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Chapter 4b — Development of Beam Equations

Learning Objectives

B 8 - Tointroduce the work-equivalence method for replacing

A First Course in the distributed loading by a set of discrete loads
Finite Element Method . 15 jntroduce the general formulation for solving beam
problems with distributed loading acting on them

* To analyze beams with distributed loading acting on
them

» To compare the finite element solution to an exact
solution for a beam

+ To derive the stiffness matrix for the beam element with
nodal hinge

» To show how the potential energy method can be used
to derive the beam element equations

» To apply Galerkin’s residual method for deriving the
beam element equations

Beam Stiffness
General Formulation

We can account for the distributed loads or concentrated loads
acting on beam elements by considering the following
formulation for a general structure:

F=Kd-F,

where F, are the equivalent nodal forces, expressed in
terms of the global-coordinate components.

These forces would yield the same displacements as the
original distributed load.

If we assume that the global nodal forces are not present
(F = 0) then:

F, =Kd
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Beam Stiffness
General Formulation

We now solve for the displacements, d, given the nodal
forces F,,.

Next, substitute the displacements and the equivalent nodal

forces F, back into the original expression and solve for the
global nodal forces.

F=Kd-F,

This concept can be applied on a local basis to obtain the local
nodal forces in individual elements of structures as:

f=kd-f,

Beam Stiffness

Example 5 - Load Replacement

Consider the beam shown below; determine the equivalent
nodal forces for the given distributed load.
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The work equivalent nodal forces are shown above.

wL?
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Using the beam stiffness equations: _wL
f, 12 6L -12  6L][v, Wsz
m,| Ell 6L 4> -eL 2% ||4 3 T2
f [ C|-12 -6L 12 —6L||v,[ | wt
m, 6L 212 -6L 42||4] | 2

wl?
12
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Beam Stiffness

Example 5 - Load Replacement

Apply the boundary conditions: v,=¢ =0

12 6L ;-12 6L ||v

We can solve for the displacements

wL _W_L4
"2 | ' 12 -6L][v, {Vz}: 8El
w2 [ L|-6eL 412 ||g, ¢, wL®

12 6El

Beam Stiffness

Example 5 - Load Replacement

In this case, the method of equivalent nodal forces gives the
exact solution for the displacements and rotations.

To obtain the global nodal forces, we will first define the
product of Kd to be F¢, where Fe is called the effective
global nodal forces. Therefore:

wL

2

Fe, 12 6L -12 6L][ O w2
Me, | EI| 6L 4> -6L 2| 0 12
Fe,, [ C|-12 -6L 12 —6L||-"%e( | wL
Me, 6L 217 6L 4% ||-"%y 2
wL?

12
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Beam Stiffness
Example 5 - Load Replacement
Using the above expression and the fix-end moments in:
W_L _W_L wL
2 2
Fy | [5wL? wl? | |wLl?
F=Kd-F, Mil_J 121 ) 120} 2
Foy | WL | _wL 0
M, 2 2
2 2
wit | wi |
12 12
W
a = WL
I 2€r ' Y Y s ZFy =0 =F,-wL
Fiy=wL O ZM1 =0 = 2 (WL)Z

Beam Stiffness

Example 6 - Cantilever Beam

Consider the beam, shown below, determine the vertical
displacement and rotation at the free-end and the nodal
forces, including reactions. Assume El is constant
throughout the beam.
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We will use one element and replace the concentrated load
with the appropriate nodal forces.
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Beam Stiffness

Example 6 - Cantilever Beam
The beam stiffness equations are:

f, 12 6L -12  6L][v, bL
m | EI|l 6L 4> 6L 2U||¢4| | 8
[ |12 -6L 12 —6L||v,[ | P
m, 6L 212 -6L 4% ||g,| |

Apply the boundary conditions: v,=¢=0

12 6L |-12 6L](v,
EI| 6L 42 i-6L_ _22||¢

1®]-12 -6L | 12 -6L||v,
6L 2L° '-6L 4L%||g,

Beam Stiffness

Example 6 - Cantilever Beam
The beam stiffness equations become:

P _5PL3
2| _El| 12 -6L|]v, V,| | 48El
PL| L[-6L 4L1°]|4, &, PL2
8 8El
To obtain the global nodal forces, we begin by evaluating the
effective nodal forces. P
Fy 12 6L -12 6L 0 2
3PL
M, | EI| 6L 41 -6L 217 0 s
Fe,, | L|-12 -6L 12 —6L |-/ _%
M¢, 6L 217 6L 4% || —Pi4y PL
8
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Beam Stiffness

