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Chapter 5b — Plane Frame and Grid Equations

Learning Objectives

B 8 - Toderive the stiffness matrix and equations for grid

A First Course in the a na'ysis
Finite Element Method

» To provide equations to determine torsional
constants for various cross sections

+ Toillustrate the solution of grid structures

» To develop the stiffness matrix for a beam element
arbitrarily oriented in space

» To present the solution of a space frame
+ To introduce the concept of substructuring

Plane Frame and Grid Equations

Grid Equations

A grid is: a structure on which the loads are applied
perpendicular to the plane of the structure, as opposed to a
plane frame where loads are applied in the plane of the
structure.

Both torsional and bending moment continuity are maintained at
each node in a grid element.
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Plane Frame and Grid Equations

Grid Equations

Examples of a grid structure are floors and bridge deck
systems.

Plane Frame and Grid Equations

Grid Equations

Examples of a grid structure are floors and bridge deck
systems.
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Plane Frame and Grid Equations
Grid Equations

A representation of the grid element is shown below:
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The degrees of freedom for a grid element are: a vertical
displacement v’; (normal to the grid), a torsional rotation ¢,
about the x’ axis, and a bending rotation ¢, about the z’ axis.

The nodal forces are: a transverse force ', a torsional m’,

moment about the X’ axis, and a bending moment m’,, about
the z’ axis.

Plane Frame and Grid Equations

Grid Equations
Let’s derive the torsional rotation components of the element
stiffness matrix.

Consider the sign convention for nodal torque and angle of twist
shown the figure below.

mye, 6 LETT My 6,

., ¢,
Ja AN /N FAR
103 [ O~ 1] [ O~
& A S
Nodal Elemental

A linear displacement function is assumed. ¢ =2a, +a,X’

Applying the boundary conditions and solving for the unknown
coefficients gives: ( & — 4

Tj X'+ ¢y,
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Plane Frame and Grid Equations

Grid Equations
Let’s derive the torsional rotation components of the element
stiffness matrix.

Consider the sign convention for nodal torque and angle of twist
shown the figure below.

myy, B Mg, i e, ¢ ., &,
Ja AN /N FAR
103 [ =~ 1] [ O~
A L o N\ 1 s
Nodal Elemental

where: N, =1—Xf N,

Or in matrix form: ¢' =[N, Nz]={ 1,X}
2X

x

L

Plane Frame and Grid Equations
Grid Equations

To obtain the relationship between the shear strain yand the

angle of twist ¢ consider the torsional deformation of the bar
as shown below.

7

If we assume that all radial lines, such as OA, remain straight

during twisting or torsional deformation, then the arc length
AB is:

- do’
AB = ]/maxdx’ =R d¢’ = Vmax = R df!
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Plane Frame and Grid Equations

Grid Equations

To obtain the relationship between the shear strain yand the
angle of twist ¢ consider the torsional deformation of the bar
as shown below.

7

At any radial position, r, we have, from similar triangles OAB
and OCD:
A

dx’ - E(¢2’x _¢1’x)

Plane Frame and Grid Equations

Grid Equations

To obtain the relationship between the shear strain yand the
angle of twist ¢ consider the torsional deformation of the bar
as shown below.

7

The relationship between shear stress and shear strain is:
=Gy

where G is the shear modulus of the material.
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Plane Frame and Grid Equations

Grid Equations
To obtain the relationship between the shear strain yand the
angle of twist ¢ consider the torsional deformation of the bar

as shown below.
Vi

2\
£ \f v

z

dx’

, . , 7J
From elementary mechanics of materials, we get: m, = R

Where J is the polar moment of inertia for a circular cross
section or the torsional constant for non-circular cross
sections.

Plane Frame and Grid Equations
Grid Equations

Cross Section Torsional Constant Cross Section Torsional Constant
1. Chanasl ' f, Wide-flanged beam with
b i cqual fanges
o _L_| P T unequil flang .r
| 7] o [ 3
bt ; _
e
5C h W sC f_
T l 1, B
; '
' B
. Angle
5. Solid crculs
5 ! i hal) -: ,
by
| " 5C
1 5Cls 6 Cl i
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i
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Plane Frame and Grid Equations
Grid Equations G
Rewriting the above equation we get: m, = T(ciﬁz'x — 1)

! !

The nodal torque sign convention gives: My =My
m;, =m,
' GJ , , , GJ , ,
Therefore: My, = T( ¢1X - ¢2x ) m,, = T( ¢2x - ¢1x )

In matrix form, the above equations are:

m1'x _GJ 1 -1 ¢1'x
méx _T —1 1 ¢2'x

Plane Frame and Grid Equations
Grid Equations

Combining the torsional effects with shear and bending effects,
we obtain the local stiffness matrix equations for a grid

element.
o[ E 0 F - 0y
m;x 0 % 0 0 _% 1’x
m1’z _ % O % % 0 % 1’2
f, [ |-2 0 - s 0 _smlly
My, -8l 0 « bx
m.) | & 0 & -2 g 4 |ls
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Plane Frame and Grid Equations
Grid Equations

The transformation matrix relating local to global degrees of
freedom for a grid is: _ i}

10 00 0 O
0 C SO0 0 0
0 -SCO0 0 0

T, =
00 010 0
0 0 00 C S
0 0 00 -S C|

where @is now positive taken counterclockwise from x to X’ in
the x-z plane: therefore:

