Chapter 6a - Plane Stress/Strain Equations

Learning Objectives

- To review basic concepts of plane stress and plane strain.
- To derive the constant-strain triangle (CST) element stiffness matrix and equations.
- To demonstrate how to determine the stiffness matrix and stresses for a constant strain element.
- To describe how to treat body and surface forces for two-dimensional elements.

Chapter 6a - Plane Stress/Strain Equations

Learning Objectives

- To evaluate the explicit stiffness matrix for the constant-strain triangle element.
- To perform a detailed finite element solution of a plane stress problem.

Plane Stress and Plane Strain Equations

In Chapters 2 through 5, we considered only line elements.
Line elements are connected only at common nodes, forming framed or articulated structures such as trusses, frames, and grids.

Line elements have geometric properties such as crosssectional area and moment of inertia associated with their cross sections.

Plane Stress and Plane Strain Equations

However, only one local coordinate along the length of the element is required to describe a position along the element (hence, they are called line elements).

Nodal compatibility is then enforced during the formulation of the nodal equilibrium equations for a line element.

This chapter considers the two-dimensional finite element.

Plane Stress and Plane Strain Equations

Two-dimensional (planar) elements are thin-plate elements such that two coordinates define a position on the element surface.

The elements are connected at common nodes and/or along common edges to form continuous structures.

Plane Stress and Plane Strain Equations

Nodal compatibility is then enforced during the formulation of the nodal equilibrium equations for two-dimensional elements.

If proper displacement functions are chosen, compatibility along common edges is also obtained.

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(1) Plane stress analysis, which includes problems such as plates with holes, fillets, or other changes in geometry that are loaded in their plane resulting in local stress concentrations.

Plane Stress Problems

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(1) Plane stress analysis, which includes problems such as plates with holes, fillets, or other changes in geometry that are loaded in their plane resulting in local stress concentrations.

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(1) Plane stress analysis, which includes problems such as plates with holes, fillets, or other changes in geometry that are loaded in their plane resulting in local stress concentrations.

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(1) Plane stress analysis, which includes problems such as plates with holes, fillets, or other changes in geometry that are loaded in their plane resulting in local stress concentrations.

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(1) Plane stress analysis, which includes problems such as plates with holes, fillets, or other changes in geometry that are loaded in their plane resulting in local stress concentrations.

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

The two-dimensional element is extremely important for:
(2) Plane strain analysis, which includes problems such as a long underground box culvert subjected to a uniform load acting constantly over its length or a long cylindrical control rod subjected to a load that remains constant over the rod length (or depth).

Plane Stress and Plane Strain Equations

We begin this chapter with the development of the stiffness matrix for a basic two-dimensional or plane finite element, called the constant-strain triangular element.

The constant-strain triangle (CST) stiffness matrix derivation is the simplest among the available two-dimensional elements.

We will derive the CST stiffness matrix by using the principle of minimum potential energy because the energy formulation is the most feasible for the development of the equations for both two- and three-dimensional finite elements.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

We will now follow the steps described in Chapter 1 to formulate the governing equations for a plane stress/plane strain triangular element.

First, we will describe the concepts of plane stress and plane strain.

Then we will provide a brief description of the steps and basic equations pertaining to a plane triangular element.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Plane Stress

Plane stress is defined to be a state of stress in which the normal stress and the shear stresses directed perpendicular to the plane are assumed to be zero.

That is, the normal stress σ_{z} and the shear stresses $\tau_{x z}$ and $\tau_{y z}$ are assumed to be zero.

Generally, members that are thin (those with a small z dimension compared to the in-plane x and y dimensions) and whose loads act only in the $x-y$ plane can be considered to be under plane stress.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Plane Strain

Plane strain is defined to be a state of strain in which the strain normal to the $x-y$ plane ε_{z} and the shear strains $\gamma_{x z}$ and $\gamma_{y z}$ are assumed to be zero.

The assumptions of plane strain are realistic for long bodies (say, in the z direction) with constant cross-sectional area subjected to loads that act only in the x and/or y directions and do not vary in the z direction.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain

The concept of two-dimensional state of stress and strain and the stress/strain relationships for plane stress and plane strain are necessary to understand fully the development and applicability of the stiffness matrix for the plane stress/plane strain triangular element.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Two-Dimensional State of Stress and Strain

A two-dimensional state of stress is shown in the figure below.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain

The infinitesimal element with sides $d x$ and $d y$ has normal stresses σ_{x} and σ_{y} acting in the x and y directions (here on the vertical and horizontal faces), respectively.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Two-Dimensional State of Stress and Strain

The shear stress $\tau_{x y}$ acts on the x edge (vertical face) in the y direction. The shear stress $\tau_{y x}$ acts on the y edge (horizontal face) in the x direction.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain
Since $\tau_{x y}$ equals $\tau_{y x}$, three independent stress exist:

$$
\{\sigma\}^{T}=\left[\begin{array}{lll}
\sigma_{x} & \sigma_{y} & \tau_{x y}
\end{array}\right]
$$

Recall, the relationships for principal stresses in twodimensions are:

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}{ }^{2}}=\sigma_{\max } \\
& \sigma_{2}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sigma_{\min }
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Two-Dimensional State of Stress and Strain
Also, θ_{p} is the principal angle which defines the normal whose direction is perpendicular to the plane on which the maximum or minimum principle stress acts.

$$
\tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain
The general two-dimensional state of strain at a point is show below.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain

$$
\begin{aligned}
& \varepsilon_{x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial V}{\partial x}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

The strain may be written in matrix form as:

$$
\{\varepsilon\}^{T}=\left[\begin{array}{lll}
\varepsilon_{x} & \varepsilon_{y} & \gamma_{x y}
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Two-Dimensional State of Stress and Strain

For plane stress, the stresses $\sigma_{z}, \tau_{x z}$, and $\tau_{y z}$ are assumed to be zero. The stress-strain relationship is:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \\
& \left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]
\end{aligned}
$$

is called the stress-strain matrix (or the constitutive matrix), E is the modulus of elasticity, and v is Poisson's ratio.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Two-Dimensional State of Stress and Strain
For plane strain, the strains $\varepsilon_{z}, \gamma_{x z}$, and $\gamma_{y z}$ are assumed to be zero. The stress-strain relationship is:

$$
\begin{aligned}
& \left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \\
& \left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]
\end{aligned}
$$

is called the stress-strain matrix (or the constitutive matrix), E is the modulus of elasticity, and v is Poisson's ratio.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Two-Dimensional State of Stress and Strain
The partial differential equations for plane stress are:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1+v}{2}\left(\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} v}{\partial x \partial y}\right) \\
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{1+v}{2}\left(\frac{\partial^{2} v}{\partial y^{2}}-\frac{\partial^{2} u}{\partial x \partial y}\right)
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Consider the problem of a thin plate subjected to a tensile load as shown in the figure below:

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 1 - Discretize and Select Element Types

Discretize the thin plate into a set of triangular elements. Each element is define by nodes i, j, and m.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 1 - Discretize and Select Element Types
We use triangular elements because boundaries of irregularly shaped bodies can be closely approximated, and because the expressions related to the triangular element are comparatively simple.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 1 - Discretize and Select Element Types

This discretization is called a coarse-mesh generation if few large elements are used.
Each node has two degrees of freedom: displacements in the x and y directions.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 1 - Discretize and Select Element Types
We will let u_{i} and v_{i} represent the node i displacement components in the x and y directions, respectively.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 1 - Discretize and Select Element Types

The nodal displacements for an element with nodes i, j, and m are:

$$
\{d\}=\left\{\begin{array}{l}
d_{i} \\
d_{j} \\
d_{m}
\end{array}\right\}
$$

where the nodes are ordered counterclockwise around the element, and

$$
\left\{d_{i}\right\}=\left\{\begin{array}{l}
u_{i} \\
v_{i}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 1 - Discretize and Select Element Types
The nodal displacements for an element with nodes i, j, and m are:

$$
\{d\}=\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

The general displacement function is: $\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}u(x, y) \\ v(x, y)\end{array}\right\}$
The functions $u(x, y)$ and $v(x, y)$ must be compatible with the element type.

