
Chapter 4b – Development of Beam Equations 

Learning Objectives
• To introduce the work-equivalence method for replacing

distributed loading by a set of discrete loads

• To introduce the general formulation for solving beam
problems with distributed loading acting on them

• To analyze beams with distributed loading acting on
them

• To compare the finite element solution to an exact
solution for a beam

• To derive the stiffness matrix for the beam element with
nodal hinge

• To show how the potential energy method can be used
to derive the beam element equations

• To apply Galerkin’s residual method for deriving the
beam element equations

Beam Stiffness

General Formulation

We can account for the distributed loads or concentrated loads 
acting on beam elements by considering the following 
formulation for a general structure:

where F0 are the equivalent nodal forces, expressed in 
terms of the global-coordinate components. 

These forces would yield the same displacements as the 
original distributed load. 

If we assume that the global nodal forces are not present 
(F = 0) then:

0F = Kd - F

0F = Kd
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Beam Stiffness

General Formulation

We now solve for the displacements, d, given the nodal 
forces F0.

Next, substitute the displacements and the equivalent nodal 
forces F0 back into the original expression and solve for the 
global nodal forces.

0F = Kd - F

This concept can be applied on a local basis to obtain the local 
nodal forces in individual elements of structures as:

0f = kd - f

Beam Stiffness

Example 5 - Load Replacement

Consider the beam shown below; determine the equivalent 
nodal forces for the given distributed load.

The work equivalent nodal forces are shown above. 

Using the beam stiffness equations:
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Beam Stiffness

Example 5 - Load Replacement

Apply the boundary conditions:
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We can solve for the displacements 
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Beam Stiffness

Example 5 - Load Replacement

In this case, the method of equivalent nodal forces gives the 
exact solution for the displacements and rotations.

To obtain the global nodal forces, we will first define the 
product of Kd to be Fe, where Fe is called the effective 
global nodal forces. Therefore:
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Beam Stiffness

Example 5 - Load Replacement

Using the above expression and the fix-end moments in:

0F = Kd - F
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Beam Stiffness

Example 6 - Cantilever Beam

Consider the beam, shown below, determine the vertical 
displacement and rotation at the free-end and the nodal 
forces, including reactions. Assume EI is constant 
throughout the beam.

We will use one element and replace the concentrated load 
with the appropriate nodal forces. 
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Beam Stiffness

Example 6 - Cantilever Beam

The beam stiffness equations are:
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Apply the boundary conditions:
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Beam Stiffness

Example 6 - Cantilever Beam

The beam stiffness equations become:

To obtain the global nodal forces, we begin by evaluating the 
effective nodal forces.
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Beam Stiffness

Example 6 - Cantilever Beam

Using the above expression in the following equation, gives:

0F = Kd - F
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Beam Stiffness

Example 6 - Cantilever Beam

In general, for any structure in which an equivalent nodal 
force replacement is made, the actual nodal forces acting on 
the structure are determined by first evaluating the effective 
nodal forces Fe for the structure and then subtracting off the 
equivalent nodal forces F0 for the structure. 

Similarly, for any element of a structure in which equivalent 
nodal force replacement is made, the actual local nodal 
forces acting on the element are determined by first 
evaluating the effective local nodal forces for the element 
and then subtracting off the equivalent local nodal forces  
associated only with the element.

0f = kd - f
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Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now compare the finite element solution to the exact 
classical beam theory solution for the cantilever beam 
shown below.

Both one- and two-element finite element solutions will be 
presented and compared to the exact solution obtained by 
the direct double-integration method. 

Let E = 30 x 106 psi, I = 100 in4, L = 100 in, and uniform load 
w = 20 Ib/in.

Beam Stiffness

Comparison of FE Solution to Exact Solution

To obtain the solution from classical beam theory, we use the 
double-integration method:

( )M x
y

EI
    
 

where the double prime superscript indicates differentiation 
twice with respect to x and M is expressed as a function of x 
by using a section of the beam as shown:
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Beam Stiffness

Comparison of FE Solution to Exact Solution

To obtain the solution from classical beam theory, we use the 
double-integration method:
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Beam Stiffness

Comparison of FE Solution to Exact Solution

Recall the one-element solution to the cantilever beam is:

4

2

3
2

8

6

wL
v EI

wL

EI



 
       

     

Using the numerical values for this problem we get:
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The slope and displacement from the one-element FE 
solution identically match the beam theory values evaluated 
at x = L. 