X =X , z -z
C =cosf = S =singd =-
L L

Plane Frame and Grid Equations
Grid Equations

The transformation matrix relating local to global degrees of
freedom for a grid is:

10 00 0 0]
0 C SO0 0 0
0 -SCO0 0 0
T, =

00 010 0
00 00 C S
0 0 00 -S C|

The global stiffness matrix for a grid element arbitrary oriented

in the x-z plane is given by:
P 7 Y ke :TGTk’GTG
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Plane Frame and Grid Equations
Grid Example 1

Consider the frame shown in the figure below.

y

20 fil—

)Of/ll i @ '@

x '

¥ 1

®

™

Fi,=-100 kip

The frame is fixed at nodes 2, 3, and 4, and is subjected to a
load of 100 kips applied at node 1.

Assume | =400 in4, J=110in% G =12 x 10 3 ksi, and
E =30 x 10 3 ksi for all elements.

Plane Frame and Grid Equations
Grid Example 1

Consider the frame shown in the figure below.

™

Fi,=-100 kip

To facilitate a timely solution, the boundary conditions at nodes
2, 3, and 4 are applied to the local stiffness matrices at the
beginning of the solution. v, =4¢,, =4¢,, =0

V3 :¢3x :¢32 :0
Vo= =0, =0

9/48
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Plane Frame and Grid Equations
Grid Example 1

Recall the general elemental stiffness matrix:

12El BEI  _ 12El BEI |
) = 0 F =5 0 (v
GJ GJ '
m; o = 0 0 -5
1X 1x
m| % o @ w0 m iy
' - 12El BEI 12El BEI '
by | |78 0 =& & 0 =&V
’ !
m2x —% 0 0 % 2X
[ ’
m2z % O % BLEI O % 2z

Plane Frame and Grid Equations
Grid Example 1

Recall the general transformation matrix:

1 0 0 0 0 O
0O C S 0 0 O ke = TGTk'GTG
0O -S CO0 0 O
T, =
O 0 01 0 O
0O 0 0 0 C s
10 0 0 0 -S C]
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 1:

C:=Cos6’=x2—x1 ~0-20

= =-0.894
L 22.36
S=sing=2-%_20"10_4 447
LY 22.36
12E1 _12(30x10°)(400) . . V 6EI _ 6(30x10°)(400) _, 100\
2 (22.36x12°  /in L2 (22.36x12°
4E1 _ 4(30x10°)(400) _ 100 oook.in  ©F - (12x10°)(110) _ , ooy i
L (22.36x12) ’ L ’

(22.36x12)

Plane Frame and Grid Equations
Grid Example 1

Beam Element 1:

The global stiffness matrix for element 1, considering only the
parts associated with node 1, and the following relationship:

kG = TGTké.;TG
1 0 0 1 0 0
TG =0 -0.894 0.447 TGT =0 -0.894 -0.447
0 -0.447 -0.894 0 0447 -0.894
v1 ¢1x ¢1z

745 0 1,000

(1) _ k

KO=| 0 4920 0 /n
1,000 0 179,000
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Plane Frame and Grid Equations
Grid Example 1
Beam Element 1:

The global stiffness matrix for element 1, considering only the
parts associated with node 1, and the following relationship:

kG = TGTkéTG

1 0 0 7.45 0 1,000 || 1 0 0
k,"=|0 -0.894 -0.447| 0 4,920 0 0 -0.894 0.447

0 0.447 -0.894 (/1,000 0 179,000 (|0 -0.447 -0.894

Vv, 28 tre

745 447 894
ko =| 447 39,700 69,600 K/

~894 69,600 144,000

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

C=cosg="e"%_0720_ g9y
L'? 2236
s=sing=2-4_9"10_ 4447
L'»  22.36
12E1 _ 12(30x10°)(400) __ o/ BEI _ 6(30><103)(4(20) 1000k
E (22.36x12) in 2 (22.36x12)
4EI _ 4(B0x10°)(400) _ 470 oon i G _(12x10°)(110) _, o0

L (22.36x12) ’ L (22.36x12)
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

The global stiffness matrix for element 2, considering only the
parts associated with node 1, and the following relationship:

kG = TGTkéTG
1 0 0 1 0 0
TG =0 -0.894 -0.447 TGT =10 -0.894 0.447
0 0447 -0.894 0 -0.447 -0.894
V1 ¢1x ¢1z

745 0 1,000

(2) _ k

K@= 0 4920 0 /n
1000 0 179,000

Plane Frame and Grid Equations
Grid Example 1

Beam Element 2:

The global stiffness matrix for element 2, considering only the
parts associated with node 1, and the following relationship:

kG = TGT k'GTG

1 0 0 7.45 0 1,000 |1 0 0
0 -0.894 0.447 0 4,920 0 0 -0.894 -0.447

0 -0.447 -0.894 || 1,000 0 179,000|{0 0.447 -0.894

2 _
k. =

V, Pix ?,
7.45 447 -894
kG(2) =| 447 39,700 -69,600 kin
-894 -69,600 144,000
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 3:

X, —X, 20-20
C=cosf=—"——"1= -0
L( ) 10 -
. Z, —Z 0_10 Fyy==100 kip
S=sind="24_"1= —_1
& 10
8 3
1ng| _12(30x10 )(3400) _833K/in G_I?:w=5,000k
L (10x12) L (10x12)
8 3
41 HE0:0NA00) _ 400 000k .in B2 - UZXACUNI0) 4000 iy
L (10x12) L (10x12)

Plane Frame and Grid Equations
Grid Example 1

Beam Element 3:

The global stiffness matrix for element 3, considering only the
parts associated with node 1, and the following relationship:

kG:TGTkéTG
10 O 1 0 O
T.=|0 0 -1 T =0 0 1
01 O 0O 10
V1 ¢1x ¢1z

83.3 0 5,000
k®=| 0 11000 0 k,
5000 O 400,000
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Plane Frame and Grid Equations
Grid Example 1
Beam Element 3:

The global stiffness matrix for element 3, considering only the
parts associated with node 1, and the following relationship:

kG = TGT k’GTG

10 0} 833 0 5000 (|1 O O
00 -1 0 11,000 0 0 0 1
0 1 0| 5000 0 400,000(|0 -1 O

2 2 .
833 5000 O

k. =| 5,000 400,000 0 k¢
0 0 11,000

®) _
k. =

Plane Frame and Grid Equations
Grid Example 1

Superimposing the three elemental stiffness matrices gives:

v Pux 8
98.2 5000 1790

K; =| 5000 479,000 0
-1,790 0 299,000

The global equations are:

F,=-100k] [ 982 5000 -1790 |(v,
M, =0 t=|5000 479000 0 |4,
M,, =0 ~1790 0 299,000 ||¢,

15/48
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Plane Frame and Grid Equations

Grid Example 1
% -2.831in

1
¢, r =1 0.0295rad
&, —-0.0169 rad

Solving the above equations gives:

AN

\

L - \\\ /
—\/

Plane Frame and Grid Equations

Grid Example 1
Vv, -2.83in

¢, r =1 0.0295rad
&, —-0.0169 rad

Solving the above equations gives:

16/48
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Plane Frame and Grid Equations

Grid Example 1
% -2.831in

1
¢, r =1 0.0295rad
&, —-0.0169 rad

Solving the above equations gives:

The results indicate that the y displacement at node 1 is
downward as indicated by the minus sign.

The rotation about the x-axis is positive.
The rotation about the z-axis is negative.

Based on the downward loading location with respect to the
supports, these results are expected.

Plane Frame and Grid Equations
Grid Example 1

Beam Element 1: The grid element force-displacement
equations can be obtained using f = k';T;d

~x, 0-20

X
C=cosf= 2(1) = =-0.894
L 22.36 L
. z, -z, 20-10
S=sing=—=2;-"= =0.447
L 22.36
Fiy==100 kip
1 0 00 0 0] [1 0 0 0 0 0
0 C SO0 0 O 0 -0.894 0447 0 O 0
T - 0 -SCO0 0 0| |0 -0447 0894 0 0 0
€ 1lo 0 01 0 of |0 0 0 1 0 0
0 0 00 C S 0 o0 0 0 -0.894 0.447
0 0 00 -sC| |0 O 0 0 -0.447 -0.894
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Plane Frame and Grid Equations
Grid Example 1

Chapter 5 - Plane Frame and Grid Equations - Part 2

Beam Element 1: The grid element force-displacement
equations can be obtained using f = k';T;d

T.d=

O O O O O -

0 0
-0.894 0.447
-0.447 -0.894

0 0

0 0

0 0

0 0 0
0 0 0
0 0 0
1 0 0

0 -0.894 0.447

0 -0.447 -0.894 |

-2.83in
0.0295 rad
—-0.0169 rad

0
0
0

Plane Frame and Grid Equations
Grid Example 1

-2.83in
—0.0339 rad
0.00192 rad

0
0
0

Beam Element 1: The grid element force-displacement
equations can be obtained using f = k';T;d

f, =kTd=

1x

1z

[ 7.45 0 1,000 -7.45 0 1,000 |[ -2.83in
0 4,920 0 0 -4,920 0 —-0.0339rad
1,000 0 179,000 -1,000 0 89,500 ||0.00192 rad
-7.45 0 -1,000 7.45 0 -1,000 0
0 -4,920 0 0 4,920 0 0
L 1,000 0 89,500 -1,000 0 179,0007'l 0 !
Y T
-19.2k k' d
-167 k -in
-2,480k -in 2480 k-in.
19.2k 2660 k-in. 3 (@ 167 kin. 7
167 k -in 167 k-in. 192 kip
—2,660k -in 19.2 kip

18/48
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 2: The grid element force-displacement
equations can be obtained using f = k';T;d

% _0-20_ 594

C =cosé = X3 =
L2 22.36

19/48

S=sing=2"2_0"10_ 4447
L@ 22.36
A =~ 100kip
1 0 00 0 0] [1 © 0 0 0 0
0 C SO0 O0 O 0 -0.894 0447 0 O 0
7..|0 S CoO 0 0 |0 0447 0894 0 0 0
1o 0 01 0 O 0 O o 1 0 0
0 0 00 C S 0 O 0 0 -0.894 -0.447
0 0 00 -sSC] [0 O 0 0 0447 -0.894]
Plane Frame and Grid Equations
Grid Example 1
Beam Element 2: The grid element force-displacement
equations can be obtained using f = k';T;d
(1 0 0 0 O 0 ][ -2.83in -2.83in
0 -0.894 0447 0 O 0 0.0295 rad -0.0188 rad
Tq_|0 0447 0894 0 0 0 |]-0.0169rad| _ | 0.0283 rad
1o o0 o 1 0 0 0 0
0 o0 0 0 -0.894 -0.447 0 0
0o 0 0 0 0447 -0.894] 0 0
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Plane Frame and Grid Equations
Grid Example 1