Example 6 - Cantilever Beam
Using the above expression in the following equation, gives:

= =
. = =
2 2
Fy 3PL PL PL
M| 8| | 8| |2
F=Kd-F, e TR Rl i
M, 2 2
PL PL
= A 0
F 8 8
Kd=F° F, F

Beam Stiffness

Example 6 - Cantilever Beam

In general, for any structure in which an equivalent nodal
force replacement is made, the actual nodal forces acting on
the structure are determined by first evaluating the effective
nodal forces Fe for the structure and then subtracting off the
equivalent nodal forces F, for the structure.

Similarly, for any element of a structure in which equivalent
nodal force replacement is made, the actual local nodal
forces acting on the element are determined by first
evaluating the effective local nodal forces for the element
and then subtracting off the equivalent local nodal forces
associated only with the element.

f=kd-f,

6/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now compare the finite element solution to the exact
classical beam theory solution for the cantilever beam
shown below.

Both one- and two-element finite element solutions will be
presented and compared to the exact solution obtained by
the direct double-integration method.

Let E = 30 x 108 psi, | = 100 in*, L = 100 in, and uniform load
w = 20 Ib/in.

ey

' L l i l l w=20 Ib/in.

Beam Stiffness

Comparison of FE Solution to Exact Solution
To obtain the solution from classical beam theory, we use the
double-integration method: [M(x)]

El

where the double prime superscript indicates differentiation
twice with respect to x and M is expressed as a function of x
by using a section of the beam as shown:

w

N ~

] 2 M

z X TYF, =0 = V(x)=wL-wx
wiL Yy

2
O TM=0 ={M(x)=-2 +WLX—%
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Beam Stiffness

Comparison of FE Solution to Exact Solution

To obtain the solution from classical beam theory, we use the
double-integration method:
y' = ( M(X)]

El

W x* Lx* xL?
yza _E+7—7+C1 dx Boundary Conditions
y'(0)=0 y(0)=0
4 3 2] 2
yzﬂ —X—+LL—XL +Cx+C,
ElIl 24 6 4
w( x* Lx* x?
Y=—| 5t
EIl 24 6 4

Beam Stiffness

Comparison of FE Solution to Exact Solution

Recall the one-element solution to the cantilever beam is:

wl?

{Vz} _| 8El
g | we
6El

Using the numerical values for this problem we get:

20",(100in)°

v, 8(3O><'IO6 pSi)100in4 [ -0.0833in

#, 20Ibin(100in)3 ~ |-0.00111rad

- 6(30x10°psi)100in*
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The slope and displacement from the one-element FE

solution identically match the beam theory values evaluated
atx=L.

The reason why these nodal values from the FE solution are
correct is that the element nodal forces were calculated on
the basis of being energy or work equivalent to the
distributed load based on the assumed cubic displacement
field within each beam element.

Beam Stiffness

Comparison of FE Solution to Exact Solution

Values of displacement and slope at other locations along the
beam for the FE are obtained by using the assumed cubic
displacement function.

v(x)= %(—2x3 + 3x2L)v2 + %(xaL -~ x2L2)¢52

The value of the displacement at the midlength v(x = 50 in) is:
V(x =50in)=-0.0278in

Using beam theory, the displacement at v(x = 50 in) is:

V(x =50in)=-0.0295in

9/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

In general, the displacements evaluated by the FE method
using the cubic function for v are lower than by those of
beam theory except at the nodes.

This is always true for beams subjected to some form of
distributed load that are modeled using the cubic
displacement function.

The exception to this result is at the nodes, where the beam
theory and FE results are identical because of the work-
equivalence concept used to replace the distributed load by
work-equivalent discrete loads at the nodes.

Beam Stiffness

Comparison of FE Solution to Exact Solution

The beam theory solution predicts a quartic (fourth-order)
polynomial expression for a beam subjected to uniformly
distributed loading, while the FE solution v(x) assumes a
cubic (third-order) displacement behavior in each beam all
load conditions.

The FE solution predicts a stiffer structure than the actual one.

This is expected, as the FE model forces the beam into
specific modes of displacement and effectively yields a
stiffer model than the actual structure.

However, as more elements are used in the model, the FE
solution converges to the beam theory solution.

10/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

For the special case of a beam subjected to only nodal

concentrated loads, the beam theory predicts a cubic
displacement behavior.