The reason why these nodal values from the FE solution are 
correct is that the element nodal forces were calculated on 
the basis of being energy or work equivalent to the 
distributed load based on the assumed cubic displacement 
field within each beam element. 

Beam Stiffness

Comparison of FE Solution to Exact Solution

Values of displacement and slope at other locations along the 
beam for the FE are obtained by using the assumed cubic 
displacement function.

   3 2 3 2 2
2 23 3

1 1
( ) 2 3v x x x L v x L x L

L L
    

The value of the displacement at the midlength v(x = 50 in) is:

( 50 ) 0.0278v x in in  

Using beam theory, the displacement at v(x = 50 in) is:

( 50 ) 0.0295v x in in  

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 9/34



Beam Stiffness

Comparison of FE Solution to Exact Solution

In general, the displacements evaluated by the FE method 
using the cubic function for v are lower than by those of 
beam theory except at the nodes.

This is always true for beams subjected to some form of 
distributed load that are modeled using the cubic 
displacement function. 

The exception to this result is at the nodes, where the beam 
theory and FE results are identical because of the work-
equivalence concept used to replace the distributed load by 
work-equivalent discrete loads at the nodes. 

Beam Stiffness

Comparison of FE Solution to Exact Solution

The beam theory solution predicts a quartic (fourth-order) 
polynomial expression for a beam subjected to uniformly 
distributed loading, while the FE solution v(x) assumes a 
cubic (third-order) displacement behavior in each beam all 
load conditions. 

The FE solution predicts a stiffer structure than the actual one.

This is expected, as the FE model forces the beam into 
specific modes of displacement and effectively yields a 
stiffer model than the actual structure. 

However, as more elements are used in the model, the FE 
solution converges to the beam theory solution.
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Beam Stiffness

Comparison of FE Solution to Exact Solution

For the special case of a beam subjected to only nodal 
concentrated loads, the beam theory predicts a cubic 
displacement behavior.

The FE solution for displacement matches the beam theory 
solution for all locations along the beam length, as both v(x) 
and y(x) are cubic functions.

Beam Stiffness

Comparison of FE Solution to Exact Solution

Under uniformly distributed loading, the beam theory solution 
predicts a quadratic moment and a linear shear force in the 
beam. 

However, the FE solution using the cubic displacement 
function predicts a linear bending moment and a constant 
shear force within each beam element used in the model. 
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Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now determine the bending moment and shear force 
in the present problem based on the FE method.
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Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now determine the bending moment and shear force 
in the present problem based on the FE method.

Position MFE Mexact

X = 0 -83,333 lb-in -100,000 lb-in

X = 50 in -33,333 lb-in -25,000 lb-in

X = 100 in 16,667 lb-in 0
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The plots below show the displacement, bending moment , 
and shear force over the beam using beam theory and the 
one-element FE solutions.

Beam Stiffness

Comparison of FE Solution to Exact Solution

The FE solution for displacement matches the beam theory 
solution at the nodes but predicts smaller displacements 
(less deflection) at other locations along the beam length.
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The bending moment is derived by taking two derivatives on 
the displacement function. It then takes more elements to 
model the second derivative of the displacement function.

Beam Stiffness

Comparison of FE Solution to Exact Solution

The shear force is derived by taking three derivatives on the 
displacement function. For the uniformly loaded beam, the 
shear force is a constant throughout the singIe-element 
model.
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Beam Stiffness

Comparison of FE Solution to Exact Solution

To improve the FE solution we need to use more elements in 
the model (refine the mesh) or use a higher-order element, 
such as a fifth-order approximation for the displacement 
function.