Beam Element 2: The grid element force-displacement
equations can be obtained using f = k';T;d

(745 0 1000 -745 0 1,000 1( -2.83in
0 4,920 0 0 4920 0 ||-0.0188rad
¢ _KTq| 1000 0 179,000 -1000 0 89,500 || 0.0283rad
R (R /TR -1,000  7.45 0 -1,000 0
0 4920 0 0 4,920 0 0
L1000 0 89,500 -1000 O 179,000 | 0
| | )
f, 7.23k k' oy d
my, -92.5k-in 295 ein. 35y ™ 723 kip
m;, | |-2,240k-in
[ -7.23k
. 7.23 ki ¥
m, 92.5k -in P T 2240 kein.
) 92.5 k-in.
m;, —295Kk -in

Plane Frame and Grid Equations
Grid Example 1

Beam Element 3: The grid element force-displacement
equations can be obtained using f = k';T;d

C:cos6’:X4_X1:20_20:0
L® 10
. z,-z, 0-10 P
S = SII”I@ = (3) = = _1 Iuﬂ///
L 10 ._{_;;ﬁ_ﬁ}?
z - Fiy= r|<mmp
1 0 00 0 0] [10 0 00 O]
0 C SO0 O0 O 00 -100 O
T_O—SCOOO_O1OOOO
€ 1lo 0o 01 0 0| |[OO O 100
0 0 00 C S 00 0 00 -1
0 0 00 -SC|] |00 O0O01 0]




CIVL 7/8117

Plane Frame and Grid Equations

Grid Example 1

Chapter 5 - Plane Frame and Grid Equations - Part 2

Beam Element 3: The grid element force-displacement
equations can be obtained using f = k';T;d

T.d=

®
O O O O O -

0
-1

o O O -~ O O
o O O o

O O ~ O O O
- O O O O o
o O O o

-2.83in
0.0295 rad
-0.0169 rad
0
0
0

-2.83in
0.0169 rad
0.0295 rad

0
0
0

Plane Frame and Grid Equations

Grid Example 1

Beam Element 3: The grid element force-displacement
equations can be obtained using f = k';T;d

[83.3 0 5000 -83.3 0 5,000 1 -2.83in
0 11,000 0 0  -11,000 0 0.0169 rad
¢ _rd—| 5000 0 400,000 -5,000 0 200,000 | |0.0295 rad
@ -83.3 0 -5,000 83.3 0 -5,000 0
0 -11,000 0 0 11,000 0 0
15,000 0 200,000 -5,000 0 400,000 | | 0 :
Y T
fy -88.1k K®  suokn [T d
m; 186 k -in
m;, —-2,340k -in
il 88.1k
my, —-186 Kk -in
m;, -8,240k -in
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Plane Frame and Grid Equations
Grid Example 1

88.1 kip
8240 k-in.

92.5 k-in,
295 k-in, 3 N 723 kip

2240 k-in. 2340 k-in. 186 k-in.

Plane Frame and Grid Equations

Grid Example 1 - Forces in the y-direction

22/48
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Plane Frame and Grid Equations

Grid Example 1 - Moment about the y’ axis

B30 kip

Plane Frame and Grid Equations

Grid Example 1 - Torsional Moment about the x’ axis

23/48
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Plane Frame and Grid Equations
Grid Example 1

88.1 kip
8240 k-in.

92.5 k-in.
295 k-in. 3

2240 k-in. 2340 k-in.

2660 k-in.

167 k-in. ek

Plane Frame and Grid Equations
Grid Example 1

To check the equilibrium of node 1, the local forces and

moments for each element need to be transformed to global

coordinates. Recall, that:

f=Tf = f=TF T =T"

Since we are only checking the forces and moments at node 1,
we need only the upper-left-hand portion of the transformation

matrix Tg
Element 1:
f1y 1 0 0 -19.2k -19.2k
m, +=|0 -0.894 -0.447 -167k-int=<1260Kk-in
m,, 0 0447 -0.894||-2,480Kk-in 2,150k -in

24/48
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Plane Frame and Grid Equations
Grid Example 1

To check the equilibrium of node 1, the local forces and

moments for each element need to be transformed to global
coordinates. Recall, that:

f=Tf = f=T'f T =7"

Element 2:
fy 1 0 0 -7.23k 7.23k
m, »=/0 -0.894 0.447 -92.5k-iny=< 1,080k -in
m,| [0 -0.447 -0.894|(-2,240k-in -1,960 Kk -in
Element 3:
fy 1 0 O -88.1k -88.1k
m, =0 0 1]9-2340k-in;=¢-2,340k-in
m,|] [0 -1 0 -186 k -in -186 k -in

Plane Frame and Grid Equations
Grid Example 1

Check the equilibrium of node 1. Element 1:
f, -19.2k
Remember that forces and {mu} = {1, 260k - in}
moments from each element are m,} (2150k-in
equal in magnitude but opposite
in sign. N Element 2:
f, 7.23k
m, +=4 1,080k-in
{mj {1,960 k-inJ

Element 3:

AN/ |
; ; f1y -88.1k
7 m,, r =4-2,340 k -in
1960 kl/n/f m,, -186 k -in
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Plane Frame and Grid Equations
Grid Example 1

Check the equilibrium of node 1.
ZM1X =-1,260-1,080+2,340=0.0k -in

ZMu =-2,150+1,060+186 =—-4.0k -in

ZFW =-100-7.23+19.2+88.1=0.07 k

/so k-in.

