
Chapter 6b – Plane Stress/Strain Equations 

Learning Objectives
• To derive the bilinear four-noded rectangular (Q4) 

element stiffness matrix.

• To compare the CST and Q4 model results for a 
beam bending problem and describe some of the 
CST and Q4 elements

Plane Stress and Plane Strain Equations
We will now develop the four-noded rectangular plane 

element stiffness matrix. 

This element is an isoparametric formulation of a general 
quadrilateral element (see Chapter 10). 

This element is also called the bilinear rectangle because of 
the linear terms in x and y for the x and y displacement 
functions.
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Plane Stress and Plane Strain Equations
The "Q4" symbol represents the element as a quadrilateral 

with four corner nodes.

Two advantages of the rectangular element over the triangular 
element are:

1. ease of data input and 
2. simpler interpretation of output stresses. 

Plane Stress and Plane Strain Equations
The "Q4" symbol represents the element as a quadrilateral 

with four corner nodes.

A disadvantage of the rectangular element is that the simple 
linear-displacement rectangle with its associated straight 
sides poorly approximates the real boundary condition 
edges.
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Plane Stress and Plane Strain Equations
The usual steps outlined in Chapter 1 will be followed to 

obtain the element stiffness matrix and related equations.

1. Discretize and Select Element Type

2. Select a Displacement Function - Assume a variation of the 
displacements over each element.

3. Define the Strain/Displacement and Stress/Strain Relationships -
use elementary concepts of equilibrium and compatibility. 

Plane Stress and Plane Strain Equations
The usual steps outlined in Chapter 1 will be followed to 

obtain the element stiffness matrix and related equations.
4. Derive the Element Stiffness Matrix and Equations - Define the 

stiffness matrix for an element and then consider the derivation of the 
stiffness matrix for a linear-elastic spring element. 

5. Assemble the Element Equations to Obtain the Global or Total 
Equations and Introduce Boundary Conditions
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Plane Stress and Plane Strain Equations
The usual steps outlined in Chapter 1 will be followed to 

obtain the element stiffness matrix and related equations.
6. Solve for the Unknown Degrees of Freedom (or Generalized 

Displacements) - Solve for the nodal displacements.

7. Solve for the Element Strains and Stresses - The reactions and 
internal forces association with the bar element.

8. Interpret the Results

Plane Stress and Plane Strain Equations

1. Discretize and Select Element Type

Consider the rectangular element shown below (all interior 
angles are 90°) with corner nodes 1-4 (again labeled 
counterclockwise) and base and height dimensions of 2b 
and 2h, respectively
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function

For a compatible displacement field, the element dis-
placement functions u and v must be linear along each 
edge because only two points (the corner nodes) exist 
along each edge. 
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function

There are a total of eight generalized degrees of freedom 
(a's) and a total of eight specific degrees of freedom (u1, v1 at 
node 1 through u4, v4 at node 4) for the element.
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function

We can proceed in the usual manner to solve for the a's and 
obtain:
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function

These displacement expressions, can be expressed 
equivalently in terms of the interpolation functions and 
unknown nodal displacements as:
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function
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The shape functions are visually deceiving. There is no 
curvature in directions parallel to any side; however, there is a 
twist due to the xy term in the element representation. 

Plane Stress and Plane Strain Equations

2. Select a Displacement Function

The shape functions are visually deceiving. There is no 
curvature in directions parallel to any side; however, there is a 
twist due to the xy term in the element representation. 
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function

In expanded form, the equations become:
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So that u and v will yield a constant value for rigid-body 
displacement, N1 + N2 + N3 + N4 = 1 for all x and y locations 
on the element. 

For example, assume all the triangle displaces as a rigid body in 
the y direction: v = v0
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Plane Stress and Plane Strain Equations

2. Select a Displacement Function
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Plane Stress and Plane Strain Equations

The general definitions of normal and shear strains are:
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3. Define the Strain-Displacement andStress-Strain 
Relationships

The strains over a two-dimensional element are:
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Plane Stress and Plane Strain Equations

3. Define the Strain-Displacement andStress-Strain 
Relationships

Substituting our approximation for the displacement gives:
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where the comma indicates differentiation with respect to that 
variable.
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Plane Stress and Plane Strain Equations

3. Define the Strain-Displacement andStress-Strain 
Relationships

The derivatives of the interpolation functions with respect to x
are:
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Plane Stress and Plane Strain Equations

3. Define the Strain-Displacement andStress-Strain 
Relationships

The derivatives of the interpolation functions with respect to y
are:
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Plane Stress and Plane Strain Equations

3. Define the Strain-Displacement andStress-Strain 
Relationships

We can write the strains in matrix form as: { } [ ]{ }B d 
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Plane Stress and Plane Strain Equations

