for small systems:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant in the denominator is the determinant of the 
Jacobian matrix [J].

x y

s sJ
x y

t t

 
 
 
 

We now want to express the element strains as:     B d 

Where [B] must now be expressed as a function of s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The usual relationship between strains and displacements given 
in matrix form as:

Where the rectangular matrix on the right side is an operator 
matrix; that is, ( )/x and ( )/y represent the partial 
derivatives of any variable we put inside the parentheses.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Evaluating the determinant in the numerators, we have

Where |[J]| is the determinant of [J].
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can obtain the strains expressed in terms of the natural 
coordinates (s-t) as:
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can express the previous equation in terms of the shape 
functions and global coordinates in compact matrix form as: 
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s t t s t s s t
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can express the previous equation in terms of the shape 
functions and global coordinates in compact matrix form as: 

     'D N d 

   

   

   

       

0

1
' 0

a b
s t

D c d
t sJ

c d a b
t s s t

  
   

  
    

    
      

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We can express the previous equation in terms of the shape 
functions and global coordinates in compact matrix form as: 

y
a

t





   

   

   

       

0

1
' 0

a b
s t

D c d
t sJ

c d a b
t s s t
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The shape function matrix [N] is the 2 x 8 {d} is the column 
matrix.      '

3 8 3 2 2 8

B D N

  

The matrix multiplications yield

           1 2 3 4

1
,B s t B B B B

J
      

 
   

   
       

, ,

, ,

, , , ,

0

0

i s i t

i i t i s

i t i s i s i t

a N b N

B c N d N

c N d N a N b N

 
 

  
    

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Here i is a dummy variable equal to 1, 2, 3, and 4, and

       1 2 3 4

1
1 1 1 1

4

y
a y s y s y s y s

t


           

       1 2 3 4

1
1 1 1 1

4

y
b y t y t y t y t

s

            

       1 2 3 4

1
1 1 1 1

4

x
c x t x t x t x t

s

            

       1 2 3 4

1
1 1 1 1

4

x
d x s x s x s x s

t
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Using the shape functions, we have

 1,

1
1

4sN t   1,

1
1

4tN s 

where the comma followed by the variable s or t indicates 
differentiation with respect to that variable; that is, 
N1,s = N1/s and so on.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

The determinant |[J]| is a polynomial in s and t and is tedious to 
evaluate even for the simplest case of the linear plane 
quadrilateral element.

However, we can evaluate |[J]| as

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

   1 2 3 4

T

cX x x x x    1 2 3 4

T

cY y y y y
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a square global element 
with the following coordinates:

   1 1 2 2
T

cY    1 2 2 1
T

cX 

 1,1  2,1

 1,2  2,2

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

2 2A

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a skewed global element 
with the following coordinates:

   1 1 2 2
T

cY    1 2 3 2
T

cX 

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

2 2A

 1,1  2,1

 2,2  3,2
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a trapezoidal global 
element with the following coordinates:

   1 1 2 2
T

cY    1 2.5 2 1.5
T

cX 

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

2 t 

 1,1  2.5,1

 2,2  3,2

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a global element with the 
following coordinates:

   1 1 2
T

cY a   1 2 1
T

cX a

 1,1  2,1

 1,2  ,a a

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

2 2 2 2a s t as at     
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a global element with the 
following coordinates:

   1 1 2
T

cY a   1 2 1
T

cX a

 1,1  2,1

 1,2  ,a a

  2 2 2 2J a s t as at     

Let’s evaluate the |[J]| at (s, t) = (1, 1) :

4 6a 

For the |[J]| to be positive, a > 3/2. If a < 3/2, then the |[J]| is 
negative. 

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a element with the 
following coordinates:

Let’s assume a > 3/2, say a = 2.5, 
then the |[J]| is:

 1,1  2,1

 1,2
 2.5,2.5

   1
6

2
J s t  

|[J]| is positive over the 
entire element.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a element with the 
following coordinates:

Let’s assume a > 3/2, say a = 1.6, 
then the |[J]| is:

 1,1  2,1

 1,2

 1.6,1.6

   1
6 2 2

5
J t s  

|[J]| is positive over the 
entire element.

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a element with the 
following coordinates:

Let’s assume a < 3/2, say a = 1.4, 
then the |[J]| is:

 1,1  2,1

 1,2

 1.4,1.4

   1
4 3 3

5
J t s  

|[J]| is negative at (s, t) = (1, 1).
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Let’s compute the determinant |[J]| for a element with the 
following coordinates:

Let’s assume a < 3/2, say a = 1.1, 
then the |[J]| is:

 1,1  2,1

 1,2

 1.4,1.4

   1
2 9 0

10
J t s  

|[J]| is negative at (s, t) = (1, 1).

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

Here is a plot of the 
mapping as the 
vales of a range 
from 2 to 1.1:

When the |[J]| is negative the mapping between local 
coordinates to global coordinates is not 1-to-1.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 3 Strain-Displacement and Stress-Strain Relationships

We observe that |[J]| is a function of s and t and the known 
global coordinates x1, x2, ... , y4. 

Hence, [B] is a function of s and t in both the numerator and the 
denominator and of the known global coordinates x1 through 
y4.

The stress-strain relationship is a function of s and t.

     D B d 

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We now want to express the stiffness matrix in terms of s-t 
coordinates. 

For an element with a constant thickness h, we have

[ ] [ ] [ ][ ]T

A

k B D B hdx dy  

However, [B] is now a function of s and t, we must integrate with 
respect to s and t.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Once again, to transform the variables and the region from x
and y to s and t, we must have a standard procedure that 
involves the determinant of [J]. 

( , )
A

f x y dx dy 

where the inclusion of |[J]| in the integrand on the right side of 
equation results from a theorem of integral calculus.

 
1 1

1 1

( , )f s t J dsdt
 

  

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

We also observe that the Jacobian (the determinant of the 
Jacobian matrix) relates an element area (dx dy) in the global 
coordinate system to an elemental area (ds dt) in the natural 
coordinate system. 

For rectangles and parallelograms, J is the constant value J = 
A/4, where A represents the physical surface area of the 
element.