1960 k|/n/l

Plane Frame and Grid Equations
Grid Example 2

Consider the frame shown in the figure below.

y

X 3

/3 22 kN @
3m

//
@; 3(D : Element 1: nodes 1 to 2
m

Element 2: nodes 3 to 2

The frame is fixed at nodes 1 and 3, and is subjected to a load
of 22 kN applied at node 2.

Assume | =16.6 x 10°m*, J=4.6 x 10° m?, G = 84 GPa,
and E = 210 GPa for all elements.

26/48
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Plane Frame and Grid Equations
Grid Example 2

Consider the frame shown in the figure below.

y

X 3

/3 22 kN @
3m

//
ﬁ; 3(D 2 Element 1: nodes 1 to 2
m

Element 2: nodes 3 to 2

To facilitate a timely solution, the boundary conditions at nodes
1 and 3 are applied to the local stiffness matrices at the
beginning of the solution. ¢ =¢ =0

1 1x 1z

V3:¢3x :¢3220

Plane Frame and Grid Equations
Grid Example 2

Recall the general elemental stiffness matrix:

Py o[E 0 - 0 |y
m‘;x 0 % 0 _% 1’x
m‘;z — % O % 6ngI O % 1’2
By | |- 0 - 2| 0 Sy
My, 0o -« 0o < bx
m.) | & 0 & - o 4|4



CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2 28/48

Plane Frame and Grid Equations
Grid Example 2

Recall the general transformation matrix:

1 0 0 0 0 O
0O C S 0 0 O ke=TeTkéTe
0O -SCO0 0 O
T, =
0O 0 01 0 O
0O 0 00 C s
0 0 0 0 -S C

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: from nodes 1 to 2

X, —X, 3
C=cosf=—--"=—=1
L’ 3
. z,—-z, O
S=sinf=—=2-—"1=—=0
L™ 3
6 -5
123EI _12(210x10 )(316.6><10 ) 1 55%10°kN /m
L 3)
6 -5
6_I§I:6(210><10 )(26.6><10 ) 2 39%10°KN
L (3)
6 -5
%:4(210“0 ;(16.6><10 ) _ 4.65x10°kN-m

GJ _ (84x10°)(4.6x10°°)
L

=0.128 x10*kN'm




CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2

Plane Frame and Grid Equations
Grid Example 2
Beam Element 1:

The global stiffness matrix for element 1, considering only the
parts associated with node 2, and the following relationship:

kG:TGTkéTG
100 100
T.=/0 10 T =0 10
0O 0 1 0O 0 1
V2 ¢2x ¢22

1.55 0 —-2.32
k”=10* 0 0128 0 [|KV,
-232 0 4.65

Plane Frame and Grid Equations
Grid Example 2
Beam Element 1:

The global stiffness matrix for element 1, considering only the
parts associated with node 2, and the following relationship:

kG = TGT k'GTG

10 0][15 0 -232][1 0 0
k" =10‘/0 1 0| 0 0128 0 [0 1 0kN/

0 0 1]-232 0 465 (|0 0 1

V, Do o
155 0 -2.32

k" =10* 0 0128 0 [KN/
232 0 465
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: from nodes 3 to 2

X,—-%X, 0
C=cosf=—"—~2=_—=
1> 3
: z,-2 3
S=sing=—=-2 =—=1
L™ 3
6 -5
123EI _12(210x10 )(316.6><10 ) 1 55%10°kN /m
L (3)
6 -5
6_I§I:6(210><10 )(26.6><10 ) 2 39%10°KN
L (3)
6 -5
4E1 _ 4(210x10°)(16.6x107°) _ 4 oo 4oapnn
L 3
6 -5
%:(84“0 )534.6><10 ) 0128 x10°KN-m

Plane Frame and Grid Equations
Grid Example 2

Beam Element 2:

The global stiffness matrix for element 2, considering only the
parts associated with node 2, and the following relationship:

kG:TGTkéTG
1 0 O 10 O
T.=|0 0 1 T =0 0 -1
0O 10 01 O
V2 ¢2x ¢22

1.55 0 -2.32
k®=10* 0 0128 0 [«
-232 0 4.65
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Plane Frame and Grid Equations
Grid Example 2
Beam Element 2:

The global stiffness matrix for element 2, considering only the
parts associated with node 2, and the following relationship:

kG = TGT k'GTG

10 0][155 0 -232)[1 0 0
k”=10*/0 0 —1| 0 0128 0 |0 0 1kN/
010232 0 4650 -10
V2 ¢2x ¢22
156 232 0

k,”=10*/2.32 465 0 |KN/
0 0 0128

Plane Frame and Grid Equations
Grid Example 2

Superimposing the two elemental stiffness matrices gives:
V2 ¢2x ¢22
3.10 232 -2.32
—10% KN
K,=10| 232 478 0 KN/
-232 0 4.78