Step 3 - Define the Strain-Displacement and Stress-Strain Relationships
The general definitions of normal and shear strains are:

$$
\varepsilon_{x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 3 - Define the Strain-Displacement and Stress-Strain Relationships

For plane stress, the stresses $\sigma_{z}, \tau_{x z}$, and $\tau_{y z}$ are assumed to be zero. The stress-strain relationship is:

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 3 - Define the Strain-Displacement and Stress-Strain Relationships

For plane strain, the strains $\varepsilon_{z}, \gamma_{x z}$, and $\gamma_{y z}$ are assumed to be zero. The stress-strain relationship is:

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 4 - Derive the Element Stiffness Matrix and Equations
Using the principle of minimum potential energy, we can derive the element stiffness matrix.

$$
\{f\}=[k]\{d\}
$$

This approach is better than the direct methods used for onedimensional elements.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 5 - Assemble the Element Equations and Introduce Boundary Conditions

The final assembled or global equation written in matrix form is:

$$
\{F\}=[K]\{d\}
$$

where $\{F\}$ is the equivalent global nodal loads obtained by lumping distributed edge loads and element body forces at the nodes and $[K]$ is the global structure stiffness matrix.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 6 - Solve for the Nodal Displacements
Once the element equations are assembled and modified to account for the boundary conditions, a set of simultaneous algebraic equations that can be written in expanded matrix form as:

$$
\{F\}=[K]\{d\}
$$

Step 7 - Solve for the Element Forces (Stresses)

For the structural stress-analysis problem, important secondary quantities of strain and stress (or moment and shear force) can be obtained in terms of the displacements determined in Step 6.

Plane Stress and Plane Strain Equations

Derivation of the Constant-Strain Triangular Element Stiffness Matrix and Equations

Step 1 - Discretize and Select Element Types

Consider the problem of a thin plate subjected to a tensile load as shown in the figure below:

$$
\{d\}=\left\{\begin{array}{l}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

We will select a linear displacement function for each triangular element, defined as:

$$
\begin{aligned}
\left\{\Psi_{i}\right\} & =\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\} \\
& =\left\{\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right\}
\end{aligned}
$$

A linear function ensures that the displacements along each edge of the element and the nodes shared by adjacent elements are equal.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

We will select a linear displacement function for each triangular element, defined as:

$$
\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right\}=\left[\begin{array}{llllll}
1 & x & y & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x & y
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
To obtain the values for the a's substitute the coordinated of the nodal points into the above equations:

$$
\begin{array}{ll}
u_{i}=a_{1}+a_{2} x_{i}+a_{3} y_{i} & v_{i}=a_{4}+a_{5} x_{i}+a_{6} y_{i} \\
u_{j}=a_{1}+a_{2} x_{j}+a_{3} y_{j} & v_{j}=a_{4}+a_{5} x_{j}+a_{6} y_{j} \\
u_{m}=a_{1}+a_{2} x_{m}+a_{3} y_{m} & v_{m}=a_{4}+a_{5} x_{m}+a_{6} y_{m}
\end{array}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

Solving for the a's and writing the results in matrix forms gives:

$$
\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \Rightarrow\{a\}=[x]^{-1}\{u\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
The inverse of the $[x]$ matrix is:

$$
\begin{array}{ll}
{[x]^{-1}=\frac{1}{2 A}\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]} \\
\alpha_{i}=x_{j} y_{m}-y_{j} x_{m} & \beta_{i}=y_{j}-y_{m} \\
\alpha_{i}=x_{m}-x_{j} \\
\alpha_{i}-y_{m} x_{i} & \beta_{j}=y_{m}-y_{i}
\end{array} \gamma_{j}=x_{i}-x_{m} .
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

The inverse of the $[x]$ matrix is:

$$
\begin{aligned}
& {[x]^{-1}=\frac{1}{2 A}\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right] \quad 2 A=\left|\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right|} \\
& 2 A=x_{i}\left(y_{j}-y_{m}\right)+x_{j}\left(y_{m}-y_{i}\right)+x_{m}\left(y_{i}-y_{j}\right)
\end{aligned}
$$

where A is the area of the triangle

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
The values of a may be written matrix form as:

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\} \\
& \left\{\begin{array}{l}
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{l}
v_{i} \\
v_{j} \\
v_{m}
\end{array}\right\}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

Expanding the above equations

$$
\{u\}=\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}
$$

Substituting the values for \mathbf{a} into the above equation gives:

$$
\{u\}=\frac{1}{2 A}\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
We will now derive the u displacement function in terms of the coordinates x and y.

$$
\{u\}=\frac{1}{2 A}\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{c}
\alpha_{i} u_{i}+\alpha_{j} u_{j}+\alpha_{m} u_{m} \\
\beta_{i} u_{i}+\beta_{j} u_{j}+\beta_{m} u_{m} \\
\gamma_{i} u_{i}+\gamma_{j} u_{j}+\gamma_{m} u_{m}
\end{array}\right]
$$

Multiplying the matrices in the above equations gives:

$$
\begin{gathered}
u(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) u_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) u_{j}\right. \\
\left.+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) u_{m}\right\}
\end{gathered}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

We will now derive the v displacement function in terms of the coordinates x and y.

$$
\{v\}=\frac{1}{2 A}\left[\begin{array}{lll}
1 & x & y
\end{array}\right]\left[\begin{array}{c}
\alpha_{i} v_{i}+\alpha_{j} v_{j}+\alpha_{m} v_{m} \\
\beta_{i} v_{i}+\beta_{j} v_{j}+\beta_{m} v_{m} \\
\gamma_{i} v_{i}+\gamma_{j} v_{j}+\gamma_{m} v_{m}
\end{array}\right]
$$

Multiplying the matrices in the above equations gives:

$$
\begin{gathered}
v(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) v_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) v_{j}\right. \\
\left.+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) v_{m}\right\}
\end{gathered}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
The displacements can be written in a more convenience form as:

$$
\begin{aligned}
& u(x, y)=N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
& v(x, y)=N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
\end{aligned}
$$

where:

$$
\begin{aligned}
& N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \\
& N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \\
& N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

The elemental displacements can be summarized as:

$$
\left\{\Psi_{i}\right\}=\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\}=\left\{\begin{array}{l}
N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { In another form the above equations are: } \\
& \qquad\{\Psi\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\} \\
& \{\Psi\}=[N]\{d\}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions
In another form the equations are: $\{\Psi\}=[N]\{d\}$

$$
[N]=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]
$$

The linear triangular shape functions are illustrated below:

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

So that u and v will yield a constant value for rigid-body displacement, $N_{i}+N_{j}+N_{m}=1$ for all x and y locations on the element.

The linear triangular shape functions are illustrated below:

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 2 - Select Displacement Functions

The linear triangular shape functions are illustrated below:
(

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

So that u and v will yield a constant value for rigid-body displacement, $N_{i}+N_{j}+N_{m}=1$ for all x and y locations on the element.

For example, assume all the triangle displaces as a rigid body in

$$
\begin{aligned}
& \text { the } x \text { direction: } u=u_{0} \\
& \{\Psi\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{0} \\
0 \\
u_{0} \\
0 \\
u_{0} \\
0
\end{array}\right\} \quad u_{0}=u_{0}\left(N_{i}+N_{j}+N_{m}\right)
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

So that u and v will yield a constant value for rigid-body displacement, $N_{i}+N_{j}+N_{m}=1$ for all x and y locations on the element.

