
Chapter 5b – Plane Frame and Grid Equations 

Learning Objectives
• To derive the stiffness matrix and equations for grid

analysis

• To provide equations to determine torsional
constants for various cross sections

• To illustrate the solution of grid structures

• To develop the stiffness matrix for a beam element
arbitrarily oriented in space

• To present the solution of a space frame

• To introduce the concept of substructuring

Plane Frame and Grid Equations
Grid Equations

A grid is: a structure on which the loads are applied 
perpendicular to the plane of the structure, as opposed to a 
plane frame where loads are applied in the plane of the 
structure. 

Both torsional and bending moment continuity are maintained at 
each node in a grid element.
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Plane Frame and Grid Equations
Grid Equations

Examples of a grid structure are floors and bridge deck 
systems.

Plane Frame and Grid Equations
Grid Equations

Examples of a grid structure are floors and bridge deck 
systems.
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Plane Frame and Grid Equations
Grid Equations

A  representation of the grid element is shown below:

The degrees of freedom for a grid element are: a vertical 
displacement v’i (normal to the grid), a torsional rotation ’ix
about the x’ axis, and a bending rotation ’iz about the z’ axis.

The nodal forces are: a transverse force f’iy, a torsional m’ix
moment about the x’ axis, and a bending moment m’iz about 
the z’ axis. 

Plane Frame and Grid Equations
Grid Equations

Let’s derive the torsional rotation components of the element 
stiffness matrix. 

Consider the sign convention for nodal torque and angle of twist 
shown the figure below.

A linear displacement function  is assumed. 1 2a a x  

Applying the boundary conditions and solving for the unknown 
coefficients gives:

2 1
1

x x
xx

L

  
      

 

Nodal Elemental
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Plane Frame and Grid Equations
Grid Equations

Let’s derive the torsional rotation components of the element 
stiffness matrix. 

Consider the sign convention for nodal torque and angle of twist 
shown the figure below.

Or in matrix form:

Nodal Elemental

  1
1 2

2

x

x

N N




 

     

1 21
x x

N N
L L

 
  where:

Plane Frame and Grid Equations
Grid Equations

To obtain the relationship between the shear strain  and the 
angle of twist ’ consider the torsional deformation of the bar 
as shown below.

maxAB dx R d   

If we assume that all radial lines, such as OA, remain straight 
during twisting or torsional deformation, then the arc length

is:AB
max

d
R

dx
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Plane Frame and Grid Equations
Grid Equations

To obtain the relationship between the shear strain  and the 
angle of twist ’ consider the torsional deformation of the bar 
as shown below.

 2 1x x

d r
r

dx L

  


   


At any radial position, r, we have, from similar triangles OAB
and OCD:

Plane Frame and Grid Equations
Grid Equations

To obtain the relationship between the shear strain  and the 
angle of twist ’ consider the torsional deformation of the bar 
as shown below.

G 

The relationship between shear stress and shear strain is:

where G is the shear modulus of the material. 
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Plane Frame and Grid Equations
Grid Equations

To obtain the relationship between the shear strain  and the 
angle of twist ’ consider the torsional deformation of the bar 
as shown below.

x

J
m

R

 From elementary mechanics of materials, we get:

Where J is the polar moment of inertia for a circular cross 
section or the torsional constant for non-circular cross 
sections. 

Plane Frame and Grid Equations
Grid Equations
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Plane Frame and Grid Equations
Grid Equations

Rewriting the above equation we get:

The nodal torque sign convention gives:

Therefore:

 2 1x x x

GJ
m

L
    

1

2

x x

x x

m m

m m

  
 

   1 1 2 2 2 1x x x x x x

GJ GJ
m m

L L
           

In matrix form, the above equations are:

1 1

2 2

1 1

1 1
x x

x x

m GJ
m L




     
         

Plane Frame and Grid Equations
Grid Equations

Combining the torsional effects with shear and bending effects, 
we obtain the local stiffness matrix equations for a grid 
element.

3 2 3 2

2 2

3 2 3 2

2 2

6 612 12

1 1

1 1
6 64 2

1 1

6 612 12
2 2

2 2

6 62 4
2 2

0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0

EI EIEI EI
L L L Ly

GJ GJ
L Lx x

EI EIEI EI
L LL Lz z

EI EIEI EI
y L L L L

GJ GJ
x xL L

EI EIEI EI
z L LL L

f v

m

m

f v

m

m







                      
           z
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Plane Frame and Grid Equations
Grid Equations

The transformation matrix relating local to global degrees of 
freedom for a grid is:

where  is now positive taken counterclockwise from x to x’ in 
the x-z plane: therefore:

cos sinj i j ix x z z
C S

L L
 

 
   

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

Plane Frame and Grid Equations
Grid Equations

The transformation matrix relating local to global degrees of 
freedom for a grid is:

The global stiffness matrix for a grid element arbitrary oriented 
in the x-z plane is given by:

T
G G G G

k T k T

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T
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Plane Frame and Grid Equations
Grid Example 1

Consider the frame shown in the figure below. 