3. Define the Strain-Displacement andStress-Strain 
Relationships

From equations, we observe that x is a function of y, y is a 
function of x, and xy is a function of both x and y. 
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For plane stress  [D] is:
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For plane strain  [D] is:

The stresses are again given as:
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Plane Stress and Plane Strain Equations

4. Derive the Element Stiffness Matrix and Equations

The above relationship requires:

The stiffness matrix can be defined as:
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For an element of constant thickness, t, the above integral 

becomes:
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Plane Stress and Plane Strain Equations

4. Derive the Element Stiffness Matrix and Equations

Because the [B] matrix is a function of x and y, integration must 
be performed. 

The [k] matrix for the rectangular element is now of order 8 x 8.

A numerical evaluation for [k] using b = 4 in., h = 2 in., t = 1 in., 
E = 30 x 106 psi, and  = 0.3. 

This double integral was solved using Mathcad.
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Plane Stress and Plane Strain Equations

4. Derive the Element Stiffness Matrix and Equations
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Plane Stress and Plane Strain Equations

Steps 5 - 7

Steps 5 through 7, which involve assembling the global stiffness 
matrix and equations, determining the unknown nodal 
displacements, and calculating the stress, are identical to 
those in Section 6.2 for the CST. 

However, the stresses within each element now vary in both the 
x and y directions.
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Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.

Table 6-1 compares the free end deflection and maximum 
principal stress for a cantilevered beam modeled with various all 
triangular CST elements or all rectangular Q4 elements.

Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.

Table 6-1 compares the free end deflection and maximum 
principal stress for a cantilevered beam modeled with various all 
triangular CST elements or all rectangular Q4 elements.
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Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
We observe from the displacement results that the CST element
models produce stiffer models than the actual beam behavior, as the 
deflections are predicted to be smaller than classical beam theory predicts. 

We also observe that the CST model converges very slowly to the classical 
beam theory solution. 

This is partly due to the element predicting only constant stress within each 
element when for a bending problem; the stress actually varies linearly 
through the depth of the beam. 

This problem is rectified by using the linear-strain triangle (LST) element as 
described in Chapter 8.

Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
The results indicate that the Q4 element model predicts more accurate 
deflection behavior than the CST element model. 

The two-row model of Q4 elements yields deflections very close to that 
predicted by the classical beam deflection equation, whereas the two-row 
model of CST elements is quite inaccurate in predicting the deflection. 

As the number of rows is increased to four and then eight, the deflections are 
predicted increasingly more accurately for the CST and Q4 element models. 

The two-noded beam element model gives the identical deflection as the 
classical equation ( = PL3/3EI) as expected (see discussion in Section 4.5) 
and is the most appropriate model for this problem when you are not 
concerned, for instance, with stress concentrations.
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Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
It has been shown for a beam subjected to pure bending, the CST has a 
spurious or false shear stress and hence a spurious shear strain in parts of 
the model that should not have any shear stress or shear strain. 

This spurious shear strain absorbs energy; therefore, some of the energy that 
should go into bending is lost.

The CST is then too stiff in bending, and the resulting deformation is smaller 
than actually should be. 

This phenomenon of excessive stiffness developing in one more modes of 
deformation is sometimes described as shear locking or parasitic shear. 

Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
It should be noted that using a single row of Q4 elements with their linear 
edge displacement is not recommended to accurately predict the stress 
gradient through the depth of the beam.
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Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
As mentioned previously, the CST element has constant strain and stress 
within it, while the Q4 element normal strain x and hence the normal stress 
x is linear in the y direction. 

Therefore, the CST is not able simulate the bending behavior nearly as well 
as the Q4 element. 

The classical beam theory/bending stress equation predicts a linear stress 
variation through the depth the beam given by x = -My/I 

As shown when comparing the principal stresses for each model, as more 
rows are used, the stresses approach the classical bending stress of 20 MPa 
with the Q4 approaching the classical solution much faster as indicated by 
comparing the two-row solutions for Q4 and CST models.

Plane Stress and Plane Strain Equations

Numerical Comparison of CST to Q4 Element Models and 
Element Defects.
This brief description of some of the limitations in using the CST and Q4 
elements does not prevent us from using them to model plane stress and 
plane strain problems. 

It just requires us to use a fine mesh as opposed to a coarse one, particularly 
where bending occurs and where in general large stress gradients will 
results. 

Also, we must make sure our computer program can handle Poisson's ratios 
that approach 0.5 (if that is desired, such as in rubber-like materials). 

For common materials, such as metals, Poisson's ratio is around 0.3, so 
locking should not be of concern.
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End of Chapter 6b
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