For example, assume all the triangle displaces as a rigid body in

$$
\begin{aligned}
& \text { the } y \text { direction: } v=v_{0} \\
& \{\Psi\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]\left\{\begin{array}{c}
0 \\
v_{0} \\
0 \\
v_{0} \\
0 \\
v_{0}
\end{array}\right\} \quad \begin{array}{l}
v_{0}=v_{0}\left(N_{i}+N_{j}+N_{m}\right)
\end{array} \quad \Rightarrow N_{i}+N_{j}+N_{m}=1
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

The requirement of completeness for the constant-strain triangle element used in a two-dimensional plane stress element is illustrated in figure below.

The element must be able to translate uniformly in either the x or y direction in the plane and to rotate without straining as shown

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 2 - Select Displacement Functions

The reason that the element must be able to translate as a rigid body and to rotate stress-free is illustrated in the example of a cantilever beam modeled with plane stress elements.

By simple statics, the beam elements beyond the loading are stress free.

Hence these elements must be free to translate and rotate without stretching or changing shape.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 3 - Define the Strain-Displacement and Stress-Strain Relationships

Elemental Strains: The strains over a two-dimensional element are:

$$
\begin{aligned}
& \text { nt are: } \\
& \{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 3 - Define the Strain-Displacement and Stress-Strain Relationships

Substituting our approximation for the displacement gives:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=u_{, x}=\frac{\partial}{\partial x}\left(N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m}\right) \\
& u_{, x}=N_{i, x} u_{i}+N_{j, x} u_{j}+N_{m, x} u_{m}
\end{aligned}
$$

where the comma indicates differentiation with respect to that variable.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 3 - Define the Strain-Displacement and Stress-Strain Relationships

The derivatives of the interpolation functions are:

$$
\begin{aligned}
& N_{i, x}=\frac{1}{2 A} \frac{\partial}{\partial x}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)=\frac{\beta_{i}}{2 A} \\
& N_{j, x}=\frac{\beta_{j}}{2 A} \quad N_{m, x}=\frac{\beta_{m}}{2 A}
\end{aligned}
$$

Therefore:

$$
\frac{\partial u}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\beta_{j} u_{j}+\beta_{m} u_{m}\right)
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 3 - Define the Strain-Displacement and Stress-Strain Relationships
In a similar manner, the remaining strain terms are approximated as:

$$
\begin{aligned}
& \frac{\partial v}{\partial y}=\frac{1}{2 A}\left(\gamma_{i} v_{i}+\gamma_{j} v_{j}+\gamma_{m} v_{m}\right) \\
& \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\gamma_{i} v_{i}+\beta_{j} u_{j}+\gamma_{j} v_{j}+\beta_{m} u_{m}+\gamma_{m} v_{m}\right)
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 3 - Define the Strain-Displacement and Stress-Strain Relationships
We can write the strains in matrix form as:

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 3 - Define the Strain-Displacement and

Stress-Strain Relationships

Stress-Strain Relationship: The in-plane stress-strain relationship is:

$$
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad\{\sigma\}=[D][B]\{d\}
$$

For plane stress $[D]$ is: For plane strain $[D]$ is:

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right] \quad[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 4 - Derive the Element Stiffness Matrix and Equations

The total potential energy is defined as the sum of the internal strain energy U and the potential energy of the external forces
$\Omega: \quad \pi_{p}=U+\Omega_{b}+\Omega_{p}+\Omega_{s}$
Where the strain energy is: $U=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}\{\sigma\} d V=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}[D]\{\varepsilon\} d V$
The potential energy of the body force term is:

$$
\Omega_{b}=-\int_{V}\{\Psi\}^{T}\{X\} d V
$$

where $\{\Psi\}$ is the general displacement function and $\{X\}$ is the body weight per unit volume.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 4 - Derive the Element Stiffness Matrix and Equations
The total potential energy is defined as the sum of the internal strain energy U and the potential energy of the external forces
$\Omega: \quad \pi_{p}=U+\Omega_{b}+\Omega_{p}+\Omega_{s}$
Where the strain energy is: $U=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}\{\sigma\} d V=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}[D]\{\varepsilon\} d V$
The potential energy of the concentrated forces is:

$$
\Omega_{p}=-\{d\}^{\top}\{P\}
$$

where $\{P\}$ are the concentrated forces and $\{d\}$ are the nodal displacements.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 4 - Derive the Element Stiffness Matrix and Equations
The total potential energy is defined as the sum of the internal strain energy U and the potential energy of the external forces
$\Omega: \quad \pi_{p}=U+\Omega_{b}+\Omega_{p}+\Omega_{s}$
Where the strain energy is: $U=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}\{\sigma\} d V=\frac{1}{2} \int_{V}\{\varepsilon\}^{T}[D]\{\varepsilon\} d V$
The potential energy of the distributed loads is:

$$
\Omega_{s}=-\int_{S}\{\Psi\}^{T}\{T\} d S
$$

where $\{\Psi\}$ is the general displacement function and $\{T\}$ are the surface tractions.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 4 - Derive the Element Stiffness Matrix and Equations
Then the total potential energy expression becomes:

$$
\begin{array}{r}
\pi_{p}=\frac{1}{2} \int_{V}\{d\}^{T}[B]^{T}[D][B]\{d\} d V-\int_{V}\{d\}^{T}[N]^{T}\{X\} d V \\
-\{d\}^{T}\{P\}-\int_{S}\{d\}^{T}[N]^{T}\{T\} d S
\end{array}
$$

The nodal displacements $\{d\}$ are independent of the general x y coordinates, therefore

$$
\begin{array}{r}
\pi_{p}=\frac{1}{2}\{d\}^{T} \int_{V}[B]^{T}[D][B] d V\{d\}-\{d\}^{T} \int_{V}[N]^{T}\{X\} d V \\
-\{d\}^{T}\{P\}-\{d\}^{T} \int_{S}[N]^{T}\{T\} d S
\end{array}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 4 - Derive the Element Stiffness Matrix and Equations

We can define the last three terms as:

$$
\{f\}=\int_{V}[N]^{T}\{X\} d V+\{P\}+\int_{S}[N]^{T}\{T\} d S
$$

Therefore:

$$
\pi_{p}=\frac{1}{2}\{d\}^{T} \int_{V}[B]^{T}[D][B] d V\{d\}-\{d\}^{T}\{f\}
$$

Minimization of π_{p} with respect to each nodal displacement requires that:

$$
\frac{\partial \pi_{p}}{\partial\{d\}}=\int_{V}[B]^{T}[D][B] d V\{d\}-\{f\}=0
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 4 - Derive the Element Stiffness Matrix and Equations
The above relationship requires:

$$
\int_{V}[B]^{\top}[D][B] d V\{d\}=\{f\}
$$

The stiffness matrix can be defined as:

$$
[k]=\int_{V}[B]^{T}[D][B] d V
$$

For an element of constant thickness, t, the above integral becomes:

$$
[k]=t \int_{A}[B]^{\top}[D][B] d x d y
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 4 - Derive the Element Stiffness Matrix and Equations
The integrand in the above equation is not a function of x or y (global coordinates); therefore, the integration reduces to:

$$
\begin{aligned}
& {[k]=t[B]^{T}[D][B] \int_{A} d x d y} \\
& {[k]=t A[B]^{T}[D][B]}
\end{aligned}
$$

where A is the area of the triangular element.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 4 - Derive the Element Stiffness Matrix and Equations
Expanding the stiffness relationship gives:

$$
[k]=\left[\begin{array}{ccc}
{\left[k_{i i}\right]} & {\left[k_{i j}\right]} & {\left[k_{i m}\right]} \\
{\left[k_{j i}\right]} & {\left[k_{j j}\right]} & {\left[k_{j m}\right]} \\
{\left[k_{m i}\right]} & {\left[k_{m j}\right]} & {\left[k_{m m}\right]}
\end{array}\right]
$$

where each $\left[k_{i j}\right]$ is a 2×2 matrix define as:

$$
\begin{array}{ll}
{\left[k_{i i}\right]=\left[B_{i}\right]^{T}[D]\left[B_{i}\right] t A} & {\left[k_{i j}\right]=\left[B_{i}\right]^{\top}[D]\left[B_{j}\right] t A} \\
{\left[k_{i m}\right]=\left[B_{i}\right]^{\top}[D]\left[B_{m}\right] t A} &
\end{array}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 4 - Derive the Element Stiffness Matrix and Equations
Recall:

$$
\begin{array}{ll}
{\left[B_{i}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{i} & 0 \\
0 & \gamma_{i} \\
\gamma_{i} & \beta_{i}
\end{array}\right]} & {\left[B_{j}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{j} & 0 \\
0 & \gamma_{j} \\
\gamma_{j} & \beta_{j}
\end{array}\right]} \\
{\left[B_{m}\right]=\frac{1}{2 A}\left[\begin{array}{cc}
\beta_{m} & 0 \\
0 & \gamma_{m} \\
\gamma_{m} & \beta_{m}
\end{array}\right]}
\end{array}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 5 - Assemble the Element Equations to Obtain the Global Equations and Introduce the Boundary Conditions

The global stiffness matrix can be found by the direct stiffness method.

$$
[K]=\sum_{e=1}^{N}\left[k^{(e)}\right]
$$

The global equivalent nodal load vector is obtained by lumping body forces and distributed loads at the appropriate nodes as well as including any concentrated loads.

$$
\{F\}=\sum_{e=1}^{N}\left\{f^{(e)}\right\}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 5 - Assemble the Element Equations to Obtain the Global Equations and Introduce the Boundary Conditions

The resulting global equations are: $\{F\}=[K]\{d\}$
where $\{d\}$ is the total structural displacement vector.

In the above formulation of the element stiffness matrix, the matrix has been derived for a general orientation in global coordinates.

Therefore, no transformation form local to global coordinates is necessary.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 5 - Assemble the Element Equations to Obtain the Global Equations and Introduce the Boundary Conditions

However, for completeness, we will now describe the method to use if the local axes for the constant-strain triangular element are not parallel to the global axes for the whole structure.

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 5 - Assemble the Element Equations to Obtain the Global Equations and Introduce the Boundary Conditions

To relate the local to global displacements, force, and stiffness matrices we will use:

$$
d^{\prime}=T d \quad f^{\prime}=T f \quad k=T^{T} k^{\prime} T
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations
Step 5 - Assemble the Element Equations to Obtain the Global Equations and Introduce the Boundary Conditions

The transformation matrix T for the triangular element is:

$$
T=\left[\begin{array}{cc:cc:cc}
C & S & 0 & 0 & 0 & 0 \\
-S & C & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & C & S & 0 & 0 \\
0 & 0 & -S & C & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 & C & S \\
0 & 0 & 0 & 0 & -S & C
\end{array}\right] \quad \begin{aligned}
& C=\cos \theta \\
& S=\sin \theta
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Formulation of the Plane Triangular Element Equations

Step 6 - Solve for the Nodal Displacements

Step 7 - Solve for Element Forces and Stress

Having solved for the nodal displacements, we can obtain strains and stresses in x and y directions in the elements by using:

$$
\{\varepsilon\}=[B]\{d\} \quad\{\sigma\}=[D][B]\{d\}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Consider the structure shown in the figure below.

Let $E=30 \times 10^{6} p s i, v=0.25$, and $t=1 \mathrm{in}$.
Assume the element nodal displacements have been determined to be $u_{1}=0.0, v_{1}=0.0025$ in, $u_{2}=0.0012$ in, $v_{2}=0.0, u_{3}=0.0$, and $v_{3}=0.0025 \mathrm{in}$.

Plane Stress and Plane Strain Equations

Plane Stress Example 1

First, we calculate the element β 's and γ 's as:

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=0-1=-1 & \gamma_{i}=x_{m}-x_{j}=0-2=-2 \\
\beta_{j}=y_{m}-y_{i}=0-(-1)=2 & \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
\beta_{m}=y_{i}-y_{j}=-1-0=-1 & \gamma_{m}=x_{j}-x_{i}=2-0=2
\end{array}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Therefore, the $[B]$ matrix is:

$$
\begin{aligned}
& {[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]=\frac{1}{2(2)}\left[\begin{array}{cccccc}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{array}\right] } \\
& \beta_{i}=y_{j}-y_{m}=0-1=-1 \\
& \gamma_{i}=x_{m}-x_{j}=0-2=-2 \\
& \beta_{m}=y_{m}-y_{i}=0-(-1)=2 \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
& \beta_{i}-y_{j}=-1-0=-1 \gamma_{m}=x_{j}-x_{i}=2-0=2
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

For plane stress conditions, the $[D]$ matrix is:

$$
[D]=\frac{30 \times 10^{6}}{1-(0.25)^{2}}\left[\begin{array}{ccc}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right]
$$

Substitute the above expressions for $[D]$ and $[B]$ into the general equations for the stiffness matrix:

$$
[k]=t A[B]^{\top}[D][B]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

$$
[k]=t A[B]^{\top}[D][B]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Performing the matrix triple product gives:

$$
\mathbf{k}=4 \times 10^{6}\left[\begin{array}{cc:cc:cc}
2.5 & 1.25 & -2 & -1.5 & -0.5 & 0.25 \\
1.25 & 4.375 & -1 & -0.75 & -0.25 & -3.625 \\
\hdashline-2 & -1 & 4 & 0 & -2 & 1 \\
-1.5 & -0.75 & 0 & 1.5 & 1.5 & -0.75 \\
\hdashline-0.5 & -0.25 & -2 & 1.5 & 2.5 & -1.25 \\
0.25 & -3.625 & 1 & -0.75 & -1.25 & 4.375
\end{array}\right] \mathrm{lb} / \mathrm{in}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The in-plane stress can be related to displacements by:

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The stresses are: $\left\{\begin{array}{c}\sigma_{x} \\ \sigma_{y} \\ \tau_{x y}\end{array}\right\}=\left[\begin{array}{r}19,200 p s i \\ 4,800 p s i \\ -15,000 p s i\end{array}\right]$
Recall, the relationships for principal stresses and principal angle in two-dimensions are:

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}{ }^{2}}=\sigma_{\max } \quad \theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}\right] \\
& \sigma_{2}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}{ }^{2}}=\sigma_{\min }
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Therefore:

$$
\begin{aligned}
& \sigma_{1}=\frac{19,200+4,800}{2}+\sqrt{\left(\frac{19,200-4,800}{2}\right)^{2}+(-15,000)^{2}}=28,639 \mathrm{psi} \\
& \sigma_{2}=\frac{19,200+4,800}{2}-\sqrt{\left(\frac{19,200-4,800}{2}\right)^{2}+(-15,000)^{2}}=-4,639 \mathrm{psi} \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{2(-15,000)}{19,200-4,800}\right]=-32.3^{\circ}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The general force vector is defined as:

$$
\{f\}=\int_{V}[N]^{\top}\{X\} d V+\{P\}+\int_{S}[N]^{\top}\{T\} d S
$$

Let's consider the first term of the above equation.

$$
\left\{f_{b}\right\}=\int_{V}[N]^{T}\{X\} d V \quad\{X\}=\left\{\begin{array}{c}
X_{b} \\
Y_{b}
\end{array}\right\}
$$

where X_{b} and Y_{b} are the weight densities in the x and y directions, respectively.

The force may reflect the effects of gravity, angular velocities, or dynamic inertial forces.