 
1 1

1 1

[ ] [ ] [ ][ ]Tk B D B h J dsdt
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

The |[J]| and [B] are complicated expressions within the integral.

Integration to determine the element stiffness matrix is usually 
done numerically. 

The stiffness matrix is of the order 8 x 8.

 
1 1

1 1

[ ] [ ] [ ][ ]Tk B D B h J dsdt
 

  

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Body Forces - The element body-force matrix will now be 
determined from

     

     

1 1

1 1

8 1 8 2 2 1

[ ]Tb bf N X h J ds dt
 

  

  

Like the stiffness matrix, the body-force matrix has to be 
evaluated by numerical integration.
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Surface Forces - The surface-force matrix, say, along edge 
t = 1 with overall length L, is

   

     

1

1

4 1 4 2 2 1

[ ]
2

T
s s

L
f N T hds



  

 

1

3

1
3 3 4

4 3 41

4

0 0

0 02
along t

s s
T

s t s

s s t

s t

f

f N N phL
ds

f N N p

f


 
           

    
  



Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Step 4 Derive the Element Stiffness Matrix and Equations

Surface Forces - For the case of uniform (constant) ps, and pt, 
along edge t = 1, the total surface-force matrix is

3

3

4

4

2

s s s

s t t

s s s

s t t

f p

f phL
f p

f p

   
   
      
   
      

   

     

1

1

4 1 4 2 2 1

[ ]
2

T
s s

L
f N T hds
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Steps 5 - 7

Steps 5 through 7, which involve assembling the global 
stiffness matrix and equations, determining the unknown 
nodal displacements, and calculating the stress, are 
identical to those in presented in previous chapters. 

Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1

For the four-noded linear plane quadrilateral element shown 
below with a uniform surface traction along side 2-3, evaluate 
the force matrix by using the energy equivalent nodal forces.

Let the thickness of the element be h = 0.1 in.

   
1

1

[ ]
2

T
s s

hL
f N T ds
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1

With length of side 2-3 given by:    2 2
5 8 4 0 5L     

1

2

1
2 2 3

3 2 31

3

0 0

0 02
along s

s s
T

s t s

s s t

s t

f

f N N phL
dt

f N N p

f


 
           

    
  



Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1

Substituting for L, the surface traction matrix, and the thickness 
h = 0.1 we obtain

 
1

2

1
2 2 3

3 2 31

3

0 00.1in. 5in. 2,000

0 02 0
along s

s s
T

s t

s s

s t

f

f N N
dt

f N N

f
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1

Simplifying gives:

evaluated along 1

2 2
1

2 2

3 31

3

2,000

0
0.25in.

2,000

0

s

s s

s t

s s

s t

f N

f
dt

f N

f





   
                



evaluated along 1

2

1

31

0
500lb.

0

s

N

dt
N





 
 
 
 
 
 



Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1
Substituting the shape functions, we have

evaluated along 1

2

1
2

3 1

3

1

4
0

500lb.
1

4
0

s

s s

s t

s s

s t

s t st
f

f
dt

f s t st

f





   
  
  

               
  


1

1

1

0
250lb.

1

0

t

dt
t
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Isoparametric Elements

Isoparametric Formulation of the Quadrilateral Element

Example 1
Performing the integration gives:

2

1
2

3 1

3

1

0
250lb.

1

0

s s

s t

s s

s t

f t

f
dt

f t

f


   
                



1

0
500lb.

1

0

 
 
 
 
 
 

500

0
lb.

500

0

 
 
 
 
 
 

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

In this section, we will describe two methods for numerical 
evaluation of definite integrals, because it has proven most 
useful for finite element work.

The Newton-Cotes methods for one and two intervals of 
integration are the well known trapezoid and Simpson's one-
third rule, respectively. 

We will then describe Gauss' method for numerical evaluation of 
definite integrals. 

After describing both methods, we will then understand why the 
Gaussian quadrature method is used in finite element work.
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The Newton-Cotes method is a common technique for 
evaluation of definite integrals.

To evaluate the integral
1

1

y dx


  

we assume the sampling points of y(x) are spaced at equal 
intervals. 

Since the limits of integration are from -1 to 1 using the 
isoparametric formulation, the Newton-Cotes formula is given 
by

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The constants Ci are the Newton-Cotes constants for numerical 
integration with i intervals.

The number of intervals will be one less than the number of 
sampling points, n.

The term h is the interval between the limits of integration (for 
limits of integration between -1 and 1 this makes h = 2).

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The Newton-Cotes constants have been published and are 
summarized in the table below for i = 1 to 6.

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    

Intervals, No. of

i Points, n C0 C1 C2 C3 C4 C5 C6

1 2 1/2 1/2 (trapezoid rule)

2 3 1/6 4/6 1/6 (Simpson's 1/3 rule)

3 4 1/8 3/8 3/8 1/8 (Simpson's 3/8 rule)

4 5 7/90 32/90 12/90 32/90 7/90

5 6 19/288 75/288 50/288 50/288 75/288 19/288

6 7 41/840 216/840 27/840 272/840 27/840 216/840 41/840

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The case i = 1 corresponds to the well known trapezoid rule 
illustrated below. 

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    0 12
2

y y   
 

 0 1y y 

CIVL 7/8117 Chapter 10 – Isoparametric Elements 48/108



Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

The case i = 2 corresponds to the well-known Simpson one-
third rule. 

It has been shown that the formulas for i = 3 and i = 5 have the 
same accuracy as the formulas for i = 2 and i = 4, respectively.

Therefore, it is recommended that the even formulas with i = 2 
and i = 4 be used in practice. 

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

To obtain greater accuracy one can then use a smaller interval 
(include more evaluations of the function to be integrated). 

This can be accomplished by using a higher-order Newton-
Cotes formula, thus increasing the number of intervals i. 

It has been shown that we need to use n equally spaced 
sampling points to integrate exactly a polynomial of order at 
most n - 1.

1

01

n

i i
i

y dx h C y


     0 0 1 1 2 2 n nh C y C y C y C y    
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Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

On the other hand, using Gaussian quadrature we will show that 
we use unequally spaced sampling points n and integrate 
exactly a polynomial of order at most 2n - 1. 