The frame is fixed at nodes 2, 3, and 4, and is subjected to a 
load of 100 kips applied at node 1. 

Assume I = 400 in4, J = 110 in4, G = 12 x 10 3 ksi, and 
E = 30 x 10 3 ksi for all elements.

Plane Frame and Grid Equations
Grid Example 1

Consider the frame shown in the figure below. 

To facilitate a timely solution, the boundary conditions at nodes 
2, 3, and 4 are applied to the local stiffness matrices at the 
beginning of the solution. 2 2 2 0x zv    

3 3 3 0x zv    

4 4 4 0x zv    
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Plane Frame and Grid Equations
Grid Example 1

Recall the general elemental stiffness matrix:

3 2 3 2

2 2

3 2 3 2

2 2

6 612 12

1 1

1 1
6 64 2

1 1

6 612 12
2 2

2 2

6 62 4
2 2

0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0

EI EIEI EI
L L L Ly

GJ GJ
L Lx x

EI EIEI EI
L LL Lz z

EI EIEI EI
y L L L L

GJ GJ
x xL L

EI EIEI EI
z L LL L

f v

m

m

f v

m

m







                      
           z

 
 
 
 
 
 
 
 
 

Plane Frame and Grid Equations
Grid Example 1

Recall the general transformation matrix:

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

T
G G G G

k T k T
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 1:

2 1
(1)

0 20
cos 0.894

22.36

x x
C

L
  

    

2 1
(1)

20 10
sin 0.447

22.36

z z
S

L
  

   

3

3 3

12 12(30 10 )(400)
7.45

(22.36 12)

EI k
inL


 



34 4(30 10 )(400)
179,000

(22.36 12)

EI
k in

L


  



3

2 2

6 6(30 10 )(400)
1,000

(22.36 12)

EI
k

L


 



3(12 10 )(110)
4,920

(22.36 12)

GJ
k in

L


  



Plane Frame and Grid Equations
Grid Example 1

Beam Element 1:

The global stiffness matrix for element 1, considering only the 
parts associated with node 1, and the following relationship:

T
G G G G

k T k T

1 0 0

0 0.894 0.447

0 0.447 0.894
G

 
   
   

T T

1 0 0

0 0.894 0.447

0 0.447 0.894
G

 
    
  

T

1 1 1

(1)

7.45 0 1,000

0 4,920 0

1,000 0 179,000

x zv

k
in

 

 
    
  

k
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 1:

The global stiffness matrix for element 1, considering only the 
parts associated with node 1, and the following relationship:

(1)

1 0 0 7.45 0 1,000 1 0 0

0 0.894 0.447 0 4,920 0 0 0.894 0.447

0 0.447 0.894 1,000 0 179,000 0 0.447 0.894
G

     
             
            

k

1 1 1

(1)

7.45 447 894

447 39,700 69,600

894 69,600 144,000

x z

G

v

k
in

 

  
   
  

k

T
G G G G

k T k T

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

3 1
(2)

0 20
cos 0.894

22.36

x x
C

L


 
    

3 1
(2)

0 10
sin 0.447

22.36

z z
S

L


 
    

3

3 3

12 12(30 10 )(400)
7.45

(22.36 12)

EI k
inL


 



34 4(30 10 )(400)
179,000

(22.36 12)

EI
k in

L


  



3

2 2

6 6(30 10 )(400)
1,000

(22.36 12)

EI
k

L


 



3(12 10 )(110)
4,920

(22.36 12)

GJ
k in

L
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

The global stiffness matrix for element 2, considering only the 
parts associated with node 1, and the following relationship:

T
G G G G

k T k T

1 0 0

0 0.894 0.447

0 0.447 0.894
G

 
    
  

T

1 0 0

0 0.894 0.447

0 0.447 0.894

T
G

 
   
   

T

1 1 1

(2)

7.45 0 1,000

0 4,920 0

1,000 0 179,000

x zv

k
in

 

 
    
  

k

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

The global stiffness matrix for element 2, considering only the 
parts associated with node 1, and the following relationship:

(2)

1 0 0 7.45 0 1,000 1 0 0

0 0.894 0.447 0 4,920 0 0 0.894 0.447

0 0.447 0.894 1,000 0 179,000 0 0.447 0.894
G

     
             