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

For a given thickness, t, the body force term becomes:

$$
\begin{aligned}
\left\{f_{b}\right\}=\int_{V}[N]^{T}\{X\} d V= & t \int_{A}[N]^{T}\{X\} d A \\
{[N]^{T} } & =\left[\begin{array}{cc}
N_{i} & 0 \\
0 & N_{i} \\
N_{j} & 0 \\
0 & N_{j} \\
N_{m} & 0 \\
0 & N_{m}
\end{array}\right] \quad\{X\}=\left\{\begin{array}{l}
X_{b} \\
Y_{b}
\end{array}\right\}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The integration of the $\left\{f_{b}\right\}$ is simplified if the origin of the coordinate system is chosen at the centroid of the element, as shown in the figure below.

With the origin placed at the centroid, we can use the definition of a centroid.

$$
\int_{A} y d A=0 \quad \int_{A} x d A=0
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

Recall the interpolation functions for a plane stress/strain triangle:

$$
\begin{aligned}
& N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \quad N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \\
& N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
\end{aligned}
$$

With the origin placed at the centroid, we can use the definition of a centroid.

$$
\int_{A} y d A=0 \quad \int_{A} x d A=0
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces
Therefore the terms in the integrand are:

$$
\begin{aligned}
& \int_{A} \beta_{i} x d A=0 \quad \int_{A} \gamma_{i} y d A=0 \\
& \alpha_{i}=x_{j} y_{m}-y_{j} x_{m}=\left(\frac{b}{2}\right)\left(\frac{2 h}{3}\right)-\left(-\frac{h}{3}\right)(0)=\frac{b h}{3} \\
& \alpha_{j}=x_{m} y_{i}-y_{m} x_{i}=(0)\left(-\frac{h}{3}\right)-\left(-\frac{b}{2}\right)\left(\frac{2 h}{3}\right)=\frac{b h}{3} \\
& \alpha_{m}=x_{i} y_{j}-y_{i} x_{j}=\left(-\frac{b}{2}\right)\left(-\frac{h}{3}\right)-\left(\frac{b}{2}\right)\left(-\frac{h}{3}\right)=\frac{b h}{3} \\
& \alpha_{i}=\alpha_{j}=\alpha_{m}=\frac{2 A}{3} \quad t \int_{A} \frac{1}{2 A} \alpha_{i} d A=t \int_{A} \frac{1}{3} d A=\frac{t A}{3}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

Therefore the terms in the integrand are:

$$
\left\{f_{b}\right\}=\int_{V}[N]^{T}\{X\} d V=t \int_{A}[N]^{T}\{X\} d A
$$

The body force at node i is given as:

$$
\left\{f_{b i}\right\}=\frac{t A}{3}\left\{\begin{array}{l}
X_{b} \\
Y_{b}
\end{array}\right\}
$$

The general body force vector is:

$$
\left\{f_{b}\right\}=\left\{\begin{array}{l}
f_{b i x} \\
f_{b i y} \\
f_{b j x} \\
f_{b j y} \\
f_{b m x} \\
f_{b m y}
\end{array}\right\}=\frac{t A}{3}\left\{\begin{array}{c}
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The third term in the general force vector is defined as:

$$
\left\{f_{s}\right\}=\int_{S}[N]^{T}\{T\} d S
$$

Let's consider the example of a uniform stress p acting between nodes 1 and 3 on the edge of element 1 as shown in figure below.

$$
\{T\}=\left\{\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right\}=\left\{\begin{array}{l}
p \\
0
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces
The third term in the general force vector is defined as:

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

Therefore, the traction force vector is:

$$
\begin{aligned}
\left\{f_{s}\right\} & =\int_{S}[N]^{T}\{T\} d S \\
\left\{f_{s}\right\} & =\int_{0}^{t} \int_{0}^{L}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]_{x=a}\left[\begin{array}{l}
p \\
0
\end{array}\right\} d y d z=t \int_{0}^{L}\left[\begin{array}{c}
N_{1} p \\
0 \\
N_{2} p \\
0 \\
N_{3} p \\
0
\end{array}\right]_{x=a} d y
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The interpolation function for $i=1$ is:

$$
N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)
$$

For convenience, let's choose the coordinate system shown in the figure below.

$$
\begin{aligned}
\alpha_{i}= & x_{j} y_{m}-y_{j} x_{m} \\
& \text { with } i=1, j=2, \text { and } m=3 \\
\alpha_{1}= & x_{2} y_{3}-y_{2} x_{3} \\
& =(0)(0)-(0)(a)=0
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The interpolation function for $i=1$ is:

$$
N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)
$$

For convenience, let's choose the coordinate system shown in the figure below.

Similarly, we can find:

$$
\beta_{1}=0 \quad \gamma_{1}=a
$$

$$
N_{1}=\frac{a y}{2 A}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces
The remaining interpolation function, N_{2} and N_{3} are:

$$
N_{1}=\frac{a y}{2 A} \quad N_{2}=\frac{L(a-x)}{2 A} \quad N_{3}=\frac{L x-a y}{2 A}
$$

Evaluating N_{i} along the 1-3 edge of the element $(x=a)$ gives:

$$
\begin{aligned}
& N_{1}=\frac{a y}{2 A} \\
& N_{2}=0 \\
& N_{3}=\frac{a(L-y)}{2 A}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

Substituting the interpolation function in the traction force vector expression gives:

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces
Therefore, the traction force vector is:

$$
\left\{f_{s}\right\}=\int_{S}[N]^{T}\{T\} d S=\left\{\begin{array}{l}
f_{s 1 x} \\
f_{s 1 y} \\
f_{s 2 x} \\
f_{s 2 y} \\
f_{s 3 x} \\
f_{s 3 y}
\end{array}\right\}=\frac{a t p}{4 A}\left[\begin{array}{c}
L^{2} \\
0 \\
0 \\
0 \\
L^{2} \\
0
\end{array}\right]=\frac{p L t}{2}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

The figure below shows the results of the surface load equivalent nodal for both elements 1 and 2 :

Plane Stress and Plane Strain Equations

Treatment of Body and Surface Forces

For the CS triangle, a distributed load on the element edge can be treated as concentrated loads acting at the nodes associated with the loaded edge.

However, for higher-order elements, like the linear strain triangle (discussed in Chapter 8), load replacement should be made by using the principle of minimum potential energy.

For higher-order elements, load replacement by potential energy is not equivalent to the apparent statically equivalent one.

Plane Stress and Plane Strain Equations

Explicit Expression for the Constant-Strain Triangle Stiffness Matrix

Usually the stiffness matrix is computed internally by computer programs, but since we are not computers, we need to explicitly evaluate the stiffness matrix.

For a constant-strain triangular element, considering the plane strain case, recall that: $\quad[k]=t A[B]^{T}[D][B]$
where $[D]$ for plane strain is:

$$
[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Explicit Expression for the Constant-Strain Triangle Stiffness Matrix

Substituting the appropriate definition into the above triple product gives:

$$
\begin{gathered}
{[k]=t A[B]^{T}[D][B]} \\
{[k]=\frac{t E}{4 A(1+v)(1-2 v)}\left[\begin{array}{ccc}
\beta_{i} & 0 & \gamma_{i} \\
0 & \gamma_{i} & \beta_{i} \\
\beta_{j} & 0 & \gamma_{j} \\
0 & \gamma_{j} & \beta_{j} \\
\beta_{m} & 0 & \gamma_{m} \\
0 & \gamma_{m} & \beta_{m}
\end{array}\right]\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]}
\end{gathered}
$$

Plane Stress and Plane Strain Equations

Explicit Expression for the Constant-Strain Triangle Stiffness Matrix

Substituting the appropriate definition into the above triple product gives:

The stiffness matrix is a function of the global coordinates x and y, the material properties, and the thickness and area of the element.

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Consider the thin plate subjected to the surface traction shown in the figure below.

Assume plane stress conditions. Let $E=30 \times 10^{6} p s i, v=0.30$, and $t=1 \mathrm{in}$.

Determine the nodal displacements and the element stresses.