For instance, using the Newton-Cotes formula with n = 2 
sampling points, the highest order polynomial we can integrate 
exactly is a linear one. 

However, using Gaussian quadrature, we can integrate a cubic 
polynomial exactly. 

Isoparametric Elements

Newton-Cotes and Gaussian Quadrature

Gaussian quadrature is then more accurate with fewer sampling 
points than Newton-Cotes quadrature

1

11

( )
n

i i
i

y dx W y x


   

0.34785485±0.861136312

0.65214515±0.3399810444

0.55555556±0.774596669

0.888888890.0000000003

1.00000000±0.5773502692

2.000000000.0000000001

Weights wiPoints uiOrder N

This is because Gaussian quadrature is based on optimizing the 
position of the sampling points (not making them equally 
spaced as in the Newton-Cotes method) and also optimizing 
the weights Wi (see the table below).
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Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3 
sampling points), evaluate the integrals:

1
2

1

cos
2

x
x dx



         


1

1

3x x dx


    

Using three sampling points means we evaluate the function 
inside the integrand at x = -1, x = 0, and x = 1, and multiply 
each evaluated function by the respective Newton-Cotes 
numbers.

1

01

n

i i
i

y dx h C y


    1 4 1
0 1 26 6 62 y y y    

Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3 
sampling points), evaluate the integrals:

1

1

3x x dx


    

     1 4 1
6 6 62 1.8775826 1 1.8775826    

1
2

1

cos
2

x
x dx



         


2.5850550

1
2

1

cos 2.5843688
2

x
x dx



         


0.027% error

1
2

1

cos
2

x
x dx
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Isoparametric Elements

Newton-Cotes Example

Using the Newton-Cotes method with i = 2 intervals (n = 3 
sampling points), evaluate the integrals:

1

1

3x x dx


    

     1 4 1
6 6 62 1.3333333 1 2    

1

1

3x x dx


    
2.4444444

1

1

3 2.427305x x dx


     

0.706% error

1
2

1

cos
2

x
x dx



         


Isoparametric Elements

Gaussian Quadrature

To evaluate the integral:

where y = y(x), we might choose (sample or evaluate) y at the 
midpoint y(0) = y1 and multiply by the length of the interval, as 
shown below to arrive at I = 2y1, a result that is exact if the 
curve happens to be a straight line. 

1

1

y dx
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Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:

 
1

11

n

i i
i

y dx W y x


   

That is, to approximate the integral, we evaluate the function at 
several sampling points n, multiply each value yi by the 
appropriate weight Wi , and add the terms. 

Gauss's method chooses the sampling points so that for a given 
number of points, the best possible accuracy is obtained.

Sampling points are located symmetrically with respect to the 
center of the interval.

Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:

 
1

11

n

i i
i

y dx W y x


   

In general, Gaussian quadrature using n points (Gauss points) 
is exact if the integrand is a polynomial of degree 2n - 1 or 
less. 

In using n points, we effectively replace the given function 
y = f(x) by a polynomial of degree 2n- 1. 

The accuracy of the numerical integration depends on how well 
the polynomial fits the given curve. 
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Isoparametric Elements

Gaussian Quadrature

Generalization of the formula leads to:

 
1

11

n

i i
i

y dx W y x


   

If the function f(x) is not a polynomial, Gaussian quadrature is 
inexact, but it becomes more accurate as more Gauss points 
are used. 

Also, it is important to understand that the ratio of two 
polynomials is, in general, not a polynomial; therefore, 
Gaussian quadrature will not yield exact integration of the 
ratio.

Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

To illustrate the derivation of a two-point (n = 2) consider:

   
1

1 1 2 2

1

y dx W y x W y x


   

There are four unknown parameters to determine: W1, W2, x1, 
and x2. 

Therefore, we assume a cubic function for y as follows:

2 3
0 1 2 3y C C x C x C x   
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Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

In general, with four parameters in the two-point formula, we 
would expect the Gauss formula to exactly predict the area 
under the curve. 

0 2

2
2

3
C C  

1
2 3

0 1 2 3

1

A C C x C x C x dx


   

However, we will assume, based on Gauss's method, that 
W1 = W2 and that x1 = x2 as we use two symmetrically located 
Gauss points at x = ±a with equal weights. 

The area predicted by Gauss's formula is

( ) ( )GA W y a W y a    2
0 22W C C a 

Isoparametric Elements

Gaussian Quadrature - Two-Point Formula

If the error, e = A - AG, is to vanish for any C0 and C2, we must 
have, in the error expression:

0

0
e

C





2 2W  1W 

2

0
e

C





22

2
3

a W  1 0.5773....3a  

Now W = 1 and a = 0.5773 ... are the Wi’s and ai’s (xi’s) for the 
two-point Gaussian quadrature as given in the table.

Ge A A     22
0 2 0 232 2C C C C a W   
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Isoparametric Elements

Gaussian Quadrature Example

Use three-point Gaussian Quadrature evaluate the integrals:

1

1

3x x dx


    

 

 

 

5
1.5259328

9
8

1.0
9
5

1.5259328
9







3
2

1

cos
2

i
i i

i

x
W x



         


0.34785485±0.861136312

0.65214515±0.3399810444

0.55555556±0.774596669

0.888888890.0000000003

1.00000000±0.5773502692

2.000000000.0000000001

Weights wiPoints uiOrder N

2.5843698 0.00004% error

1
2

1

cos
2

x
x dx



         


Isoparametric Elements

Gaussian Quadrature Example

Use three-point Gaussian Quadrature evaluate the integrals:

1

1

3x x dx


    

 

 

 

5
1.2015923

9
8

1.0
9
5

1.5673475
9







3

1

3 ix
i i

i

W x


    

0.34785485±0.861136312

0.65214515±0.3399810444

0.55555556±0.774596669

0.888888890.0000000003

1.00000000±0.5773502692

2.000000000.0000000001

Weights wiPoints uiOrder N

2.4271888 0.00477% error

1
2

1

cos
2

x
x dx
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Isoparametric Elements