The global equations are:
F,, =—-22kN 3.10 232 -232||v,

M, =0 +=10°| 232 478 0 |4,
M,, =0 232 0 478 ||4,
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Plane Frame and Grid Equations

Grid Example 2
v, —0.00259 m

#,, b =1 0.00126 rad
4, | |-0.00126 rad

Solving the above equations gives:

Plane Frame and Grid Equations

Grid Example 2
v, —0.00259 m

#,, b =1 0.00126 rad
4,,| |-0.00126 rad

Solving the above equations gives:
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Plane Frame and Grid Equations

Grid Example 2
v, —0.00259 m

#,, b =1 0.00126 rad
4, | |-0.00126 rad

Solving the above equations gives:

The results indicate that the y displacement at node 1 is
downward as indicated by the minus sign.

The rotation about the x-axis is positive.
The rotation about the z-axis is negative.

Based on the downward loading location with respect to the
supports, these results are expected.

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: The grid element force-displacement
equations can be obtained using f = k';Tsd

X, =%, 3

C=cosf=—"=—=1
L™ 3
. z, -z, 0O
S=sinf=—=2"-"T=—=0
L 3
1 0 00 O 0] [100O0O0 O]
0 C SO0 O0 O 010000
T_o-sc:ooo_oo1ooo
€ 1lo 0 01 0 0|l |[00O01O00O
0 0 00O C S| |0000T*10
0 0 00 -SC|] [00O0O0O0 1]
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Plane Frame and Grid Equations
Grid Example 2

Chapter 5 - Plane Frame and Grid Equations - Part 2

Beam Element 1: The grid element force-displacement

equations can be obtained using f

T.d=

O O O O O -

O O O O ~ O

O O O -~ O O

O O ~ O O O

O -~ O O O O

-~ O O O o o

0

0

0
-0.00259 m
0.00126 rad
—0.00126 rad

k'sTed

0

0

0
-0.00259 m
0.00126 rad
—0.00126 rad

Plane Frame and Grid Equations
Grid Example 2

Beam Element 1: The grid element force-displacement

equations can be obtained using f = k';T;d
(155 0 232 155 0  232] 0
0 0128 0 0 -0128 0 0
¢ —kTd—10¢| 232 0 465 -232 0 233 0
-155 0 -232 155 0  -232|| -0.00259 m
0 -0128 0 0 0128 0 |[|0.00126rad
232 0 233 232 0  465](-0.00126rad)
|
] [ 11.0kN KO d
m;x _1.50kN -m I}' 1.50 kN - m
m,| | sromvm | R o 2/,
f, | |-11.0kN ' .
’ 1.50 kN - m
m,, 1.50 kN -m © kN 11 KN
m,, 1.50 kN -m
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement
equations can be obtained using f = k';T;d

X, — X 0
C=cosf=—2-2=—=0
L? 3
. Z,—Z 3
S=sing=—=-2 =—=1
L 3
1 0 00 0O 0] [1 0 00 0 O]
0 C SO0 O0 O] |00 1000
T_o-scooo_o-1oooo
1o 0 01 0 0|l |00 0100
0 0 00O C S| |00 0O0TUO0O 1
0 0 00 -SC| |00 OO0 -10]

Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement

equations can be obtained using f = k';T;d
1 0 00 0 0] 0 0
001000 0 0
T4|0 100 00 0 _ 0
1o 0 0 1 0 0f|-0.00259m ~0.00259 m
0 0 00 O 1[0.00126rad | |-0.00126 rad
0 0 0 0 -1 0]|-0.00126rad] [-0.00126 rad
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Plane Frame and Grid Equations
Grid Example 2

Beam Element 2: The grid element force-displacement
equations can be obtained using f = k';T;d

[1.55 0 232 -155 0 2.32 ] 0

0 0128 0 0 -0128 0 0

¢ —kTd—10°| 232 0 465 -232 0 2.33 0
@ -1.55 0 -2.32 155 0 -2.32|| -0.00259 m
0 -0128 O 0 0128 0 ||-0.00126rad
| 2.32 0 233 232 0 4.65 ||-0.00126 rad |

1 T
~11.0kN K@ d
m, ~1.50 kN -m I S wiin
m,, 1.50 kN -m
11.0kN 1.50 kN
mj, 1.50 kN -m z
m;, 31.0kN-m e

m

Plane Frame and Grid Equations
Grid Example 2

The resulting free-body diagrams:

3ILOKN-m 4

I.50kN - m

¥
1.50 kN - m |

31.0 kN M o
v 1.50 kN - m

11 kN

©

11 kN
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Plane Frame and Grid Equations

Grid Example 2 - Forces in the y-direction

1LS0KN - m

i
1.50 kN mL 2 )(

.\lukt.’yT ‘, QHN ‘:/4

I
11 kN I kN

Plane Frame and Grid Equations

Grid Example 2 — Torsional Moment about the x’ axis

1L.50 kN - m L
JLOKN-m

1 kN
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Plane Frame and Grid Equations

Grid Example 2 — Moment about the z’ axis
/

\ . |
2 /v

& I

& / .""‘

/

LS0OKN -m |

310 kN })?
» |
11 kN 11 kN

Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space
In this section, we will develop a beam element that is arbitrarily

oriented in three-dimensions.
This element can be used to analyze three-dimensional frames.