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Discretization

Let's discretize the plate into two elements as shown below:

This level of discretization will probably not yield practical results for displacement and stresses; however, it is useful example for a longhand solution.

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Discretization

For element 2, The tensile traction forces can be converted into nodal forces as follows:

$$
\left\{f_{s}\right\}_{2}=\left\{\begin{array}{l}
f_{s 3 x} \\
f_{s 3 y} \\
f_{s 1 x} \\
f_{s 1 y} \\
f_{s 4 x} \\
f_{s 4 y}
\end{array}\right\}=\frac{p L t}{2}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]=\frac{1,000 p s i(10 \mathrm{in}) 1 \mathrm{in}}{2}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
5,000 \mathrm{lb} \\
0 \\
0 \\
0 \\
5,000 \mathrm{lb} \\
0
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Discretization

For element 2, The tensile traction forces can be converted into nodal forces as follows:

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

The governing global matrix equations are: $\{F\}=[K]\{d\}$
Expanding the above matrices gives:

$$
\left\{\begin{array}{l}
F_{1 x} \\
F_{1 y} \\
F_{2 x} \\
F_{2 y} \\
F_{3 x} \\
F_{3 y} \\
F_{4 x} \\
F_{4 y}
\end{array}\right\}=\left\{\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
R_{2 x} \\
R_{2 y} \\
5,000 \mathrm{lb} \\
0 \\
5,000 \mathrm{lb} \\
0
\end{array}\right\}=[K]\left\{\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=[K]\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Assemblage of the Stiffness Matrix

The global stiffness matrix is assembled by superposition of the individual element stiffness matrices.

The element stiffness matrix is: $[k]=t A[B]^{T}[D][B]$

$$
\begin{aligned}
& {[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]} \\
& {[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & 0.5-v
\end{array}\right]}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

For element 1: the coordinates are $x_{i}=0, y_{i}=0, x_{j}=20, y_{j}=10$, $x_{m}=0$, and $y_{m}=10$. The area of the triangle is:

$$
A=\frac{b h}{2}=\frac{(20)(10)}{2}=100 \text { in. }^{2}
$$

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=10-10=0 & \gamma_{i}=x_{m}-x_{j}=0-20=-20 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
\beta_{m}=y_{i}-y_{j}=0-10=-10 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Therefore, the $[B]$ matrix is:

$$
[B]=\frac{1}{200}\left[\begin{array}{cc:cc:cc}
0 & 0 & 10 & 0 & -10 & 0 \\
0 & -20 & 0 & 0 & 0 & 20 \\
-20 & 0 & 0 & 10 & 20 & -10
\end{array}\right] 1 / \text { in }
$$

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=10-10=0 & \gamma_{i}=x_{m}-x_{j}=0-20=-20 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
\beta_{m}=y_{i}-y_{j}=0-10=-10 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

For plane stress conditions, the $[D]$ matrix is:

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]=\frac{30 \times 10^{6}}{0.91}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right] \text { psi }
$$

Substitute the above expressions for $[D]$ and $[B]$ into the general equations for the stiffness matrix:

$$
[k]=t A[B]^{\top}[D][B]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Therefore: $[B]^{\top}[D]=\frac{30\left(10^{6}\right)}{200(0.91)}\left[\begin{array}{ccc}0 & 0 & -20 \\ 0 & -20 & 0 \\ \hdashline 10 & 0 & 0 \\ 0 & 0 & 10 \\ -10 & 0 & 20 \\ 0 & 20 & -10\end{array}\right]\left[\begin{array}{ccc}1 & 0.3 & 0 \\ 0.3 & 1 & 0 \\ 0 & 0 & 0.35\end{array}\right] \mathrm{lb} / \mathrm{in}^{3}$

$$
[B]^{\top}[D]=\frac{30\left(10^{6}\right)}{200(0.91)}\left[\begin{array}{rrc}
0 & 0 & -7 \\
-6 & -20 & 0 \\
10 & 3 & 0 \\
0 & 0 & 3.5 \\
-10 & -3 & 7 \\
6 & 20 & -3.5
\end{array}\right] / \mathrm{in}^{3}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

$\left[\begin{array}{l}{\left[(100) \frac{(0.15)\left(10^{6}\right)}{0.91}\left[\begin{array}{rrr}{[B]^{T}[D][B]} \\ -2 & 0 & -7 \\ -10 & 3 & 0 \\ 0 & -3 & 7 \\ 6 & 20 & -3.5\end{array}\right] \times \frac{1}{200}\left[\begin{array}{cc:cc:cc}0 & 0 & 10 & 0 & -10 & 0 \\ 0 & -20 & 0 & 0 & 0 & 20 \\ -20 & 0 & 0 & 10 & 20 & -10\end{array}\right]\right.}\end{array}\right.$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Simplifying the above expression gives:

$$
\left[k^{(1)}\right]=\frac{75,000}{0.91}\left[\begin{array}{rrrrrr}
u_{1} & v_{1} & u_{3} & v_{3} & u_{2} & v_{2} \\
140 & 0 & 0 & -70 & -140 & 70 \\
0 & 400 & -60 & 0 & 60 & -400 \\
\hdashline 0 & -60 & 100 & 0 & -100 & 60 \\
-70 & 0 & 0 & 35 & 70 & -35 \\
\hdashline-140 & 60 & -100 & 70 & 240 & -130 \\
70 & -400 & 60 & -35 & -130 & 435
\end{array}\right] \text { lo/n }
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Rearranging the rows and columns gives:

$$
\left[k^{(1)}\right]=\frac{75,000}{0.91}\left[\begin{array}{rrrrrr}
u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{3} \\
140 & 0 & -140 & 70 & 0 & -70 \\
0 & 400 & 60 & -400 & -60 & -0 \\
\hdashline-140 & 60 & 240 & -130 & -100 & 70 \\
-70 & -400 & -130 & 435 & 60 & -35 \\
\hdashline 0 & -60 & -100 & 60 & 100 & 0 \\
-70 & 0 & 70 & -35 & 0 & 35
\end{array}\right] \text { b/in }
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

For element 2: the coordinates are $x_{i}=0, y_{i}=0, x_{j}=20, y_{j}=0$, $x_{m}=20$, and $y_{m}=10$. The area of the triangle is:

$$
A=\frac{b h}{2}=\frac{(20)(10)}{2}=100 \mathrm{in}^{2}
$$

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=0-10=-10 & \gamma_{i}=x_{m}-x_{j}=20-20=0 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-20=-20 \\
\beta_{m}=y_{i}-y_{j}=0-0=0 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Plane Stress and Plane Strain Equations

Plane Stress Problem 2

Therefore, the $[B]$ matrix is:

$$
[B]=\frac{1}{200}\left[\begin{array}{cc:cc:cc}
-10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & 0 & 20 \\
0 & -10 & -20 & 10 & 20 & 0
\end{array}\right] 1 / \text { in }
$$

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=0-10=-10 & \gamma_{i}=x_{m}-x_{j}=20-20=0 \\
\beta_{j}=y_{m}-y_{1}=10-0=10 & \gamma_{j}=x_{i}-x_{m}=0-20=-20 \\
\beta_{m}=y_{i}-y_{j}=0-0=0 & \gamma_{m}=x_{i}-x_{j}=20-0=20
\end{array}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

For plane stress conditions, the $[D]$ matrix is:

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 0.5(1-v)
\end{array}\right]=\frac{30 \times 10^{6}}{0.91}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right] p s i
$$

