
Chapter 8 – Linear-Strain Triangle Equations

Learning Objectives
• To develop the linear-strain triangular (LST)

element stiffness matrix.

• To describe how the LST stiffness matrix can be
determined.

• To compare the differences in results using the
CST and LST elements.

Development of the Linear-Strain Triangle Equations

Introduction

In this section we will develop a higher-order triangular element, 
called the linear-strain triangle (LST). 

This element has many advantages over the constant-strain 
triangle (CST). 

The LST element has six nodes and twelve displacement 
degrees of freedom. 

The displacement function for the triangle is quadratic.
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The procedure to derive the LST element stiffness matrix and 
element equations is identical to that used for the CST 
element. 

Step 1 - Discretize and Select Element Types
Consider the triangular element shown in the figure below:

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

Each node has two degrees of freedom: displacements in 
the x and y directions. 

We will let ui and vi represent the node i displacement 
components in the x and y directions, respectively. 

Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations
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The nodal displacements for an LST element are:
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Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

The nodes are ordered 
counterclockwise around the 
element
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Step 2 - Select Displacement Functions
Consider a straight-sided triangular element shown below:
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The variation of the displacements over the element may be 
expressed as:

2 2
1 2 3 4 5 6( , )u x y a a x a y a x a xy a y     

2 2
7 8 9 10 11 12( , )v x y a a x a y a x a xy a y     

Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations
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The displacement compatibility among adjoining elements is 
satisfied because the three nodes defining adjacent sides 
define a unique a parabola.

The CST and LST triangles are variations of the Pascal 
triangles as show below.

Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

The general element displacement functions are:
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Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations
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To obtain the values for the a’s substitute the coordinates of the 
nodal points into the above equations:

Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Solving for the a’s and writing the results in matrix form gives

     1
a x u




Development of the Linear-Strain Triangle Equations

where [x] is the 12 x 12 matrix on the right-hand-side of the 
above equation.
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

The “best” way to invert [x] is to use a computer.

Note that only the 6 x 6 part of [x] really need be inverted.

    N u       1
*N M x


where

Development of the Linear-Strain Triangle Equations

    *M a       1
a x u


       1

*M x u


  

The general displacement expressions in terms of interpolation 
functions and the nodal degrees of freedom are:

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

Step 3 - Define the Strain-Displacement and Stress-Strain 
Relationships

Elemental Strains: The strains over a two-dimensional 
element are:
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

Step 3 - Define the Strain-Displacement and Stress-Strain 
Relationships

Elemental Strains: The strains over a two-dimensional 
element are:
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Observe that the strains are linear over the triangular element; 
therefore, the element is called a linear-strain triangle (LST).

The above equation may be written in matrix form as

    'M a 

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

where [M ’] is based on derivatives of [M*].

 
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' 0 0 0 0 0 0 0 1 0 0 2
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

If we substitute the values of a’s into the above equation gives:

    B d 

where [B] is a function of the nodal coordinates (x1, y1) through 
(x6, y6).
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The stresses are given as:
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For plane stress, [D] is:
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Development of the Linear-Strain Triangle Equations

For plane strain, [D] is:
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Step 4 - Derive the Element Stiffness Matrix and Equations
The stiffness matrix can be defined as:

[ ] [ ] [ ][ ]T

V

k B D B dV 

However, [B] is now a function of x and y; therefore, we must 
integrate the above expression to develop the element 
stiffness matrix.

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

The [B] matrix is:
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The β’s and the γ’s are functions of x and y as well as the nodal 
coordinates.
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

The [B] matrix is:

The stiffness matrix is a 12 x 12 matrix and is very cumbersome 
to compute in explicit form.

However, if the origin of the coordinates is the centroid of the 
element, the integrations become more amenable.

Typically, the integrations are computed numerically.
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The element body forces and surface forces should not be 
automatically lumped at the nodes.

The following integration should be computed:
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations
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The element equations are:
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Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations

Steps 5, 6, and 7

Assembling the global stiffness matrix, determining the global 
displacements, and calculating the stresses, are identical to 
the procedures used for CST elements.

Derivation of the Linear-Strain Triangular Elemental 
Stiffness Matrix and Equations

Development of the Linear-Strain Triangle Equations
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

Consider a straight-sided triangular element shown below:

The triangle has a base dimension of b and a height h, with mid-
side nodes.

We can calculate the coefficients a1 through a6 by evaluating 
the displacement u at each node.