The FE solution for displacement matches the beam theory

solution for all locations along the beam length, as both v(x)
and y(x) are cubic functions.

Beam Stiffness

Comparison of FE Solution to Exact Solution

Under uniformly distributed loading, the beam theory solution

predicts a quadratic moment and a linear shear force in the
beam.

However, the FE solution using the cubic displacement
function predicts a linear bending moment and a constant
shear force within each beam element used in the model.

11/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now determine the bending moment and shear force
in the present problem based on the FE method.

d*(Nd) __ (d°N)d
M =Ely"=E|l ———£ =El——
(x)=Ely dx? dx?

M(x) = EI[B]{d}
o) () (&%) (22
ool £

6 12x 2 06X
et e )

Beam Stiffness

Comparison of FE Solution to Exact Solution

We will now determine the bending moment and shear force
in the present problem based on the FE method.

Position Mee Mzt
X=0 -83,333 Ib-in -100,000 Ib-in
X=50in -33,333 Ib-in -25,000 Ib-in

X=100in 16,667 Ib-in 0

12/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The plots below show the displacement, bending moment ,

and shear force over the beam using beam theory and the
one-element FE solutions.

vixhi

Beam theory
[Eq. (4.5.8)]

Finite ¢lement (one clement)

Beam Stiffness

Comparison of FE Solution to Exact Solution

The FE solution for displacement matches the beam theory
solution at the nodes but predicts smaller displacements
(less deflection) at other locations along the beam length.

v(x)
(in.)

50 in. 100 in.
| |
!

——————————— =i
— —0. n.

Beam theory =

[Eq. (4.5.8)]

Finite element (one element) —0.0833 in.
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Beam Stiffness

Comparison of FE Solution to Exact Solution

The bending moment is derived by taking two derivatives on
the displacement function. It then takes more elements to
model the second derivative of the displacement function.

M(x)
(Ib-in.)
16,667
50 in. = 100 in.
0 | 40

Beam theory [Eq. (4.5.2)]
—83.333¢ Finite element (one element)

—100,000

Beam Stiffness

Comparison of FE Solution to Exact Solution

The shear force is derived by taking three derivatives on the
displacement function. For the uniformly loaded beam, the
shear force is a constant throughout the single-element
model.

Vix)
(1b)

000 Beam theory [Eq. (4.5.2)]

mrFr——""""—~— ———— —— — — — =
T— Finite element (one element)

14/34
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Beam Stiffness

Comparison of FE Solution to Exact Solution

To improve the FE solution we need to use more elements in
the model (refine the mesh) or use a higher-order element,
such as a fifth-order approximation for the displacement
function.

Beam Stiffness

Beam Element with Nodal Hinge

Consider the beam, shown below, with an internal hinge. An
internal hinge causes a discontinuity in the slope of the
deflection curve at the hinge and the bending moment is
zero at the hinge.

Hinge
o /@
1 (@] |3
L 2 L

y ¢ # 0, in general ¢y #0, in general
m;‘ ¢ =0 Bt bz, m,

™~ ® _~Hinge "\ @
]r/ L %’x Hinge )/] L ‘j T

fir ' St i
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Beam Stiffness

Beam Element with Nodal Hinge
For a beam with a hinge on the right end:

Kid ol
f, 127 6L -12 | 6L](v,
m,| EIl 6L 41* -6L [2.%||¢,
f,, [ L°|-12 —6L 12 6L ||v,

2y B oo Ml

[Ky] / | \[Kzz]

The moment m, is zero and we can partition the matrix to
eliminate the degree of freedom associated with ¢,.

{f1 } = {K“PKW}{CL} fi =K, d; +K;d,
f2 K21 §K22 d2

f2 = K21d1 + Kzzdz

Beam Stiffness

Beam Element with Nodal Hinge
For a beam with a hinge on the right end:

, A f1y
f,, 12 6L 12 | 6L][v, {d1}:{¢1] = {m,
m,| EI| 6L 41* -6L [2.%||¢ v foy
f [ L°|-12 -6L 12 -6L||v,
m, 6L 21 -6L {4L%](4) (d)-{a} (6)=(m,)

dz = Kzzi1 (fz - K21d1)

fi =K d +Kpd, =Kid, +Ky, [Kzzi1 (fz - K21d1)]
m,=0

fc = kcd1 f. = f1 - K12K2271

C

kc = K11 - K12K2271K21

16/34
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Beam Stiffness

Beam Element with Nodal Hinge

We can condense out the degree of freedom by using the
partitioning method discussed earlier.