Gaussian Quadrature Example

In two dimensions, we obtain the quadrature formula by 
integrating first with respect to one coordinate and then with 
respect to the other as

1 1

1 1

( , )f s t ds dt
 

     
1

11

,
n

i i
i

W f s t dt


 
   



 
1 1

,
n n

j i i j
j i

W W f s t
 

 
  

 
 

 
1 1

,
n n

i j i j
i j

W W f s t
 

 

Isoparametric Elements

Gaussian Quadrature Example

For example, a four-point Gauss rule (often described as a 2 x 2 
rule) is shown below with i = 1, 2 and j = 1, 2 yields

 
2 2

1 1

,i j i j
i j

W W f s t
 

      
   

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

, ,

, ,

W W f s t W W f s t

W W f s t W W f s t

 

 

The four sampling points 
are at si and ti = ±0.5773... 
and Wi = 1.0
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Isoparametric Elements

Gaussian Quadrature Example

In three dimensions, we obtain the quadrature formula by 
integrating first with respect to one coordinate and then with 
respect to the other two as

1 1 1

1 1 1

( , , )f s t z ds dt dz
  

      
1 1 1

, ,
n n n

i j k i j k
i j k

W W W f s t z
  

 

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

For the two-dimensional element, we have shown in previous 
chapters that

[ ] [ ] [ ][ ]T

A

k B D B hdx dy  

where, in general, the integrand is a function of x and y and 
nodal coordinate values.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

We have shown that [k] for a quadrilateral element can be 
evaluated in terms of a local set of coordinates s-t, with limits 
from -1 to 1within the element.

Each coefficient of the integrand [B]T [D] [B] |[J]| evaluated by 
numerical integration in the same manner as f(s, t) was 
integrated.

 
1 1

1 1

[ ] [ ] [ ][ ]Tk B D B h J ds dt
 

  

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

A flowchart to evaluate [k] for an element using four-point 
Gaussian quadrature is shown here.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
The explicit form for four-point Gaussian quadrature (now using 

the single summation notation with i = 1, 2, 3, 4), we have

 
1 1

1 1

[ ] [ ] [ ][ ]Tk B D B h J ds dt
 

  

       

       

       

       

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

, , ,

, , ,

, , ,

, , ,

T

T

T

T

B s t D B s t J s t W W

B s t D B s t J s t W W

B s t D B s t J s t W W

B s t D B s t J s t W W

           

           

           

           

where s1=t1= -0.5773, s2=-0.5773, t2=0.5773, s3=0.5773, 
t3=-0.5773, and s4=t4=0.5773 and W1=W2=W3=W4=1.0

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Evaluate the stiffness matrix for the quadrilateral element shown 
below using the four-point Gaussian quadrature rule. 

Let E = 30 x 106 psi and = 0.25. The global coordinates are 
shown in inches. Assume h = 1 in.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature
Using the four-point rule, the four points are:

   
   
   
   

1 1

2 2

3 3

4 4

, 0.5773, 0.5773

, 0.5773, 0.5773

, 0.5773, 0.5773

, 0.5773, 0.5773

s t

s t

s t

s t

  

 

 



With W1 = W2 = W3 = W4 = 1.0

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

First evaluate |[J]| at each Gauss, for example:

         

       

       

       

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

, , ,

, , ,

, , ,

, , ,

T

T

T

T

k B s t D B s t J s t

B s t D B s t J s t

B s t D B s t J s t

B s t D B s t J s t

           

           

           

           

 0.5773, 0.5773J   
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

     

0 1 1

1 0 11

8 1 0 1

1 1 0

T

c c

t t s s

t s s t
J X Y

s t s t

s s t t

   
     
    
     

   1 2 3 4

T

cX x x x x    1 2 3 4

T

cY y y y y

Recall: 

   3 5 5 3
T

cX     2 2 4 4
T

cY 

For this example: 

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

 0.5773, 0.5773J   

Recall: 

 

       
       

       
       

1
3 5 5 3

8

0 1 0.5773 0.5773 0.5773 0.5773 1 2

0.5773 1 0 0.5773 1 0.5773 0.5773 2

0.5773 0.5773 0.5773 1 0 0.5773 1 4

1 0.5773 0.5773 0.5773 0.5773 1 0 4



         
                                       

1.000

Similarly:  0.5773,0.5773 1.000J   

 0.5773, 0.5773 1.000J   

 0.5773,0.5773 1.000J   
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

 0.5773, 0.5773B   

To evaluate [B] consider: 

 
       1 2 3 4

1

0.5773, 0.5773
B B B B

J
      

where

 
   

   
       

, ,

, ,

, , , ,

0

0

i s i t

i i t i s

i t i s i s i t

a N b N

B c N d N

c N d N a N b N

 
 

  
    

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

For this example: 

       1 2 3 4

1
1 1 1 1

4
a y s y s y s y s          

     
     

1
2 0.5773 1 2 0.5773 1

4

4 1 0.5773 4 1 0.5773

      

      

1.000

Similar computations are used to obtain b, c, and d.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

The shape functions are computed as:

0.3943 

Similarly, [B2], [B3], and [B4] must be evaluated like [B1] at 
(-0.5773, -0.5773). 

We then repeat the calculations to evaluate [B] at the other 
Gauss points.

 1,

1
1

4sN t 

 1,

1
1

4tN s 

  1
0.5773 1

4
  

  1
0.5773 1

4
   0.3943 

Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Using a computer program written specifically to evaluate [B], at 
each Gauss point and then [k], we obtain the final form of 
[B(-0.5773, -0.5773)], as

 0.5773, 0.5773B   

0.3943 0 0.3943 0 0.1057 0 0.1057 0

0 0.3943 0 0.1057 0 0.1057 0 0.3943

0.3943 0.3943 0.1057 0.3943 0.1057 0.1057 0.3943 0.1057



  
   
     

With similar expressions for [B(-0.5773, 0.5773)], and so on.
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Isoparametric Elements

Evaluation of the Stiffness Matrix by Gaussian Quadrature

Finally, [k] is:

 
2

1 0

[ ] 1 0
1

0 0 0.5 1

E
D







 
   
  

6

32 8 0

8 32 0 10

0 0 12

psi

 
   
  

4

1466 500 866 100 733 500 133 100

500 1466 100 133 500 733 100 866

866 100 1466 500 133 100 733 500

100 133 500 1466 100 866 500 733
[ ] 10

733 500 133 100 1466 500 866 100

500 733 100 866 500 1466 100 133

133 100 733 500 866 1

k

   
   

   
   


   
   

   00 1466 500

100 866 500 733 100 133 500 1466

 
 
 
 
 
 
 
 
 
 
 

    

The matrix [D] is:

Isoparametric Elements

Evaluation of Element Stresses

The stresses are not constant within the quadrilateral element.