1 1(0,0)u u a 

2
2 1 2 4( ,0)u u b a a b a b   

2
3 1 3 6(0, )u u h a a h a h   

Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

2 2
1 2 3 4 5 6( , )u x y a a x a y a x a xy a y     
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2 2
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The triangle has a base dimension of b and a height h, with mid-
side nodes.

We can calculate the coefficients a1 through a6 by evaluating 
the displacement u at each node.

Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

Solving the above equations simultaneously for the a’s gives:
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

1 1a u 6 1 2
2

4 3u u u
a

b

 


 2 6 1
4 2

2 2u u u
a

b
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The u displacement equation is:
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations
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The v displacement equation can be determined in a manner 
identical to that used for the u displacement:

Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

The general form of the displacement expressions in terms of 
the interpolation functions is given as
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where the interpolation functions are:

2 2

1 2 2

3 3 2 4 2
1

x y x xy y
N

b h b bh h
     

2

3 2

2y y
N

h h
 

2

2 2

2x x
N

b b
 

4

4xy
N

bh


2

6 2

4 4 4x xy x
N

b bh b
  

Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

The general form of the displacement expressions in terms of 
the interpolation functions is given as
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where the interpolation functions are:
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The element interpolation functions N have two basic shapes.

The behavior of the functions N1, N2, and N3 is similar except 
referenced at different nodes.

The shape function N1 is shown below:
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

The second type of interpolation function is valid for functions 
N4, N5, and N6. The function N5 is shown below: 
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Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations
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The element strain is given as:

    B d 

Example LST Stiffness Determination

Development of the Linear-Strain Triangle Equations

where the [B] matrix is:

 
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The stiffness matrix for a constant thickness element can be 
obtained by substituting the β’s and the γ’s into the [B] and 
then substituting [B] into the following expression and 
evaluating the integral numerically.

[ ] [ ] [ ][ ]T

V

k B D B dV 
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For a given number of nodes, a better representation of true 
stress and displacement is generally obtained using LST 
elements than is obtained using the same number of nodes 
a finer subdivision of CST elements.

For example, a single LST element gives better results than four 
CST elements.

Comparison of Elements

Development of the Linear-Strain Triangle Equations

Consider the following cantilever beam with E = 30 x 106 psi, 
 = 0.25, and t = 1 in.

Comparison of Elements

Development of the Linear-Strain Triangle Equations
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Table 1 lists the series of tests run to compare results using the 
CST and LST elements.

Comparison of Elements

Development of the Linear-Strain Triangle Equations

Table 1. Comparison of CST and LST results

Series of Test 
Runs

Number of 
Nodes

Degrees of 
Freedom, nd

Number of 
Elements

A-1  4 x 16 85 160 128 CST

A-2   8 x 32 297 576 512 CST

B-1  2 x 8 85 160 32 LST

B-2  4 x 16 297 576 128 LST

Table 2 shows comparisons of free-end (tip) deflection and 
stress for each element type used to model the cantilever 
beam.

Comparison of Elements

Development of the Linear-Strain Triangle Equations

Table 2. Comparison of CST and LST results

Runs nd Bandwidth, nd
Tip Deflection

(in)
x

(ksi)
Location

(x, y)

A-1 160 14 -0.29555 67.236 (2.250,11.250)

A-2 576 22 -0.33850 81.302 (1.125,11.630)

B-1 160 18 -0.33470 58.885 (4.500,10.500)

B-2 576 22 -0.35159 69.956 (2.250,11.250)

Exact Solution -0.36133 80.000 (0,12)
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The larger the number of degrees of freedom for a given type 
of triangular element, the closer the solution converges to the 
exact one (compare run A-1 to run A-2, and B-1 to B-2).

Comparison of Elements
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Table 2. Comparison of CST and LST results

Runs nd Bandwidth, nd
Tip Deflection

(in)
x

(ksi)
Location

(x, y)

A-1 160 14 -0.29555 67.236 (2.250,11.250)

A-2 576 22 -0.33850 81.302 (1.125,11.630)

B-1 160 18 -0.33470 58.885 (4.500,10.500)

B-2 576 22 -0.35159 69.956 (2.250,11.250)

Exact Solution -0.36133 80.000 (0,12)

For a given number of nodes, the LST analysis yields 
somewhat better results than the CST analysis (compare run 
A-1 to run B-1).