            

k

1 1 1

(2)

7.45 447 894

447 39,700 69,600

894 69,600 144,000

x z

G

v

k
in

 

 
   
   

k

T
G G G G

k T k T
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 3:

4 1
(3)

20 20
cos 0

10

x x
C

L
  

   

4 1
(3)

0 10
sin 1

10

z z
S

L
  

    

3

3 3

12 12(30 10 )(400)
83.3 /

(10 12)

EI
k in

L


 



34 4(30 10 )(400)
400,000

(10 12)

EI
k in

L


  



3

2 2

6 6(30 10 )(400)
5,000

(10 12)

EI
k

L


 



3(12 10 )(110)
11,000

(10 12)

GJ
k in

L


  



Plane Frame and Grid Equations
Grid Example 1

Beam Element 3:

The global stiffness matrix for element 3, considering only the 
parts associated with node 1, and the following relationship:

T
G G G G

k T k T

1 0 0

0 0 1

0 1 0
G

 
   
  

T

1 0 0

0 0 1

0 1 0

T
G

 
   
  

T

1 1 1

(3)

83.3 0 5,000

0 11,000 0

5,000 0 400,000

x zv

k
in

 

 
    
  

k
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 3:

The global stiffness matrix for element 3, considering only the 
parts associated with node 1, and the following relationship:

(3)

1 0 0 83.3 0 5,000 1 0 0

0 0 1 0 11,000 0 0 0 1

0 1 0 5,000 0 400,000 0 1 0
G

     
           
          

k

1 1 1

(3)

83.3 5,000 0

5,000 400,000 0

0 0 11,000

x z

G

v

k
in

 

 
   
  

k

T
G G G G

k T k T

Plane Frame and Grid Equations
Grid Example 1

Superimposing the three elemental stiffness matrices gives:

1 1 1

98.2 5,000 1,790

5,000 479,000 0

1,790 0 299,000

x z

G

v  

 
   
  

K

The global equations are:

1 1

1 1

1 1

100 98.2 5,000 1,790

0 5,000 479,000 0

0 1,790 0 299,000

y

x x

z z

F k v

M

M
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Plane Frame and Grid Equations
Grid Example 1

Solving the above equations gives: 1

1

1

2.83

0.0295

0.0169
x

z

v in

rad

rad




   
      
      

Plane Frame and Grid Equations
Grid Example 1

Solving the above equations gives: 1

1

1

2.83

0.0295

0.0169
x

z

v in

rad

rad
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Plane Frame and Grid Equations
Grid Example 1

Solving the above equations gives: 1

1

1

2.83

0.0295

0.0169
x

z

v in

rad

rad




   
      
      

The results indicate that the y displacement at node 1 is 
downward as indicated by the minus sign.

The rotation about the x-axis is positive.

The rotation about the z-axis is negative.

Based on the downward loading location with respect to the 
supports, these results are expected.

Plane Frame and Grid Equations
Grid Example 1

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

2 1
(1)

cos
x x

C
L

 
 

2 1
(1)

sin
z z

S
L

 
 

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

1 0 0 0 0 0

0 0.894 0.447 0 0 0

0 0.447 0.894 0 0 0

0 0 0 1 0 0

0 0 0 0 0.894 0.447

0 0 0 0 0.447 0.894

 
  
  

  
 
 
   

0 20
0.894

22.36


  

20 10
0.447

22.36
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0 2.83

0 0.894 0.447 0 0 0 0.0295

0 0.447 0.894 0 0 0 0.0169

0 0 0 1 0 0 0

0 0 0 0 0.894 0.447 0

0 0 0 0 0.447 0.894 0

G

in

rad

rad

   
      
     

   
  
  
      

T d

2.83

0.0339

0.00192

0

0

0

in

rad

rad

 
  
 

  
 
 
 
 

Plane Frame and Grid Equations
Grid Example 1

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

(1)

7.45 0 1,000 7.45 0 1,000 2.83

0 4,920 0 0 4,920 0 0.0339

1,000 0 179,000 1,000 0 89,500 0.00192

7.45 0 1,000 7.45 0 1,000 0

0 4,920 0 0 4,920 0 0

1,000 0 89,500 1,000 0 179,000 0

in

rad

rad

    
       
   

         
 
    

f k Td




1

1

1

2

2

2

19.2

167

2,480

19.2

167

2,660

y

x

z

y

x

z

f k

m k in

m k in

f k

m k in

m k in

    
        

    
      

    
       

(1)k 'd
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3 1
(2)

cos
x x

C
L




 

3 1
(2)

sin
z z

S
L




 