In practice, the stresses are evaluated at the same Gauss 
points used to evaluate the stiffness matrix [k].

The common method used in computer programs is to evaluate 
the stresses in all elements at a shared node and then use an 
average of these element nodal stresses to represent the 
stress at the node.

     D B d 
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Isoparametric Elements

Evaluation of Element Stresses

The stresses are not constant within the quadrilateral element.

Stress plots obtained in these programs are based on this 
average nodal method.

The following example illustrates the use of Gaussian 
quadrature to evaluate the stress matrix at the s = 0, t = 0 
locations of the element.

     D B d 

Isoparametric Elements

Evaluation of Element Stresses

For the rectangular element shown below, assume plane stress 
conditions with E = 30 X 106 psi ,  = 0.3, and displacements 
u1 = 0, v1 = 0, u2 = 0.001 in., v2 = 0.0015 in., u3 = 0.003 in., 
v3 = 0.0016 in., u4 = 0, and  v4 = 0.

Evaluate the stresses, x, x, and xy at s = 0, t = 0.

First, evaluate [B] at s = 0, t = 0.

         1 2 3 4

1
B B B B B

J
   

 
       1 2 3 4

1
0,0 0,0 0,0 0,0

0,0
B B B B

J
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Isoparametric Elements

Evaluation of Element Stresses

For the rectangular element shown below, assume plane stress 
conditions with E = 30 X 106 psi ,  = 0.3, and displacements 
u1 = 0, v1 = 0, u2 = 0.001 in., v2 = 0.0015 in., u3 = 0.003 in., 
v3 = 0.0016 in., u4 = 0, and  v4 = 0.

   

0 1 0 1 2

1 0 1 0 21
0,0 3 5 5 3

8 0 1 0 1 4

1 0 1 0 4

J

   
                     

 0,0 1J   

Isoparametric Elements

Evaluation of Element Stresses

Recall, [Bi] is:

 
   

   
       

, ,

, ,

, , , ,

0

0

i s i t

i i t i s

i t i s i s i t

a N b N

B c N d N

c N d N a N b N

 
 

  
    

1 0 1 0a b c d   with:

Differentiating the shape functions with respect to s and t and 
then evaluating at s = 0, t = 0, we obtain:

1, 2, 3, 4,

1 1 1 1

4 4 4 4s s s sN N N N     

1, 2, 3, 4,

1 1 1 1

4 4 4 4t t t tN N N N     
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Isoparametric Elements

Evaluation of Element Stresses

Therefore [B] is:

 
1
4

1
1 4

1 1
4 4

0

0B

 
   
   

The element stress matrix {} is then obtained by substituting 
[B] and the plane stress [D] matrix into the definition as:

 
1
4

1
2 4

1 1
4 4

0

0B

 
   
  

 
1
4

1
3 4

1 1
4 4

0

0B

 
   
  

 
1
4

1
4 4

1 1
4 4

0

0B

 
   
  

     D B d 

Isoparametric Elements

Evaluation of Element Stresses

     D B d 

6
1 0.3 0

30 10
0.3 1 0

1 0.09
0 0 0.35

 
    

  
0

0

0.001
0.25 0 0.25 0 0.25 0 0.25 0

0.0015
0 0.25 0 0.25 0 0.25 0 0.25

0.003
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.0016

0

0

 
 
 
 

    
       
        
 
 
  

  4

3.321

1.071 10

1.417

psi
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

In general, higher-order element shape functions can be 
developed by adding additional nodes to the sides of the linear 
element.

This results in higher-order strain variations and convergence 
occurs at a faster rate using fewer elements.

The trade-off is that there is a substantial increase in required 
computational power.

Another advantage of higher-order elements is that curved 
boundaries of irregularly-shaped bodies can be approximated 
more closely than simple straight-sided linear elements.

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We have been working with the linear strain bar element 
throughout the text.

The linear strain bar (also called a quadratic isoparametric bar 
element) shown below has three coordinates of nodes in the 
global coordinates.
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

For the three-noded linear strain  bar isoparametric element we 
will determine the shape functions, N1, N2, and N3, and the 
strain-displacement matrix [B]. 

Assume the general axial displacement function to be a 
quadratic:

2
1 2 3x a a s a s  

Evaluating the a’s in terms of the nodal coordinates, we obtain

  1 1 2 31x x a a a    

  3 10x x a 

  2 1 2 31x x a a a   

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Substituting the values for a1, a2, and a3 into the general 
equation for x, we obtain

2
1 2 3x a a s a s  

Combining like terms gives:

21 2 32 1
3

2

2 2

x x xx x
x s s

         
   

     2
1 2 3

1 1
1

2 2

s s s s
x x x s x

    
      
   

    1
2

2

3

1 1
1

2 2

x
s s s s

s x

x

 
        
   

 

   
1

1 2 3 2

3

x

x N N N x

x
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Therefore the shape functions

    2
1 2 3

1 1
1

2 2

s s s s
N N N s

 
   

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Now determine the strain-displacement matrix [B] as: 

du

dx
 

du ds

ds dx
  

1

2

3

u

B u

u

 
   
 
 

Using an isoparametric formulation the displacement function is:

2 2 232 1 1 2
3

2

2 2 2 2 2

uu u u u
u u s s s s s     

2 1
1 2 32

2 2

u udu
u s u s u s

ds
      1 2 3

1 1
2

2 2
s u s u s u
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We have previously showed that:  

This relationship holds  for the higher-order one-dimensional 
elements as well  as for the two-noded  constant strain bar 
element as long as node 3 is at the geometry center of the 
bar.