kc = K11 - K12K22_1K21

12 6L 12 6L
k;% 6L 4° -6L —% ik %[& 212 —6L]
12 6L 12 6L

Therefore, the condensed stiffness matrix is:

3 1 L -1

kc=§ L L -L
L

-1 -L 1

Beam Stiffness

Beam Element with Nodal Hinge
The element force-displacement equations are:

f, 3 1 L —1]]v,
m, :% L L* -L|g
f -1 -L 1 ||v

Expanding the element force-displacement equations and
maintaining m, = 0 gives:

f 1 L -1 0]
m,| 3EI|L L* -L 0|4
[ -1 L 1 0ofly,
m, 0 0 0 0]|4

17/34
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Beam Stiffness

Beam Element with Nodal Hinge

Once the displacements d, are found, d, may be computed:

m, =0 A
dz = K2271 (fz - K21d1) {¢2} = Kzzi1 {'ﬁ} - K21 ¢1
v,

In this case, d, is ¢, (the rotation at right side of the element
at the hinge.

Beam Stiffness

Beam Element with Nodal Hinge
For a beam with a hinge on the left end:

f, 12 6L -12 6Ly,
m | _El| 6L 4L° -6L 2|4
f,[ C|-12 6L 12 —6L||v,
m, 6L 212 -B6L 417 ||4,

m, 4> 6L -6L 217 |[4
fy |_EIl 6L 12 -12 6L\,

f,,| LC|-6L -120 12 -6L||v,
m, 21> 6Li -6L 41%||4,

18/34
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Beam Stiffness

Beam Element with Nodal Hinge
For a beam with a hinge on the left end:

[K12]
[K4] \ | /

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The moment m, is zero and we can partition the matrix to
eliminate the degree of freedom associated with 4.

{f1 } = {K”PKW}{CL} fi =Kd; +Kd,
f2 K21 §K22 d2

f2 = K21d1 + Kzzdz

Beam Stiffness

Beam Element with Nodal Hinge
For a beam with a hinge on the right end:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

m, o> | 6L 6L 412||4,

f, =Ky +Kypd, = Kp.d, + Ky [K1171 (f1 - K12d2)}
m, =0

fc = kcdz f. = fz - K21K1171 1

C

kc = Kzz - K21K1171K12

19/34
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Beam Stiffness

Beam Element with Nodal Hinge

We can condense out the degree of freedom by using the
partitioning method discussed earlier.

kc = K22 - K21K11_1K12

12 12 6L 6L
kcz% 12 12 -eL|-El) 6L %[& 6L 217
6L 6L 4L° 21

Therefore, the condensed stiffness matrix is:

3 1 -1 L

kczg -1 1 -L
L

L -L L?

Beam Stiffness

Beam Element with Nodal Hinge
The element force-displacement equations are:

fy 1 -1 L ||v,
3El

f2y :? —1 1 —L V2

m, L -L L®]|¢

Expanding the element force-displacement equations and
maintaining m, = 0 gives:

f 1.0 L -1y
m| 3EI[0 O O O ||4
L[ L o L Ly,
m, 10 -L 1][¢

20/34
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Beam Stiffness

Beam Element with Nodal Hinge

Once the displacements d, are found, d, may be computed:

m,=0 vV,
d1 = K1171 (f1 - K12d2) {¢1} = K1171 {Vﬂ} - K12 v,
¢

In this case, d, is ¢, (the rotation at right side of the element
at the hinge.

Beam Stiffness

Beam Element with Nodal Hinge

For a beam element with a hinge at its left end, the element
force-displacement equations are:

f, 1 -1 L (v,
3EI

f2y =—3 —1 1 —l_ V2

m, L -L |4

Expanding the element force-displacement equations and
maintaining m,= 0 gives:

f,, 1 0 -1 L7[v,
m| 3EI{0 O O O (|4
B[ Cl-10 1 L]y,
m, L 0 -L L*]||g

21/34
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Beam Stiffness

Example 7 - Beam With Hinge

In the following beam, shown below, determine the vertical
displacement and rotation at node 2 and the element forces
for the uniform beam with an internal hinge at node 2.

Assume El is constant throughout the beam.