Let consider bending about axes, as shown below.
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Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space
The y’ axis is the principle axis for which the moment of inertia
iS minimum, Iy

The right-hand rule is used to establish the z’ axis and the
maximum moment of inertia, I,

Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space

Bending in the x’-z’ plane: The bending in the x’-z’ plane is
defined by m’,

The stiffness matrix for bending the in the x’-z’ plane is:

12L 612 -12L 62
« _Ely 6L* 4 -6 21°
Yoot -12L -el2 12L -6L2
6> 218 67 41°

where |, is the moment of inertia about the y’ axis (the weak
axis), therefore: I, <1,
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Bending in the x’-y’ plane: The bending in the x’-y’ plane is
defined by m’,

The stiffness matrix for bending the in the x’-z’ plane is:

12L 62 -12L  6L?
El 6L2 412 -8.2 28

ro_ z

M -12L -6L2  12L -612
6L2 210 -8L2 41°

where |, is the moment of inertia about the z’ axis (the strong

axis).

Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space

Direct superposition of the bending stiffness matrices with the

effects of axial forces and torsional rotation give:

AE 0 0 0 0 SAE o 0 0 0 0
L L
o R2EL 0 o SEL 1 o _f2EI 0 0 o OEL
[k [ & [k
0 o T2EL BEL o 1 0 12EL 0 BEL
[E e | B &
0 0 0 &l 0 o 1 o 0 o & o 0
L I L
6EI 4E| BEI 2E|
0 o —r 0o —* 0o | o© 0 =L 0 = o0
[k L | [k L
o GEIZ 0 0 o AELIZ Lo 76LEZEIZ 0 0 0 ZELIZ
K= e = e e e - il
# 0 0 0 0 o, A—LE 0 0 0 0 0
o M2E! 0 0 o BELID ,  12EL 0 0 o 8E!
& [ | & &
12E1 6EI 12E1 BEI
0 o = o = o oo 0 > 0 —X 0
& [k 1 [k [k
0 0 o &1 o o I o 0 0 SRR 0
L I L
0 o SEL 2L, 0 BElL, , 4EL
L L I & L
o BEL 0 0 o 2Bl | o, BE 0 0 o 4EL
[k L [k L
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Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

The global stiffness matrix may be obtained using: k=T'k'T

where: o C. C

XX yx' sz’
T = ﬂi)x3 A’3x3 = ny' ny' C:zy'
23)(3 sz' Cyz' sz'

ﬂﬁx?:

the direction cosines, C;;, are defined as shown below:

Y

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space
The direction cosines of the x’ axis are:

X' =cos0, i+cosf,j+cosd,k

X, =%
L

cosé = =1 cosd,, = Y2~ ¥ _

The y’ axis is selected to be perpendicular
to the x’ and the z axes is such a way
that the cross product of global z with x’
results in the y’ axis as shown in the
figure.

i j kK
2xx=y'=30 0 1=-Dislj  poiiEim

Il m n
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Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space

The z’ axis is determined by the condition that z’=x"x y’

Therefore, the transformation matrix becomes:

I m n
Xx' yx' sz' m |
o7|C G Gl 55 O
N In mn
o b

Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space

There are two exceptions that arise when using the above
expressions for mapping the local coordinates to the global
system:

(1) when the positive X’ coincides with z

For the this case, it is assumed that y’ is y.

1, oo
o o o
o o -~




CIVL 7/8117 Chapter 5 - Plane Frame and Grid Equations - Part 2 43/48

Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space

There are two exceptions that arise when using the above
expressions for mapping the local coordinates to the global
system:

(2) when the positive X’ is in the opposite direction as z

For the second case, it is assumed that y’ is y.

N
Il
-~ O O

o O O
o O

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

If the effects of axial force, both shear forces, twisting moment,
and both bending moments are considered, the stiffness
matrix for a frame element is:

AE

- 0 0 0 0 0 | - 0 0 0 0 0
1 _
o 12E1, o o o 2mzl [ o 312EI‘ o o o Z§EI‘
U1+o,) U(1+o,) L(1+,) U(1+o,)
12E1 -BE| I ~12E1, -6E|
0 0 Y0 0 0 0 Y0 v 0
C(1+,) C(1+,) | C(1+,) L(1+o,)
0 0 0o &2 0 0 I o 0 0o &2 0 0
L " L
—6EI 4+®,)E| 6EI 2-d,)E|
0 o OEL o, (EeJEL o SEL, (mEL o
Z(1+d,) L(1+@,) Z(1+d,) L(1+@,)
|
4+0,)EL 2-0 )EI
0 GEL 0 0 0 ( ) 1 © 6E| 0 0 0 ( )
o I ) o) o L)
J‘TE 0 0 0 0 0 I ATE 0 0 0 0 0
;12EIZ o o o 6El, | o _12EL o o o 276EI,
(1+o,) C(1+o,) | C(1+o,) (1+,)
~12E1 6EI 12E1 6EI
0 0 < 0 —r 0 I o 0 x 0 T 0
(1+,) C(1+o,) I C(1+o,) C(1+o,)
0 0 0o &2 0 0 | o 0 o & 0 0
L L
~6E| 2-,)E| 6EI 4+@,)E|
0 0 o (-®)EL 0 Iy 0 y o 2 0
(1+,) L(1+®,) 1 (1+,) L(1+,)
2-@, | — 4+ )EI
o _EL o o (2-2,)EL | 6E|, 0 0 0 { - )
(1+o,) L(1+@,) 1 C(1+o,) L(1+@,)
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Plane Frame and Grid Equations