Beam Stiffness

Beam Element with Nodal Hinge

Consider the beam, shown below, with an internal hinge. An 
internal hinge causes a discontinuity in the slope of the 
deflection curve at the hinge and the bending moment is 
zero at the hinge. 
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Beam Stiffness

Beam Element with Nodal Hinge

For a beam with a hinge on the right end:
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The moment m2 is zero and we can partition the matrix to 
eliminate the degree of freedom associated with    .2
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Beam Stiffness

Beam Element with Nodal Hinge

For a beam with a hinge on the right end:
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Beam Stiffness

Beam Element with Nodal Hinge

We can condense out the degree of freedom by using the 
partitioning method discussed earlier.
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Beam Stiffness

Beam Element with Nodal Hinge

The element force-displacement equations are:
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Expanding the element force-displacement equations and 
maintaining m2 = 0 gives:
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Beam Stiffness

Beam Element with Nodal Hinge

Once the displacements d1 are found, d2 may be computed:
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In this case, d2 is 2 (the rotation at right side of the element 
at the hinge.
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Beam Stiffness

Beam Element with Nodal Hinge

For a beam with a hinge on the left end:
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Rewriting the equations to move 1 and m1 to the first row:
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Beam Stiffness

Beam Element with Nodal Hinge

For a beam with a hinge on the left end:

The moment m1 is zero and we can partition the matrix to 
eliminate the degree of freedom associated with    .1
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Beam Stiffness

Beam Element with Nodal Hinge

For a beam with a hinge on the right end:
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1
22 21 11 12ck K K K K 

Beam Stiffness

Beam Element with Nodal Hinge

We can condense out the degree of freedom by using the 
partitioning method discussed earlier.
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Therefore, the condensed stiffness matrix is:
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Beam Stiffness

Beam Element with Nodal Hinge

The element force-displacement equations are:
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Expanding the element force-displacement equations and 
maintaining m1 = 0 gives:
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 1
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Beam Stiffness

Beam Element with Nodal Hinge

Once the displacements d2 are found, d1 may be computed:
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In this case, d1 is 1 (the rotation at right side of the element 
at the hinge.

1 0m 

Beam Stiffness

Beam Element with Nodal Hinge

For a beam element with a hinge at its left end, the element 
force-displacement equations are:
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Expanding the element force-displacement equations and 
maintaining m1= 0 gives:
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Beam Stiffness

Example 7 - Beam With Hinge

In the following beam, shown below, determine the vertical 
displacement and rotation at node 2 and the element forces 
for the uniform beam with an internal hinge at node 2.

Assume EI is constant throughout the beam.

Beam Stiffness

Example 7 - Beam With Hinge

The stiffness matrix for element 1 (with hinge on right) is:
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Beam Stiffness

Example 7 - Beam With Hinge

The stiffness matrix for element 2 (with no hinge) is:
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Beam Stiffness

Example 7 - Beam With Hinge
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Element 1The assembled equations are:

Element 2
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Beam Stiffness

Example 7 - Beam With Hinge

The boundary conditions are: 1 3 1 3 0v v     
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Beam Stiffness

Example 7 - Beam With Hinge

After applying the boundary conditions the global beam 
equations reduce to: 
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Beam Stiffness

Example 7 - Beam With Hinge

The element force-displacement equations for element 1 are:
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Beam Stiffness

Example 7 - Beam With Hinge

The slope 2 on element 1 may be found using the condensed 
matrix:
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3 3

3 3

2
2 31

3

0

0 6 2 6 0
4

a b P

b a EI

a EI
a a a

EI a





  
  
                  

   
2 3

2 1 3 32

a b P

b a EI
  



2 0m 
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Beam Stiffness

Example 7 - Beam With Hinge

The element force-displacement equations for element 2 are:
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Beam Stiffness
Example 7 - Beam With Hinge

Displacements and rotations on each element.

1 1 0v   3 3 0v  

   
2 3

2 1 3 32

a b P

b a EI
  


   

3 2

2 2 3 32

a b P

b a EI
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Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

Let’s derive the equations for a beam element using the 
principle of minimum potential energy. 

The procedure for applying the principle of minimum potential 
energy is similar to that used for the bar element. 

The total potential energy p is defined as the sum of the 
internal strain energy U and the potential energy of the 
external forces :

p U  

Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

The differential internal work (strain energy) dU in a one-
dimensional beam element is:

1
2 x x

V

U dV  

For a single beam element, shown below, subjected to both 
distributed and concentrated nodal forces, the potential 
energy due to forces (or the work done these forces) is:

2 2

1 1
y iy i i i

i iS

T v dS P v m
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Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

If the beam element has a constant cross-sectional area A, 
then the differential volume of the beam is given as:

The differential element where the surface loading acts is 
given as: dS = b dx (where b is the width of the beam 
element). 

dV dA dx

Therefore the total potential energy is:

 
2

1
2

1
p x x y iy i i i

ix A x

dA dx T vb dx P v m   


     

Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

The strain-displacement relationship is:

We can express the strain in terms of nodal displacements 
and rotations as:

2

2x

d v
y

dx
  

 
2 2

3 3 3 3

12 6 6 4 12 6 6 2
x

x L xL L x L xL L
y d

L L L L


     
   

 

   [ ]x y B d  

2 2

3 3 3 3

12 6 6 4 12 6 6 2
[ ]

x L xL L x L xL L
B

L L L L
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Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

The stress-strain relationship in one-dimension is:

where E is the modulus of elasticity. Therefore:

   [ ]x xE 

   [ ][ ]x y E B d  

The total potential energy can be written in matrix form as:

         1
2

T T T

p x x y

x A x

dA dx bT v dx d P      

   [ ]x y B d  

Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

Use the following definition for moment of inertia: 

If we define,               as a line load (load per unit length) in the 
y direction and the substitute the definitions of x and x the 
total potential energy can be written in matrix form as:

yw bT

         2

0 0

[ ] [ ] [ ]
2

L L
T T TT T

p
A

E
y d B B d dAdx w d N dx d P     

2

A

I y dA 
Then the total potential energy expression becomes:

         
0 0

[ ] [ ] [ ]
2

L L
T T TT T

p

EI
d B B d dx w d N dx d P    
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Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

The nodal forces vector is:

The elemental stiffness matrix is:

Differentiating the total potential energy with respect to the 
displacement and rotations (v1, v2, 1 and 2) and equating 
each term to zero gives:

   
0 0

[ ] [ ] [ ] 0
L L

T TEI B B dx d w N dx P   

   
0

[ ]
L

Tf w N dx P 

 
0

[ ] [ ]
L

Tk EI B B dx 

Beam Stiffness

Potential Energy Approach to Derive 
Beam Element Equations

Integrating the previous matrix expression gives:

 
2 2

3

2 2
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6 4 6 2
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Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

The governing differential equation for a one-dimensional 
beam is:

4

4
0

d v
EI w

dx

 
  

 

We can define the residual R as:
4

4
0

0 1, 2, 3, and 4
L

i

d v
EI w N dx i

dx

  
    

  


If we apply integration by parts twice to the first term we get:

         , , 0
0 0

L L
L

xxxx i xx i xx i xxx i x xxEI v N dx EI v N dx EI N v N v     
where the subscript x indicates a derivative with respect to x

Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

or

Therefore the integration by parts becomes:

Since                   , then the second derivative of v with respect 
to x is:

 [ ]v N d

 
2 2

3 3 3 3

12 6 6 4 12 6 6 2
xx

x L xL L x L xL L
v d

L L L L

     
  
 

 [ ]x xv B d

       , ,
0

0 0

[ ] 0
L L L

i xx i i i xN EI B dx d N w dx NV N m d      
1, 2, 3, and 4i 
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Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

The interpolation function in the last two terms can be 
evaluated:

The above expression is really four equations (one for each 
Ni) and can be written in matrix form as:

 
0

0 0

[ ] [ ] [ ] [ ] [ ]
L L

LT T T T
xB EI B dx d N w dx N m N V    

   [ ] 0 [0 1 0 0] [ ] [0 0 0 1]x xN x N x L   

   [ ] 0 [1 0 0 0] [ ] [0 0 1 0]N x N x L   

Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

Therefore, the last two terms of the matrix form of the Galerkin
formulation become (see the figure below):

1 (0) 2 (0)i V i m   

3 ( ) 4 ( )i V L i m L   
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Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

When beam elements are assembled, as shown below:

Two shear forces and two moments form adjoining elements 
contribute to the concentrated force and the concentrated 
moment at the node common to both elements.

Beam Stiffness

Problems:

7. Verify the four beam element equations are contained in 
the following matrix expression.

   
0 0

[ ] [ ] [ ] 0
L L

T TEI B B dx d w N dx P   

8. Do problems 4.10, 4.12, 4.18, 4.22, 4.40 and 4.47 in 
your textbook.
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Beam Stiffness

Problems:

9. Work problem 4.36 in your using the SAP2000.

Attempt to select the lightest standard W section to 
support the loads for the beam. 

The bending stress must not exceed 160 MPa and the 
allowable deflection must not exceed (L = 6 m)/360

End of Chapter 4b
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