Substitute the above expressions for $[D]$ and $[B]$ into the general equations for the stiffness matrix:

$$
[k]=t A[B]^{\top}[D][B]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Therefore:

$$
\begin{aligned}
& \text { re: } \\
& {[B]^{\top}[D]=\frac{30\left(10^{6}\right)}{200(0.91)}\left[\begin{array}{ccc}
-10 & 0 & 0 \\
0 & 0 & -10 \\
\hdashline 0 & 0 & -20 \\
0 & -20 & 10 \\
0 & 0 & 20 \\
0 & 20 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]} \\
& {[B]^{\top}[D]=\frac{30\left(10^{6}\right)}{200(0.91)}\left[\begin{array}{ccc}
-10 & -3 & 0 \\
0 & 0 & -3.5 \\
10 & 3 & -7 \\
0 & -20 & 3.5 \\
-6 & 0 & 7 \\
6 & 20 & 0
\end{array}\right]}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Simplifying the above expression gives:

$$
\left[k^{(2)}\right]=\frac{75,000}{0.91}\left[\begin{array}{cccccc}
u_{1} & v_{1} & u_{4} & v_{4} & u_{3} & v_{3} \\
100 & 0 & -100 & 60 & 0 & -60 \\
0 & 35 & 70 & -35 & -70 & 0 \\
\hdashline-100 & 70 & 240 & -130 & -140 & 60 \\
-60 & -35 & -130 & 435 & 70 & -400 \\
\hdashline 0 & -70 & -140 & 70 & 100 & 0 \\
-60 & 0 & 60 & -400 & 0 & 400
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Rearranging the rows and columns gives:

$$
\left[k^{(2)}\right]=\frac{75,000}{0.91}\left[\begin{array}{cccccc}
u_{1} & v_{1} & u_{3} & v_{3} & u_{4} & v_{4} \\
\hdashline 0 & 0 & 0 & -60 & -100 & 60 \\
0 & 35 & -70 & 0 & 70 & -35 \\
\hdashline 0 & -70 & 140 & 0 & -140 & 70 \\
-60 & 0 & 0 & 400 & 60 & -400 \\
\hdashline-100 & 70 & -140 & 60 & 240 & -130 \\
60 & -35 & 70 & -400 & -130 & 435
\end{array}\right]
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

In expanded form, element 1 is:

$$
\left[k^{(1)}\right]=\frac{375,000}{0.91}\left[\begin{array}{cccccccc}
u_{1} & v_{1} & u_{2} & v_{2} & u_{3} & v_{3} & u_{4} & v_{4} \\
{\left[\begin{array}{ccccccc}
28 & 0 & -28 & 14 & 0 & -14 \\
0 & 80 & 12 & -80 & -12 & 0 & 0 \\
-28 & 12 & 48 & -26 & -20 & 14 \\
14 & -80 & -26 & 87 & 12 & -7 \\
0 & -12 & -20 & 12 & 20 & 0 & 0 \\
0 & 0 & 0 \\
-14 & 0 & 14 & -7 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right]}
\end{array}\right.
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

In expanded form, element 2 is:

	u_{1}	v_{1}	u_{2}	v_{2}	u_{3}	v_{3}	u_{4}	v_{4}
$\left[k^{(2)}\right]=\frac{375,000}{0.91}$	20	0	0	0	0	-12	-20	12
	0	7	0	0	-14	0	14	-7
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	-14	0	0	28	0	-28	14
	-12	0	0	0	0	80	12	-80
	-20	14	0	0	-28	12	48	-26
	12	-7	0	0	14	-80	-26	87

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Using the superposition, the total global stiffness matrix is:

	u_{1}	v_{1}	u_{2}	v_{2}	u_{3}	v_{3}	u_{4}	v_{4}
$[k]=\frac{375,000}{0.91}$	48	0	-28	14	0	-26	-20	12
	0	87	12	-80	-26	0	14	-7
	-28	12	48	-26	-20	14	0	0
	14	80	-26	87	12	-7	0	0
	0	-26	-20	12	48	0	-28	14
	-26	0	14	-7	0	87	12	-80
	-20		0	0	-28	12	48	-26
	12	-7	0	0	14	-80	-26	87

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Applying the boundary conditions: $d_{1 x}=d_{1 y}=d_{2 x}=d_{2 y}=0$
$\left\{\begin{array}{c}R_{1 x} \\ R_{1 y} \\ R_{2 x} \\ R_{2 y} \\ 5,000 \mathrm{lb} \\ 0 \\ 500 \mathrm{lb} \\ 0\end{array}\right\}=\frac{375,000}{0.91}\left[\begin{array}{cccccccc}48 & 0 & -28 & 14 & 0 & -26 & -20 & 12 \\ 0 & 87 & 12 & -80 & -26 & 0 & 14 & -7 \\ -28 & 12 & 48 & -26 & -20 & 14 & 0 & 0 \\ 14 & 80 & -26 & 87 & 12 & -7 & 0 & 0 \\ 0 & -26 & -20 & 12 & 48 & 0 & -28 & 14 \\ -26 & 0 & 14 & -7 & 0 & 87 & 12 & -80 \\ -20 & 14 & 0 & 0 & -28 & 12 & 48 & -26 \\ 12 & -7 & 0 & 0 & 14 & -80 & -26 & 87\end{array}\right]\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ d_{3 x} \\ d_{3 y} \\ d_{4 x} \\ d_{4 y}\end{array}\right\}$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The governing equations are:

$$
\left\{\begin{array}{c}
5,000 \mathrm{lb} \\
0 \\
5,000 \mathrm{lb} \\
0
\end{array}\right\}=\frac{375,000}{0.91}\left[\begin{array}{cccc}
48 & 0 & -28 & 14 \\
0 & 87 & 12 & -80 \\
-28 & 12 & 48 & -26 \\
14 & -80 & -26 & 87
\end{array}\right]\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}
$$

Solving the equations gives:

$$
\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=\left(10^{-6}\right)\left\{\begin{array}{r}
609.6 \\
4.2 \\
663.7 \\
104.1
\end{array}\right\} \text { in }
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The exact solution for the displacement at the free end of the one-dimensional bar subjected to a tensile force is:

$$
\delta=\frac{P L}{A E}=\frac{(10,000) 20}{10\left(30 \times 10^{6}\right)}=670 \times 10^{-6} \mathrm{in}
$$

The two-element FEM solution is:

$$
\left\{\begin{array}{l}
d_{3 x} \\
d_{3 y} \\
d_{4 x} \\
d_{4 y}
\end{array}\right\}=\left(10^{-6}\right)\left\{\begin{array}{r}
609.6 \\
4.2 \\
663.7 \\
104.1
\end{array}\right\} \text { in }
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The in-plane stress can be related to displacements by:

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Element 1: $\{\sigma\}=[D][B]\{d\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{30\left(10^{6}\right)\left(10^{-6}\right)}{0.96(200)}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & 10 & 0 & -10 & 0 \\
0 & -20 & 0 & 0 & 0 & 20 \\
-20 & 0 & 0 & 10 & 20 & -10
\end{array}\right]\left[\begin{array}{r}
0.0 \\
0.0 \\
609.6 \\
4.2 \\
0.0 \\
0.0
\end{array}\right\} \\
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left[\begin{array}{r}
1,005 p s i \\
301 p s i \\
2.4 p s i
\end{array}\right]
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

Element 2: $\{\sigma\}=[D][B]\{d\}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{30\left(10^{6}\right)\left(10^{-6}\right)}{0.96(200)}\left[\begin{array}{ccc}
1 & 0.3 & 0 \\
0.3 & 1 & 0 \\
0 & 0 & 0.35
\end{array}\right]\left[\begin{array}{cccccc}
10 & 0 & 10 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & 0 & 20 \\
0 & 10 & -20 & 10 & 20 & 0
\end{array}\right]\left[\begin{array}{r}
0.0 \\
0.0 \\
663.7 \\
104.1 \\
609.6 \\
4.2
\end{array}\right\} \\
& \left\{\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left[\begin{array}{c}
995 \mathrm{psi} \\
-1.2 \mathrm{psi} \\
-2.4 \mathrm{psi}
\end{array}\right]
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The principal stresses and principal angle in element 1 are:

$$
\begin{aligned}
& \sigma_{1}=\frac{1005-301}{2}+\sqrt{\left(\frac{1005+301}{2}\right)^{2}+(2.4)^{2}}=1,005 \mathrm{psi} \\
& \sigma_{2}=\frac{1005-301}{2}-\sqrt{\left(\frac{1005+301}{2}\right)^{2}+(2.4)^{2}}=301 \mathrm{psi} \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{2(2.4)}{1005+301}\right] \approx 0^{\circ}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Plane Stress Example 1