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

1 0 0 0 0 0

0 0.894 0.447 0 0 0

0 0.447 0.894 0 0 0

0 0 0 1 0 0

0 0 0 0 0.894 0.447

0 0 0 0 0.447 0.894

 
   
 

  
 
  
  

0 20
0.894

22.36


  

0 10
0.447

22.36


  

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0 2.83

0 0.894 0.447 0 0 0 0.0295

0 0.447 0.894 0 0 0 0.0169

0 0 0 1 0 0 0

0 0 0 0 0.894 0.447 0

0 0 0 0 0.447 0.894 0

G

in

rad

rad

   
       
    

   
  
   
     

T d

2.83

0.0188

0.0283

0

0

0

in

rad

rad
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

(2)

7.45 0 1,000 7.45 0 1,000 2.83

0 4,920 0 0 4,920 0 0.0188

1,000 0 179,000 1,000 0 89,500 0.0283

7.45 0 1,000 7.45 0 1,000 0

0 4,920 0 0 4,920 0 0

1,000 0 89,500 1,000 0 179,000 0

in

rad

rad

    
       
   

          
 
    

f k Td




1

1

1

3

3

3

7.23

92.5

2,240

7.23

92.5

295

y

x

z

y

x

z

f k

m k in

m k in

f k

m k in

m k in

   
        

    
       

    
       

(2)k 'd

4 1
(3)

cos
x x

C
L

 
 

4 1
(3)

sin
z z

S
L

 
 

Plane Frame and Grid Equations
Grid Example 1

Beam Element 3: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
  
 

  
 
 
 
 

20 20
0

10


 

0 10
1

10


  

CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2 20/48



Plane Frame and Grid Equations
Grid Example 1

Beam Element 3: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0 2.83

0 0 1 0 0 0 0.0295

0 1 0 0 0 0 0.0169

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

G

in

rad

rad

   
      
   

   
  
  
  

   

T d

2.83

0.0169

0.0295

0

0

0

in

rad

rad

 
 
 
 

  
 
 
 
 

Plane Frame and Grid Equations
Grid Example 1

Beam Element 3: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

(3 )

83.3 0 5,000 83.3 0 5,000 2.83

0 11,000 0 0 11,000 0 0.0169

5,000 0 400,000 5,000 0 200,000 0.0295

83.3 0 5,000 83.3 0 5,000 0

0 11,000 0 0 11,000 0 0

5,000 0 200,000 5,000 0 400,000 0

in

rad

rad

    
    
  

         
 
   

f k Td










1

1

1

4

4

4

88.1

186

2,340

88.1

186

8,240

y

x

z

y

x

z

f k

m k in

m k in

f k

m k in

m k in

    
       

    
      

     
       

(3)k 'd
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Plane Frame and Grid Equations
Grid Example 1

Plane Frame and Grid Equations
Grid Example 1 – Forces in the y-direction
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Plane Frame and Grid Equations
Grid Example 1 - Moment about the y’ axis

Plane Frame and Grid Equations
Grid Example 1 - Torsional Moment about the x’ axis
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Plane Frame and Grid Equations
Grid Example 1

Plane Frame and Grid Equations
Grid Example 1

To check the equilibrium of node 1, the local forces and 
moments for each element need to be transformed to global 
coordinates. Recall, that:

    T T -1f Tf f T f T T

Since we are only checking the forces and moments at node 1, 
we need only the upper-left-hand portion of the transformation 
matrix TG

Element 1:

1

1

1

1 0 0 19.2 19.2

0 0.894 0.447 167 1,260

0 0.447 0.894 2,480 2,150

y

x

z

f k k

m k in k in

m k in k in
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Plane Frame and Grid Equations
Grid Example 1

To check the equilibrium of node 1, the local forces and 
moments for each element need to be transformed to global 
coordinates. Recall, that:

    T T -1f Tf f T f T T
Element 2:

1

1

1

1 0 0 7.23 7.23

0 0.894 0.447 92.5 1,080

0 0.447 0.894 2,240 1,960

y

x

z

f k k

m k in k in

m k in k in

       
                 
                  

Element 3:

1

1

1

1 0 0 88.1 88.1

0 0 1 2,340 2,340

0 1 0 186 186

y

x

z

f k k

m k in k in

m k in k in

        
                 
                 

Plane Frame and Grid Equations
Grid Example 1

Check the equilibrium of node 1. 

Remember that forces and 
moments from each element are 
equal in magnitude but opposite 
in sign.

Element 1:

1

1

1

19.2

1,260

2,150

y

x

z

f k

m k in

m k in

   
       
      

Element 2:

1

1

1

7.23

1,080

1,960

y

x

z

f k

m k in

m k in

   
       
       

Element 3:

1

1

1

88.1

2,340

186

y

x

z

f k

m k in

m k in
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Plane Frame and Grid Equations
Grid Example 1

Check the equilibrium of node 1.