Using this relationship gives:

du

dx

 
2

dx L
J

ds
 

du ds

ds dx
  1 2 3

2 1 1
2

2 2
s u s u s u

L

                

1 2 3

2 1 2 1 4s s s
u u u

L L L

             
     

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

In matrix form: 

1

2

3

2 1 2 1 4
u

du s s s
u

dx L L L
u

 
           

 
The axial strain becomes: 

1

2

3

2 1 2 1 4
x

u
du s s s

u
dx L L L

u


 

            
 

 
1

2

3

u

B u

u

 
   
 
 

Where the gradient matrix [B] is:

  2 1 2 1 4s s s
B

L L L
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Substituting the expression for [B] in the stiffness matrix, we 
obtain

     
1

12

TL
k B E B Ads



 

       

       

       

2

2 2 2

21

2 2 2
1

2

2 2 2

2 1 2 1 2 1 4 2 1

2 1 2 1 2 1 4 2 1

2

4 2 1 4 2 1 2 1

s s s s s

L L L

s s s s sAEL
ds

L L L

s s s s s

L L L



     
 
 
      
 
      
  



Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Substituting the expression for [B] in the stiffness matrix, we 
obtain

     
1

12

TL
k B E B Ads



 
2 2 2

1
2 2 2

2 2 21

4 4 1 4 1 8 4

4 1 4 4 1 8 4
2

8 4 8 4 16

s s s s s
AE

s s s s s ds
L

s s s s s

     
       
     



1

3 2 3 3 2

3 3 2 3 2

3 2 3 2 3

1

4 4 8
2 2

3 3 3
4 4 8

2 2
2 3 3 3

8 8 16
2 2

3 3 3

s s s s s s s

AE
s s s s s s s

L

s s s s s


      
 
      
 
 
    
  

4.67 0.667 5.33

0.667 4.67 5.33
2

5.33 5.33 10.67

AE

L
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Now let’s illustrate how to evaluate the stiffness matrix for the 
three-noded bar element using two-point Gaussian 
quadrature. 

We will compare the results to that obtained by the explicit 
integration performed.

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

Recall the stiffness matrix for this element is:

     
1

12

TL
k B E B Ads



 
2 2 2

1
2 2 2

2 2 21

4 4 1 4 1 8 4

4 1 4 4 1 8 4
2

8 4 8 4 16

s s s s s
AE

s s s s s ds
L

s s s s s

     
       
     



Using two-point Gaussian quadrature, we evaluate the stiffness 
matrix at two points:

1

1
0.57735

3
s    

2 1w 
1 1w 

2

1
0.57735

3
s  
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We then evaluate each term in the integrand at each Gauss 
point and multiply each term by its weight (here weights are1).

We then add those Gauss point evaluations together to obtain 
the final term for each element of the stiffness matrix. 

For two-point evaluation, there will be two terms added together 
to obtain each element of the stiffness matrix. We proceed to 
evaluate the stiffness matrix term by term.

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We will evaluate the stiffness matrix term by term as follows:

   
2

2

11
1

2 1i i
i

k w s


 

4.6667

   2 2
2 0.57735 1 2 0.57735 1          

    
2

12
1

2 1 2 1i i i
i

k w s s


  

0.6667

    2
2 0.57735 1 2 0.57735 1          

    2
2 0.57735 1 2 0.57735 1        
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We will evaluate the stiffness matrix term by term as follows:

    
2

13
1

4 2 1i i i
i

k w s s


  

   
2

2

22
1

2 1i i
i

k w s


 

4.6667

   4 0.57735 2 0.57735 1          

   2 2
2 0.57735 1 2 0.57735 1          

   4 0.57735 2 0.57735 1        
5.3333 

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

We will evaluate the stiffness matrix term by term as follows:

    
2

23
1

4 2 1i i i
i

k w s s


  

   
2

2

33
1

16i i
i

k w s


 

10.6667

   4 0.57735 2 0.57735 1          

   2 2
16 0.57735 16 0.57735  

   4 0.57735 2 0.57735 1        
5.3333 
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Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

By symmetry, the [k21] equals the [k21], etc. Therefore, from the 
evaluations of the terms, the final stiffness matrix is

 
4.67 0.667 5.33

0.667 4.67 5.33
2

5.33 5.33 10.67

AE
k

L

 
   
   

The results obtained from Gaussian quadrature are identical to 
those obtained analytically by direct explicit integration of each 
term in the stiffness matrix.

Isoparametric Elements

Higher-Order Shape Functions – Linear Strain Bar

To further illustrate elements with improved physical behavior, 
we start with the Q6 element, and then to further illustrate the 
concept of higher-order elements, we will consider the 
quadratic (Q8 and Q9) elements and cubic (Q12) element 
shape functions.

We then compare results for a cantilever beam model meshed 
with the numerous element types described in this and 
previous chapters, such as the CST, Q4, Q6, Q8, and Q9 
elements.
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Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

An improved element to remove the shear locking inherent in 
the Q4 element is to add two internal degrees of freedom per 
displacement function (g1 –g4) to the Q4 element displacement 
functions. 

This element is then called a Q6 element.

     
4

2 2
1 2

1

, 1 1i i
i

u s t N u g s g t


    

     
4

2 2
3 4

1

, 1 1i i
i

v s t N v g s g t


    

These are the shape functions derived for the 
isoparametric Q4 element

Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

The displacement field is enhanced by modes that describe the 
state of constant curvature (also called bubble modes) that are 
represented by g1 through g4.

These corrections allow the elements to curve between the 
nodes and can then model bending with either s or t axis as 
the neutral axis.
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Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

The magnitude of these modes is determined by minimizing the 
internal strain energy in the element. 

The additional degrees of freedom are condensed out before 
the element stiffness matrix is developed. 

Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

Hence, only the degrees of freedom associated with the four 
corner nodes appear. 

The element can model pure bending exactly if it is a 
rectangular shape.
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Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

Because the g1 –g4 degrees of freedom are internal and not 
nodal degrees of freedom, they are not connected to other 
elements. 