Comparison of Elements
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Table 2. Comparison of CST and LST results

Runs nd Bandwidth, nd
Tip Deflection

(in)
x

(ksi)
Location

(x, y)

A-1 160 14 -0.29555 67.236 (2.250,11.250)

A-2 576 22 -0.33850 81.302 (1.125,11.630)

B-1 160 18 -0.33470 58.885 (4.500,10.500)

B-2 576 22 -0.35159 69.956 (2.250,11.250)

Exact Solution -0.36133 80.000 (0,12)
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Although the CST element is rather poor in modeling bending, 
we observe that the element can be used to model a beam in 
bending if sufficient number of elements is used.

Comparison of Elements
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Table 2. Comparison of CST and LST results

Runs nd Bandwidth, nd
Tip Deflection

(in)
x

(ksi)
Location

(x, y)

A-1 160 14 -0.29555 67.236 (2.250,11.250)

A-2 576 22 -0.33850 81.302 (1.125,11.630)

B-1 160 18 -0.33470 58.885 (4.500,10.500)

B-2 576 22 -0.35159 69.956 (2.250,11.250)

Exact Solution -0.36133 80.000 (0,12)

In general, both the LST and CST analyses yield sufficient 
results for most plane stress/strain problems provided a 
sufficient number of elements are used.

Comparison of Elements
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Table 2. Comparison of CST and LST results

Runs nd Bandwidth, nd
Tip Deflection

(in)
x

(ksi)
Location

(x, y)

A-1 160 14 -0.29555 67.236 (2.250,11.250)

A-2 576 22 -0.33850 81.302 (1.125,11.630)

B-1 160 18 -0.33470 58.885 (4.500,10.500)

B-2 576 22 -0.35159 69.956 (2.250,11.250)

Exact Solution -0.36133 80.000 (0,12)
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That the LST model might be preferred over the CST model
for plane stress applications when a relatively small number 
of nodes is used. 

The use of triangular elements of higher order, such as the 
LST, is not visibly more advantageous when large numbers 
of nodes are used, particularly when the cost of the 
formation of element stiffnesses, equation bandwidth, and 
overall complexities involved in the computer modeling are 
considered.

The results of Table 2 indicate:

Comparison of Elements

Development of the Linear-Strain Triangle Equations

Most commercial programs incorporate the use of CST and/or 
LST elements for plane stress/strain problems although these 
elements are used primarily as transition elements (usually 
during mesh generation).

Also, recall that finite element displacements will always be less 
than the exact ones, because finite element models are 
always predicted to be stiffer than the actual structures when 
using the displacement formulation of the finite element 
method.

Comparison of Elements
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A comparison of CST and LST models of a plate subjected to 
parabolically distributed edge loads is shown below.

Comparison of Elements

Development of the Linear-Strain Triangle Equations

The LST model converges to the exact solution for horizontal 
displacement at point A faster than does the CST model. 

Comparison of Elements

Development of the Linear-Strain Triangle Equations
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However, the CST model is quite acceptable even for modest 
numbers of degrees of freedom.

Comparison of Elements

Development of the Linear-Strain Triangle Equations

For example, a CST model with 100 nodes (200 degrees of 
freedom) often yields nearly as accurate a solution as does 
an LST model with the same number of degrees of freedom.

Comparison of Elements
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Comparing CST and LST triangles – 2 elements
20 in.

10 in.

Development of the Linear-Strain Triangle Equations

CST LST

Comparing CST and LST triangles – 2 elements

Development of the Linear-Strain Triangle Equations

CST LST
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Comparing CST and LST triangles – 4 elements

Development of the Linear-Strain Triangle Equations

LSTCST

Comparing CST and LST triangles – 4 elements

Development of the Linear-Strain Triangle Equations

LSTCST
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Plane Stress and Plane Strain Equations
Comparing CST and LST triangles – 8 elements

CST LST

Plane Stress and Plane Strain Equations
Comparing CST and LST triangles – 8 elements

CST LST
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Plane Stress and Plane Strain Equations
Comparing CST and LST triangles – 16 elements

CST LST

Plane Stress and Plane Strain Equations
Comparing CST and LST triangles – 16 elements

CST LST
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Problems

16. Work problems 8.3, 8.6, and 8.7 in your textbook.

17. Rework the plane stress problem given on page 364 and 
6.13 in your textbook using Camp's LST code.

Start with the simple two element model. Continuously 
refine your discretization by a factor of two each time until 
your FEM solution is in agreement with the exact solution 
for both displacements and stress. How many elements did 
you need? 

Development of the Linear-Strain Triangle Equations

End of Chapter 8
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