1 1,260 1,080 2,340 0.0xM k in     

1 100 7.23 19.2 88.1 0.07yF k     

1 2,150 1,060 186 4.0zM k in      

Plane Frame and Grid Equations
Grid Example 2

Consider the frame shown in the figure below. 

The frame is fixed at nodes 1 and 3, and is subjected to a load 
of 22 kN applied at node 2. 

Assume I = 16.6 x 10-5 m4, J = 4.6 x 10-5 m4, G = 84 GPa, 
and E = 210 GPa for all elements.

Element 1: nodes 1 to 2 

Element 2: nodes 3 to 2 
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Plane Frame and Grid Equations
Grid Example 2

Consider the frame shown in the figure below. 

To facilitate a timely solution, the boundary conditions at nodes 
1 and 3 are applied to the local stiffness matrices at the 
beginning of the solution.

1 1 1 0x zv    

Element 1: nodes 1 to 2 

Element 2: nodes 3 to 2 

3 3 3 0x zv    

Plane Frame and Grid Equations
Grid Example 2

Recall the general elemental stiffness matrix:

3 2 3 2

2 2

3 2 3 2

2 2

6 612 12

1 1

1 1
6 64 2

1 1

6 612 12
2 2

2 2

6 62 4
2 2

0 0

0 0 0 0

0 0

0 0

0 0 0 0

0 0

EI EIEI EI
L L L Ly

GJ GJ
L Lx x

EI EIEI EI
L LL Lz z

EI EIEI EI
y L L L L

GJ GJ
x xL L

EI EIEI EI
z L LL L

f v

m

m

f v

m

m







                      
           z
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Plane Frame and Grid Equations
Grid Example 2

Recall the general transformation matrix:

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

T
G G G G

k T k T

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: from nodes 1 to 2 

2 1
(1)

cos
x x

C
L

 
 

2 1
(1)

sin
z z

S
L

 
 

6 5
4

3 3

12 12(210 10 )(16.6 10 )
1.55 10 /

(3)

EI
kN m

L

 
  

6 5
44 4(210 10 )(16.6 10 )

4.65 10 ꞏ
3

EI
kN m

L

 
  

6 5
4

2 2

6 6(210 10 )(16.6 10 )
2.32 10

(3)

EI
kN

L

 
  

6 5
4(84 10 )(4.6 10 )

0.128 10 ꞏ
3

GJ
kN m

L

 
  

3
1

3
 

0
0

3
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 1:

The global stiffness matrix for element 1, considering only the 
parts associated with node 2, and the following relationship:

T
G G G G

k T k T

1 0 0

0 1 0

0 0 1
G

 
   
  

T

1 0 0

0 1 0

0 0 1

T
G

 
   
  

T

2 2 2

(1) 4

1.55 0 2.32

10 0 0.128 0

2.32 0 4.65

x z

KN
m

v  

 
    
  

k

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1:

The global stiffness matrix for element 1, considering only the 
parts associated with node 2, and the following relationship:

(1) 4

1 0 0 1.55 0 2.32 1 0 0

10 0 1 0 0 0.128 0 0 1 0

0 0 1 2.32 0 4.65 0 0 1
G

kN
m

     
           
          

k

2 2 2

(1) 4

1.55 0 2.32

10 0 0.128 0

2.32 0 4.65

x z

G

v

kN
m

 

 
   
  

k

T
G G G G

k T k T
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: from nodes 3 to 2 

3 2
(2)

cos
x x

C
L




 

3 2
(1)

sin
z z

S
L




 

6 5
4

3 3

12 12(210 10 )(16.6 10 )
1.55 10 /

(3)

EI
kN m

L

 
  

6 5
44 4(210 10 )(16.6 10 )

4.65 10 ꞏ
3

EI
kN m

L

 
  

6 5
4

2 2

6 6(210 10 )(16.6 10 )
2.32 10

(3)

EI
kN

L

 
  

6 5
4(84 10 )(4.6 10 )

0.128 10 ꞏ
3

GJ
kN m

L

 
  

0
0

3
 

3
1

3
 

Plane Frame and Grid Equations
Grid Example 2

Beam Element 2:

The global stiffness matrix for element 2, considering only the 
parts associated with node 2, and the following relationship:

T
G G G G

k T k T

1 0 0

0 0 1

0 1 0
G

 
   
  

T

1 0 0

0 0 1

0 1 0

T
G

 
   
  

T

2 2 2

(2) 4

1.55 0 2.32

10 0 0.128 0

2.32 0 4.65

x z

KN
m

v  

 
    