There is a possibility that the edges of two adjacent elements 
may have different curvatures and thus the displacement field 
along this common edge may be incompatible.

Isoparametric Elements

Higher-Order Shape Functions – Bilinear Quadratic (Q6)

This incompatibility will occur under certain loading conditions, 
such as shown:
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

A quadratic isoparametric element with four corner nodes and 
four additional mid-side nodes. This eight-noded element is 
often called a Q8 element.

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the 
incomplete cubic polynomial such that coordinates x and y 
are:

2 2 2 2
1 2 3 4 5 6 7 8x a a s a t a st a s a t a s t a st       

2 2 2 2
9 10 11 12 13 14 15 16y a a s a t a st a s a t a s t a st       

These functions have been chosen so that the number of 
generalized degrees of freedom (2 per node times 8 nodes 
equals 16) are identical to the total number of a's. 
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the 
incomplete cubic polynomial such that coordinates x and y 
are:

2 2 2 2
1 2 3 4 5 6 7 8x a a s a t a st a s a t a s t a st       

2 2 2 2
9 10 11 12 13 14 15 16y a a s a t a st a s a t a s t a st       

The literature also refers to this eight-noded element as a 
"serendipity" element as it is based on an incomplete cubic, 
but it yields good results in such cases as beam bending. 

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The shape functions of the quadratic element are based on the 
incomplete cubic polynomial such that coordinates x and y 
are:

2 2 2 2
1 2 3 4 5 6 7 8x a a s a t a st a s a t a s t a st       

2 2 2 2
9 10 11 12 13 14 15 16y a a s a t a st a s a t a s t a st       

We are also reminded that because we are considering an 
isoparametric formulation, displacements u and v are of 
identical form as x and y, respectively.
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

To describe the shape functions, two forms are required: one for 
corner nodes and one for mid-side nodes. The four corner 
nodes are: 

   1

1
1 1 1

4
N s t s t     

   2

1
1 1 1

4
N s t s t    

   3

1
1 1 1

4
N s t s t    

   4

1
1 1 1

4
N s t s t     

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The four mid-side nodes are: 

   5

1
1 1 1

2
N s t s   

   6

1
1 1 1

2
N s t t   

   7

1
1 1 1

2
N s t s   

   8

1
1 1 1

2
N s t t   
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The displacement functions are given by:
1

1

2

2

3

3

4

8

8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

U

V

U

V

U

V

U

U

V

N N N N N N N Nu

N N N N N N N Nv

 
 
 
 
 
 
   

    
     

 
 
 
 
 
 



   x

du
D N d

dx
       B D N

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

Recall the [D’] operator is:

   x

du
D N d

dx
       B D N

   

   

   

       

0

1
' 0

y y

t s s t

x x
D

s t t sJ

x x y y

s t t s t s s t
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Isoparametric Elements

Let’s compute the determinant |[J]| for a global element with the 
following coordinates:

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  1
T

c aX 

The |[J]| is:

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

 1,3  2,3  3,3

 1,1  2,1  3,1

 ,2a 1,2

   2 21
3 1

2
J a at t   

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (3, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The |[J]| is: 

 1,3  2,3  3,3

 1,1  2,1  3,1

 3,2 1,2

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  13
T

cX 
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (2, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The |[J]| is: 

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2 1,2

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  12
T

cX 

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (1.1, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The |[J]| is: 

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  11.1
T

cX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 1.1,2 1,2

|[J]|  0
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (4, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The |[J]| is: 

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  14
T

cX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 4,2 1,2

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (10, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

The |[J]| is: 

    1  1  3  3  1  2  3  2
T

cY 

   1  3  3  1  2    2  110
T

cX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 10,2 1,2
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Isoparametric Elements

Let’s compute the determinant |[J]| for a element with the 
following coordinates:

    1  1    3  1  2  3  2
T

c aY 

   1  3    1  2  3  2  1
T

c aX 

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

 1,3  2,3  ,a a

 1,1  2,1  3,1

 3,2 1,2

  3 8J a 

Let’s evaluate the |[J]| at (s, t) = (1, 1) :

For the |[J]| to be positive, a > 8/3. If a < 8/3, then the |[J]| is 
negative. 

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x3, y3) = (4, 4):

    1  1    3  1  2  3  24
T

cY 

   1  3   1  2  3  2  14 
T

cX 

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

At (s, t) = (1, 1) |[J]| > 0. 

 1,3  2,3

 1,1  2,1  3,1

 3,2 1,2

 4,4
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x3, y3) = (8/3, 8/3):

  8
3 1  1    3  1  2  3  2

T

cY    

  8
31  3    1  2  3  2  1

T

cX    

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

 1,3  2,3

 8 8,3 3

 1,1  2,1  3,1

 3,2 1,2

At (s, t) = (1, 1) |[J]| = 0. 

|[J]| = 0



Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x3, y3) = (2, 2):

    1  1  2  3  1  2  3  2
T

cY 

   1  3  2  1  2  3  2  1
T

cX 

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

At (s, t) = (1, 1) |[J]| < 0. 

 1,3  2,3

 1,1  2,1  3,1

 3,2 1,2
 2,2
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x3, y3) = (1.1, 1.1):

    1  1  1.1  3  1  2  3  2
T

cY 

   1  3  1.1  1  2  3  2  1
T

cX 

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

At (s, t) = (1, 1) |[J]| < 0. 

 1,3  2,3

 1,1  2,1  3,1

 3,2 1,2
 1.1,1.1

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

Here is a plot of the 
mapping as the 
vales of a range 
from 3 to 1.1:

When the |[J]| is negative the mapping between local 
coordinates to global coordinates is not 1-to-1.
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q8)

To evaluate the matrix [B] and the matrix [k] for the eight-noded 
quadratic isoparametric element, we now use the nine-point 
Gauss rule (often described as a 3 X 3 rule). 

Results using 2 x 2 and 3 x 3 rules have shown significant 
differences, and the 3 x 3 rule is recommended. 

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

By adding a ninth node at s = 0, t = 0, we can create an element 
called a Q9. 

This is an internal node that is not connected to any other 
nodes. We then add the a17s2t2 and a18s2t2 terms to x and y 
equations, respectively, and to u and v. 