The principal stresses and principal angle in element 2 are:

$$
\begin{aligned}
& \sigma_{1}=\frac{995-1.2}{2}+\sqrt{\left(\frac{995+1.2}{2}\right)^{2}+(-2.4)^{2}}=995 \mathrm{psi} \\
& \sigma_{2}=\frac{995-1.2}{2}-\sqrt{\left(\frac{995+1.2}{2}\right)^{2}+(-2.4)^{2}}=-1.1 \mathrm{psi} \\
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left[\frac{2(-2.4)}{995+1.2}\right] \approx 0^{\circ}
\end{aligned}
$$

Plane Stress and Plane Strain Equations

Problems
12. Do problems 6.6a, 6.6c, 6.7, 6.10a-c, 6.11, and 6.13.
13. Rework the plane stress problem given on page 356 in your textbook using Matlab code FEM_2Dor3D_linelast_standard to do analysis.

Start with the simple two element model. Continuously refine your discretization by a factor of two each time until your FEM solution is in agreement with the exact solution.

How many elements did you need?

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

```
function FEM_2Dor3D_linelast_standard
    Example 2D and 3D Linear elastic FEM code 
        Currently coded to run either plane strain or 
    Variables read from input file
    nprops
nprops 
    ncoord
    ndof
    nnode
    nnode
    coords
    nelem
    maxnodes
    elident(i)
    connect(i,j)
    nfix
    fixnodes(i,j)
    ndload
    dloads(i,j)
        No. material parameters
    of material parameter
    No. spatial coords (2 for 2D, 3 for 3D)
    No. degrees of freedom per node (2 for
    *)
    *)
    to allow extension to plate & beam elements with C^1 continuity)
    No. nodes 
    th coord of jth node, for i=1..ncoord; j=1..nnode
    No. elements
    Max no. nodes on any one element (used for array dimensioning)
    No. nodes on the ith element
    An integer identifier for the ith element. Not used
    in this code but could be used to switch on reduced integration,
    \mathrm{ List of nodes on the jth element}
    List of nodes on the jth element
    Total no. prescribed displacements
    List of prescribed displacements at nodes
    ixnodes(1,j) Node number
            ixnodes(2,}) Displacement component number (1, 2 or 3)
            ixnodes(3,j) Value of the displacement
            Total no. element faces subjected to tractions
            List of element tractions
            dloads(1,j) Element numbe
            dloads(2,j) face number
            dloads(3,j), dloads(4,j), dloads(5,j) Components of traction
        (assumed uniform)
```


Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

```
% To run the program you first need to set up an input file, as described in
% Also change the fopen command in the post-processing step (near the bottom of the
program) to point to a suitable output file. Then execute the file in
the usual fashion (e.g. hit the green arrow at the top of the MATLAB
editor window)
=================== Read data from the input file =============================
you need to change the path & file name to point to your input file
infile=fopen ('Logan_p364_2_element.txt','r');
outfile=fopen('Logan_p364_2_element_results.txt','w');
```


Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

In order to see the displacements, G is divided by 10^{6} and the forces are divided by 10^{3}.

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

Nodal Displacements:

Node Coords	u1	u2				
10.0000 0.0000	-0.0000	-0.0000				
20.000010 .0000	-0.0000	0.0000				
$3 \quad 20.0000$ 10.0000	0.6096	0.0042				
4 20.0000 0.0000	0.6637	0.1041				
Strains and Stresses						
Element; 1						
int pt Coords	e_11	e_22	e_12	s_11	S_22	S_12
$16.6667 \quad 6.6667$	0.0305	0.0000	0.0001	1.0048	0.3014	0.0024
Element; 2						
int pt Coords	e_11	e_22	e_12	s_11	S_22	S_12
113.3333 3.3333	0.0332	-0.0100	-0.0001	0.9952	-0.0012	-0.0024

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard

Nodal Displacements:				
Node	Coords		u1	u2
1	0.0000	0.0000	-0.0000	-0.0000
2	0.0000	10.0000	-0.0000	0.0000
3	20.0000	10.0000	0.6096	0.0042
4	20.0000	0.0000	0.6637	0.1041

Strains and Stresses Element; 1
int pt Coords
16.66676 .6667

Element;
int pt Coords
113.33333 .3333
e_11
0.0305
e 11
e_22
$0.0332-0.0100$

e 12
$\begin{array}{rr}s 22 & S \quad 12 \\ 0.3014 & 0.0024\end{array}$
1.0048
s 22
S_12
0.024

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 8 elements

Plane Stress and Plane Strain Equations
 FEM_2Dor3D_linelast_standard - 8 elements

Nodal Displacements:				
Node	Coords		u1	u2
1	0.0000	0.0000	0.0000	-0.0000
2	10.0000	0.0000	0.2489	0.0317
3	20.0000	0.0000	0.5461	-0.0231
4	0.0000	5.0000	-0.0000	0.0000
5	10.0000	5.0000	0.2706	-0.0276
6	20.0000	5.0000	0.5758	-0.0893
7	0.0000	10.0000	0.0000	-0.0000
8	10.0000	10.0000	0.3068	-0.0923
9	20.0000	10.0000	0.6082	-0.1541

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 8 elements

Strains and Stresses
Element; 1

int pt Coords	e_11	e_22	e_12	s_11	s_22	s_12
13.33331 .6667	0.0249	0.0000	0.0016	1.0051	0.4308	0.0366
Element; 2						
int pt Coords	e_11	e_22	e_12	s_11	s_22	s_12
$16.6667 \quad 3.3333$	0.0271	-0.0119	0.0008	0.8875	-0.0106	0.0183
Element; 3						
int pt Coords	e_11	e_22	e_12	s_11	s_22	S_12
113.33331 .6667	0.0297	-0.0119	-0.0006	0.9949	0.0355	-0.0132
Element; 4						
int pt Coords	e_11	e_22	e_12	s_11	s_22	s_12
116.66673 .3333	0.0305	-0.0132	-0.0001	1.0035	-0.0066	-0.0026

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 8 elements

Strains and Stresses Element; 5
int pt Coords
$1 \quad 3.3333 \quad 6.6667$
Element; 6
int pt Coords Element: 7
Element;
int pt Coords
$113.3333 \quad 6.6667$
Element; 8
int pt Coords
116.66678 .3333

$\mathrm{e} _11$	$\mathrm{e} _22$
0.0271	-0.0000
$\mathrm{e} _11$	$\mathrm{e} _22$
0.0307	-0.0129
$\mathrm{e} _11$	$\mathrm{e} _22$
0.0305	-0.0129
$\mathrm{e} _11$	$\mathrm{e} _22$
0.0301	-0.0130

$\mathrm{e} _12$
-0.0014
$\mathrm{e} _12$
-0.0010
$\mathrm{e} _12$
0.0005

$\mathrm{e} _12$
0.0001

S_11	$\mathrm{S} _22$	$\mathrm{~S} _12$
1.0927	0.4683	-0.0318
S_11	$\mathrm{S} _22$	$\mathrm{~S} _12$
1.0147	0.0079	-0.0230
S_11	$\mathrm{S} _22$	$\mathrm{~S} _12$
1.0086	0.0053	0.0122
S_11	$\mathrm{S} _22$	S 12
0.9931	-0.0017	0.0035

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 8 elements

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 8 elements

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 64 elements

Plane Stress and Plane Strain Equations

FEM_2Dor3D_linelast_standard - 64 elements

End of Chapter 6a