  

k
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2:

The global stiffness matrix for element 2, considering only the 
parts associated with node 2, and the following relationship:

(2) 4

1 0 0 1.55 0 2.32 1 0 0

10 0 0 1 0 0.128 0 0 0 1

0 1 0 2.32 0 4.65 0 1 0
G

kN
m

     
           
           

k

2 2 2

(2) 4

1.55 2.32 0

10 2.32 4.65 0

0 0 0.128

x z

G

v

kN
m

 

 
   
  

k

T
G G G G

k T k T

Plane Frame and Grid Equations
Grid Example 2

Superimposing the two elemental stiffness matrices gives:

2 2 2

4

3.10 2.32 2.32

10 2.32 4.78 0

2.32 0 4.78

x z

G

v

kN
m

 

 
   
  

K

The global equations are:

2 2
4

2 2

2 2

22 3.10 2.32 2.32

0 10 2.32 4.78 0

0 2.32 0 4.78

y

x x

z z

F kN v

M

M
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Plane Frame and Grid Equations
Grid Example 2

Solving the above equations gives: 2

2

2

0.00259

0.00126

0.00126
x

z

v m

rad

rad




   
      
      

Plane Frame and Grid Equations
Grid Example 2

Solving the above equations gives: 2

2

2

0.00259

0.00126

0.00126
x

z

v m

rad

rad
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Plane Frame and Grid Equations
Grid Example 2

Solving the above equations gives: 2

2

2

0.00259

0.00126

0.00126
x

z

v m

rad

rad




   
      
      

The results indicate that the y displacement at node 1 is 
downward as indicated by the minus sign.

The rotation about the x-axis is positive.

The rotation about the z-axis is negative.

Based on the downward loading location with respect to the 
supports, these results are expected.

2 1
(1)

cos
x x

C
L

 
 

2 1
(1)

sin
z z

S
L

 
 

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

  
 
 
 
 

3
1

3
 

0
0

3
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0.00259

0 0 0 0 1 0 0.00126

0 0 0 0 0 1 0.00126

G m

rad

rad

   
   
   
   

      
  
      

T d

0

0

0

0.00259

0.00126

0.00126

m

rad

rad

 
 
 
 

   
 
 
 

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

(1)

4

1.55 0 2.32 1.55 0 2.32 0

0 0.128 0 0 0.128 0 0

2.32 0 4.65 2.32 0 2.33 0
10

1.55 0 2.32 1.55 0 2.32 0.00259

0 0.128 0 0 0.128 0 0.00126

2.32 0 2.33 2.32 0 4.65 0.00126

m

rad

rad

   
      
   

          
  
      

f k Td

1

1

1

2

2

2

11.0

1.50

31.0

11.0

1.50

1.50

y

x

z

y

x

z

f kN

m kN m

m kN m

f kN

m kN m

m kN m

   
        

   
       

    
      

(1)k 'd
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3 2
(2)

cos
x x

C
L




 

3 2
(1)

sin
z z

S
L




 

Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0

G

C S

S C

C S

S C

 
 
 
 

  
 
 
  

T

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 
 
 
 

  
 
 
  

0
0

3
 

3
1

3
 

Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0.00259

0 0 0 0 0 1 0.00126

0 0 0 0 1 0 0.00126

G m

rad

rad

   
   
   
   

      
  
      

T d

0

0

0

0.00259

0.00126

0.00126

m

rad

rad
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement 
equations can be obtained using f’ = k’GTGd

(2)

4

1.55 0 2.32 1.55 0 2.32 0

0 0.128 0 0 0.128 0 0

2.32 0 4.65 2.32 0 2.33 0
10

1.55 0 2.32 1.55 0 2.32 0.00259

0 0.128 0 0 0.128 0 0.00126

2.32 0 2.33 2.32 0 4.65 0.00126

m

rad

rad

   
      
   

          
   
      

f k Td

2

2

2

3

3

3

11.0

1.50

1.50

11.0

1.50

31.0

y

x

z

y

x

z

f kN

m kN m

m kN m

f kN

m kN m

m kN m

    
        

   
      

    
      

(2)k 'd

x’

z’

Plane Frame and Grid Equations
Grid Example 2

The resulting free-body diagrams:

x’

z’
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Plane Frame and Grid Equations
Grid Example 2 – Forces in the y-direction

Plane Frame and Grid Equations
Grid Example 2 – Torsional Moment about the x’ axis
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Plane Frame and Grid Equations
Grid Example 2 – Moment about the z’ axis

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

In this section, we will develop a beam element that is arbitrarily 
oriented in three-dimensions. 

This element can be used to analyze three-dimensional frames.