1

s

t

5 2

6

374

8 9
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The element is then called a Lagrange element as the shape 
functions can be derived using Lagrange interpolation 
formulas.

The shape function for the Q9 element have three general 
forms: a set for the corner nodes, a set for the nodes along the 
edges, and the center node.

1

s

t

5 2

6

374

8 9

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The shape functions for the four corner nodes are: 

  2 2
1

1

4
N s s t t  

  2 2
2

1

4
N s s t t  

  2 2
3

1

4
N s s t t  

  2 2
4

1

4
N s s t t  

CIVL 7/8117 Chapter 10 – Isoparametric Elements 92/108



Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The four mid-side nodes are: 

  2 2
5

1
1

2
N s t t  

  2 2
6

1
1

2
N s s t  

  2 2
7

1
1

2
N s t t  

  2 2
8

1
1

2
N s s t  

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The center node is: 

  2 2
9 1 1N s t  
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (a, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  2
T

c aX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 ,2a 1,2
 2,2

   2 2 2 21
3 2 6 3 2 1

2
J a s as at st t ast       

At (s, t) = (1, 0):    1
3 7

2
J a 

For the |[J]| to be positive, a > 7/3. 

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (7/3, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

  7
31  3  3  1  2    2  1  2

T

cX    

 7
3 ,2

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2
 1,2

|[J]| = 0
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (2.1, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  22.1
T

cX 

 2.1,2

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2
 1,2

|[J]| < 0

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (3, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  23
T

cX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 3,2 1,2
 2,2
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (4, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  24
T

cX 

 4,2

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2
 1,2

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (10, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  210
T

cX 

 10,2

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2
 1,2

|[J]| < 0
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Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (a, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  2
T

c aX 

 1,3  2,3  3,3

 1,1  2,1  3,1

 ,2a 1,2
 2,2

   2 2 2 21
3 2 6 3 2 1

2
J a s as at st t ast       

At (s, t) = (-1, 0):    1
5

2
J a 

For the |[J]| to be positive, a < 5. 

Isoparametric Elements

Let’s compute the determinant |[J]| for 
a element with (x6, y6) = (5, 2):

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

The |[J]| is: 

    1  1  3  3  1  2  3  2  2
T

cY 

   1  3  3  1  2    2  1  25
T

cX 

 5,2

 1,3  2,3  3,3

 1,1  2,1  3,1

 2,2
 1,2

|[J]| < 0
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

We now present a comparison of results for a cantilever beam 
meshed with the various plane elements as described in this 
and previous Chapters 6 and 8. 

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

Below, the CST, Q4, Q6, Q8, and Q9 element mesh solutions 
are compared to the classical beam element. 
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

Note that the Q6 element (or Q4 incompatible) removes the 
shear locking that occurs with the Q4 element and yields 
excellent results for the displacement even with a single row of 
rectangular elements.

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

However, small angles of trapezoidal distortion (say 15° from 
the vertical) make the elements much too stiff.
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Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)

Also parallel distortion reduces accuracy of the elements but to 
a smaller amount than the trapezoidal distortion.

Isoparametric Elements

Higher-Order Shape Functions – Quadratic Rectangle (Q9)
The Q8 and Q9 elements perform very well considering only 

one row and two elements or fewer total degrees of freedom 
(d.o.f) are used compared to the Q6 mesh.

The Q9 element with the additional internal node yields slightly 
better single row results than the Q8

CIVL 7/8117 Chapter 10 – Isoparametric Elements 100/108



Q8 Element Model

Plane Stress and Plane Strain Equations

20 in.

10 in.

Rework this CST problem with 
rectangular Q8 elements.

Q8 Element Model

Plane Stress and Plane Strain Equations

One Q8 element.
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Q8 Element Model

Plane Stress and Plane Strain Equations

One Q8 element.

Q8 Element Model

Plane Stress and Plane Strain Equations

4 Q8 elements.
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Q8 Element Model

Plane Stress and Plane Strain Equations

4 Q8 elements.

Q8 Element Model

Plane Stress and Plane Strain Equations

8 Q8 elements.
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Q8 Element Model

Plane Stress and Plane Strain Equations

8 Q8 elements.

Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

The cubic (Q12) element has four corner nodes and additional 
nodes taken to be at one-third and two-thirds of the length 
along each side. 
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Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

The shape functions of the cubic element are based on the 
incomplete quartic polynomial:

2 2 2 2
1 2 3 4 5 6 7 8x a a s a t a s a st a t a s t a st       

3 3 3 3
9 10 11 12a s a t a s t a st   

Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

For the corner nodes (i = 1, 2, 3, 4),

    2 21
1 1 9 10

32i i iN ss tt s t      
 
 

1, 1, 1, 1

1, 1, 1, 1
i

i

s

t
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Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

For nodes on sides s = ± 1 (i = 7, 8, 11, 12),

   29
1 1 9 1

32i i iN ss tt t    1
31i is t   

Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

For nodes on sides t = ± 1 (i = 5, 6, 9, 10),

   29
1 9 1 1

32i i iN ss tt s    1
3 1i is t   
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Isoparametric Elements

Higher-Order Shape Functions – Cubic Rectangle (Q12)

Having the shape functions for the Q9 quadratic element or for 
the Q12 cubic element, we can obtain [B] and then set up [k]
for numerical integration for plane element. 

The cubic element requires a 3 X 3 rule (nine points) to evaluate 
the matrix exactly. 

We then conclude that what is really desired is a library of 
shape functions that can be used in the general equations 
developed for stiffness matrices, distributed load, and body 
and can be applied not only to stress analysis but to 
nonstructural problems as well.

Problems

20. Work problems 10.1, 10.6a, 10.8, 10.15dg, and 10.17b in 
your textbook.

21. Write a computer program to evaluation of the [k] stiffness 
matrix for the Q4 element by Gaussian quadrature. Check 
your stiffness matrix values with the Example 10.4 in the 
textbook. In addition, develop your code in such a way that 
it could be easily extended to the Q8, Q9, and Q12 
elements.

Isoparametric Elements
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End of Chapter 10
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