Beam Element Arbitrarily Oriented in Space
12El, O = 12El,

In this case the symbol ® are: @, =

Y GAL * GAL
Where A, is the effective beam cross-section in shear.
AE 0 0 0 0 0 1-AE 0 0 0 0
L | L
0 12E1, 0 0 0 6El, o 12EL 0 0 0 6El,
C(1ea,) (vo,) | C(1ra,) Z(1+o,)
o R 12EL -6EI, R I o o 128l -6EI, R
C(1+o,) C(1+o,) 1 L(1+o,) U1+,
0 0 0o &2 0 0 I o 0 0o &2 0 0
L | L
o o Z—GEIy o (r®)EL R | o o Z6E|y 0 (2-®)EL R
E(1+0,) L1+ o) E(ro,) LA+ a,)
|
o _BEL o o 0 (4+o,)EL, | 6EI, 0 o o (2-0,)E1
oo DB 00 ey L0 Fey_ C 0% s,
_AE 0 0 0 0 AE 0 0 0 0 0
L I L
“12E), 6EL | 12E1, 6EI,
0 L1+, ) 0 0 0 C(1+o,) | 0 C(1+o,) 0 0 0 C(1+o,)
o o “2EL, 6E|, o I o . 2EL 6E|, 0
*(1+d,) 2(1+@,) | 2(1+@,) (1+,)
0 0 0o &2 0 0 | o 0 o &2 0 0
T L
o 0 SElL, . (2-0) o 1, o BEL,  ,  (4:0)El o
F(1+o,) L(1+®,) I C(1+o,) L(1+,)
R 6EI, o o (2-o,)E1, | BEI 0 o R (4-’my)E\Z
*(1+,) L(1+@,) 1 2(1+@,) L(1+d,)

Plane Frame and Grid Equations
Beam Element Arbitrarily Oriented in Space

Recall the shear modulus of elasticity or the modulus of rigidity,
G, is related to the modulus of elasticity and the Poisson’s
ratio, v as: E

©20 )

This is the form of the stiffness matrix used by SAP2000 for its
frame element.
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Beam Element Arbitrarily Oriented in Space

Chapter 5 - Plane Frame and Grid Equations - Part 2

If ®, and @, are set to zero, the stiffness matrix reduces to:
AE 0 0 0 0 0 _AE 0 0 0 0 0
L L
o 12LEIZ 0 0 o 6?1 0 _12L|§|1 o 0 6?1

12E1 6EI 12E1 6EI
0 0 i 0 = 0 0 0 5t 0 - o
o o o & o 0 0 0 o -8 o 0
L L
El 4E1I El 2E|I
0 0 -67; 0 —r 0 0 0 67; o —> 0
L L L L
0 6|:2|1 0 0 0 4E|, 0 —GEZEIZ o o 0 2E|,
K - L L L L
“AE 0 0 0 0 0 AE 0 0 0 0 0
L L
0 —123EIZ 0 0 0 -6E|I o I2EL 0 o 0 76|2£|Z
L L L L
12E1 6EI 12E1 6EI
0 0 = L0 L—QV 0 0 0 5 X0 L—QY 0
0 0 0 _&J 0 0 0 0 0 &3 0 0
L L
6EI 2EI 6EI 4EI
0 0 -— — 0 0 0 —X 0 —X 0
L L L L
GEZIZ o o o 2EI, o 76I;:IZ o o 4E|,
L L L L

Plane Frame and Grid Equations

Example Frame Application

A bus subjected to a static roof-crush analysis. In this model
599 frame elements and 357 nodes are used.
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Plane Frame and Grid Equations

Example Frame Application

A bus subjected to a static roof-crush analysis. In this model
599 frame elements and 357 nodes are used.

Plane Frame and Grid Equations

Concept of Substructure Analysis

Sometimes structures are too large to be analyzed as a single
system or treated as a whole; that is, the final stiffness matrix

and equations for solution exceed the memory capacity of the
computer.

A procedure to overcome this problem is to separate the whole
structure into smaller units called substructures.
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Plane Frame and Grid Equations
Concept of Substructure Analysis

For example, the space frame of an airplane, as shown below,
may require thousands of nodes and elements to completely
model and describe the response of the whole structure.

If we separate the aircraft into substructures, such as parts of
the fuselage or body, wing sections, etc., as shown below,

then we can solve the problem more readily and on computers
with limited memory.

Beam Stiffness

Problems:

10. Do problems 5.1, 5.7, 5.15, 5.28, and 5.51 in your
textbook.

11. Do problems 5.20, 5.23, 5.25, 5.35, and 5.53 on pages

308 - 321 in your textbook. You may use the SAP2000 to
do frame analysis.
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End of Chapter 5b