Let consider bending about axes, as shown below.
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

The y’ axis is the principle axis for which the moment of inertia 
is minimum, Iy

The right-hand rule is used to establish the z’ axis and the 
maximum moment of inertia, Iz

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Bending in the x’-z’ plane: The bending in the x’-z’ plane is 
defined by m’y

The stiffness matrix for bending the in the x’-z’ plane is:

2 2

2 23 3

4 2 2

2 23 3

12 126 6

6 64 2

12 126 6

6 62 4

y
y

L LL L

EI L LL L

L L LL L

L LL L

 
   
   
  

k

where Iy is the moment of inertia about the y’ axis (the weak 
axis), therefore: Iy < Iz
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Bending in the x’-y’ plane: The bending in the x’-y’ plane is 
defined by m’z

The stiffness matrix for bending the in the x’-z’ plane is:

2 2

2 23 3

4 2 2

2 23 3

12 126 6

6 64 2

12 126 6

6 62 4

z
z

L LL L

L LL LEI

L L LL L

L LL L

 
   
   
  

k

where Iz is the moment of inertia about the z’ axis (the strong 
axis).

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Direct superposition of the bending stiffness matrices with the 
effects of axial forces and torsional rotation give:

3 2 3 2

3 2 3 2

2 2

2 2

3 2

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

6 4 6 2
0 0 0 0 0 0 0 0

6 4 6 2
0 0 0 0 0 0 0 0

0 0 0 0 0

12 6
0 0 0 0

0

z z z z

y y y y

y y y y

z z z z

z z

A E A E

L L
E I E I E I E I

L L L L
E I E I E I E I

L L L L
G J G J

L L
E I E I E I E I

L LL L
E I E I E I E I

L LL L
A E

L
E I E I

L L





  










 

k

3 2

3 2 3 2

2 2

2 2

0 0 0 0 0

12 6
0 0 0 0

12 6 12 6
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0 0

z z

y y y y

y y y y

z z z z

A E

L
E I E I

L L
E I E I E I E I

L L L L
G J G J

L L
E I E I E I E I

L LL L
E I E I E I E I

L LL L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 











 











CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2 40/48



Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

The global stiffness matrix may be obtained using:  Tk T k T

3 3

3 3

3 3

3 3

x

x

x

x

T







 
 
 
 
 
 

3 3

xx yx zx

x xy yy zy

xz yz zz

C C C

C C C

C C C


  

  

  

 
   
  

where:

the direction cosines, Cij’, are defined as shown below:

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

The direction cosines of the x’ axis are:

cos cos cosxx yx zxx        i j k

2 1cos xx

x x
l

L
 


 

The y’ axis is selected to be perpendicular 
to the x’ and the z axes is such a way 
that the cross product of global z with x’
results in the y’ axis as shown in the 
figure.

1
0 0 1

m l
z x y

D D D
l m n

      
i j k

i j 2 2D l m 

2 1cos yx

y y
m

L
 


  2 1cos zx

z z
n

L
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

The z’ axis is determined by the condition that z’ = x’  y’

1

0

z x y l m n
D

m l

    


i j k

Therefore, the transformation matrix becomes:

3 3

xx yx zx

x xy yy zy

xz yz zz

C C C

C C C

C C C


  

  

  

 
   
  

0



 
 
 
 
 
 
 
  

l m n

m l

D D
ln mn

D
D D

ln mn
D

D D
   i j k

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

There are two exceptions that arise when using the above 
expressions for mapping the local coordinates to the global 
system: 

(1) when the positive x’ coincides with z

For the this case, it is assumed that y’ is y.

0 0 1

0 0 0

1 0 0
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

There are two exceptions that arise when using the above 
expressions for mapping the local coordinates to the global 
system: 

(2) when the positive x’ is in the opposite direction as z

For the second case, it is assumed that y’ is y.

0 0 1

0 0 0

1 0 0


 

   
  

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

If the effects of axial force, both shear forces, twisting moment, 
and both bending moments are considered, the stiffness 
matrix for a frame element is: 

   

   

 
 

 

 
 

 

   

   

3 2 3 2

3 2 3 2

2

2

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1 1

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1 1

0 0 0 0 0 0 0 0 0 0

6 4 6
0 0 0 0 0 0

11

46
0 0 0 0

1 1

z z z z

y y y y

y y y y

z z z z

y z y y

zz

y zz

y y

A E A E

L L
E I E I E I E I

L L L L

E I E I E I E I

L L L L

G J G J

L L
E I E I E I

LL

E IE I

L L





     

  

     



  





 
k

 
 

 

 
 

 

   

   

 
 

 

 
 

 

 

2

2

3 2 3

3 2

2

2

2
0 0

11

26
0 0 0 0

1 1

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1

12 6
0 0 0 0

1 1

0 0 0 0 0

6 2
0 0 0 0

11

26
0 0 0 0

1 1

z y

zz

y zz

y y

z z z z

y y y

y y

z z

y z y

zz

y zz

y y

E I

LL

E IE I

L L

A E A E

L L
E I E I E I E I

L L L L

E I E I

L L

G J

L
E I E I

LL

E IE I

L L



 



  



  

   



  



 

 



 

 

   

 
 

 

 
 

 

2

3 2

2

2

1

12 6
0 0 0 0

1 1

0 0 0 0 0

6 4
0 0 0 0

11

46
0 0 0 0

1 1

y

y y

z z

y z y

zz

y zz

y y

E I E I

L L

G J

L
E I E I

LL

E IE I
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3 2 3 2

3 2 3 2

2

2

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1 1

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1 1

0 0 0 0 0 0 0 0 0 0

6 4 6
0 0 0 0 0 0

11

46
0 0 0 0

1 1

z z z z

y y y y

y y y y

z z z z

y z y y

zz

y zz

y y

A E A E

L L
E I E I E I E I

L L L L

E I E I E I E I

L L L L

G J G J

L L
E I E I E I

LL

E IE I

L L
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2

2
0 0

11

26
0 0 0 0

1 1

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

1 1 1

12 6
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1 1

0 0 0 0 0

6 2
0 0 0 0

11

26
0 0 0 0

1 1

z y

zz

y zz

y y

z z z z

y y y

y y

z z

y z y
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y y

E I
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A E A E

L L
E I E I E I E I
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E I E I

L L
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1 1

0 0 0 0 0

6 4
0 0 0 0

11
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0 0 0 0

1 1

y

y y

z z

y z y
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E I E I
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

In this case the symbol  are:
2

12 y
y

s

EI

GA L
 

Where As is the effective beam cross-section in shear.

2

12 z
z

s

EI

GA L
 

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Recall the shear modulus of elasticity or the modulus of rigidity, 
G, is related to the modulus of elasticity and the Poisson’s 
ratio,  as:

 2 1

E
G






This is the form of the stiffness matrix used by SAP2000 for its 
frame element.

CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2 44/48



Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

If y and z are set to zero, the stiffness matrix reduces to:

3 2 3 2

3 2 3 2

2 2

2 2

3 2

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

6 4 6 2
0 0 0 0 0 0 0 0

6 4 6 2
0 0 0 0 0 0 0 0

0 0 0 0 0

12 6
0 0 0 0

0

z z z z

y y y y

y y y y

z z z z

z z

A E A E

L L
E I E I E I E I

L L L L
E I E I E I E I

L L L L
G J G J

L L
E I E I E I E I

L LL L
E I E I E I E I

L LL L
A E

L
E I E I

L L





  










 

k

3 2

3 2 3 2

2 2

2 2

0 0 0 0 0

12 6
0 0 0 0

12 6 12 6
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0 0

6 2 6 4
0 0 0 0 0 0 0 0

z z

y y y y

y y y y

z z z z

A E

L
E I E I

L L
E I E I E I E I

L L L L
G J G J

L L
E I E I E I E I

L LL L
E I E I E I E I

L LL L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 











 











Plane Frame and Grid Equations
Example Frame Application

A bus subjected to a static roof-crush analysis. In this model 
599 frame elements and 357 nodes are used.
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Plane Frame and Grid Equations
Example Frame Application

A bus subjected to a static roof-crush analysis. In this model 
599 frame elements and 357 nodes are used.

Plane Frame and Grid Equations
Concept of Substructure Analysis

Sometimes structures are too large to be analyzed as a single 
system or treated as a whole; that is, the final stiffness matrix 
and equations for solution exceed the memory capacity of the 
computer. 

A procedure to overcome this problem is to separate the whole 
structure into smaller units called substructures. 
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Plane Frame and Grid Equations
Concept of Substructure Analysis

For example, the space frame of an airplane, as shown below, 
may require thousands of nodes and elements to completely 
model and describe the response of the whole structure. 

If we separate the aircraft into substructures, such as parts of 
the fuselage or body, wing sections, etc., as shown below, 
then we can solve the problem more readily and on computers 
with limited memory.

Beam Stiffness

Problems:

10. Do problems 5.1, 5.7, 5.15, 5.28, and 5.51 in your 
textbook. 

11. Do problems 5.20, 5.23, 5.25, 5.35, and 5.53 on pages 
308 - 321 in your textbook. You may use the SAP2000 to 
do frame analysis.
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End of Chapter 5b
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