®

P

|G

Hinge

@)

' b

AN

Beam Stiffness

Example 7 - Beam With Hinge

The stiffness matrix for element 1 (with hinge on right) is:

f,, 1 L -1 0]y,
m | 3EIlL L -L 0}|¢
B -1 -L 1 0fly,
m, 0 0 0 0|4
Vi v 4
f,, 1 a -1 0]y,
m | 3Ella a* -a 0||¢
B a|-1 -a 1 0f]y,
m, 0 0 0 0]l4

22/34
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Beam Stiffness

Example 7 - Beam With Hinge

The stiffness matrix for element 2 (with no hinge) is:

f, 12 6L -12 6L||v,
m,| EI| 6L 4° -6L 2°||4,
f,[ L|-12 -6L 12 -6L||v,
m, 6L 21> -6L 4L7]|4,
V2 ) V3 73

f, 12 6b -12 6b||v,
m,| EI| 6b 4b® -6b 2b*||4,
f, [ b*|-12 —6b 12 -6b||v,
m, 6b 2b* —6b 4b”||4,

Beam Stiffness

Example 7 - Beam With Hinge

The assembled equations are: Element 1

12 & -3 0| 0 0]

f1y 33 33 e; V1
m, L 2 & of 0o o],
m, 0 0 % % —% % ¢2
m, 0 o0 sz -5 ¢ ?5

Element 2

23/34



CIVL 7/8117

Chapter 4 - Development of Beam Equations - Part 2

Beam Stiffness

Example 7 - Beam With Hinge
The boundary conditions are: v, =v,=¢ =¢, =0

. ¥ %) -5 010 0],
m| | & 2 7w 0 0 0o
fay —El g _aa_z:a_e’3+l_§ b%:_::_§ = Vs,
m, 0 0! & #i-2 Z|g
f3y "o'"()'i":%"_‘b%'i"%"_'b%' 0
ool oo g g 8]

Beam Stiffness
Example 7 - Beam With Hinge

After applying the boundary conditions the global beam
equations reduce to:

3 12 6 - abP
- a3 b3 b2 {Vz}:{_P} {VZ}: 3(b +a )EI
6 4 b 0 @, a’b’P

b? b 2(b° +a° )El

24/34
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Beam Stiffness

Example 7 - Beam With Hinge
The element force-displacement equations for element 1 are:

. b°P
¢ b® +a’
f 1 -1
Y1 3El 2 v ab’p
2

m, = a a° -a 0 m, = b’ 1 a0
f, 1 a1 f +a
a’b’P 2y b3p
“3(b’ +a’)El pPral

Beam Stiffness
Example 7 - Beam With Hinge
The slope ¢, on element 1 may be found using the condensed
matrix:
m, =0 vV,
dz = K2271 (fz - K21d1) {¢2}e|emem1 = Kzzi1 {WC} —Ky1 é
V2
El 0
— a 2
{0} = 25 0—;[6a 2a® -6a] 0
~ a’b’P
3(b’+a’)El
a’b’P
(el = 2(b° +a’)El
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Beam Stiffness

Example 7 - Beam With Hinge

The element force-displacement equations for element 2 are:

f,, 12 6b -12 6b
m,| EI|l 6b 4b® —6b 2b?
f,,| b’|-12 -6b 12 —6b
m, 6b 2b? —6b 4b?

__abP
3(b3 +a3)EI
@
2(b3 +a3)EI
0
0

a’P
b*+a®

0

a’P
b® +a°
ba’P
b® +a°

Beam Stiffness

Example 7 - Beam With Hinge
Displacements and rotations on each element.

®

e

o
(@)

—

7
2
7

26/34



CIVL 7/8117

Chapter 4 - Development of Beam Equations - Part 2

Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

Let’s derive the equations for a beam element using the
principle of minimum potential energy.

The procedure for applying the principle of minimum potential
energy is similar to that used for the bar element.

The total potential energy x, is defined as the sum of the

internal strain energy U and the potential energy of the
external forces Q:

7zp=U +Q

Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

The differential internal work (strain energy) dU in a one-

dimensional beam element is: .
U=[{o,e, dv
Vv

For a single beam element, shown below, subjected to both
distributed and concentrated nodal forces, the potential
energy due to forces (or the work done these forces) is:

»v

Q=-[T,vds —ZZ:PWVi —Zzlmigbi
mlﬁ%@ Ay,

L
Py, Py,

27/34
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Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

If the beam element has a constant cross-sectional area A,
then the differential volume of the beam is given as:

dV =dAdx

The differential element where the surface loading acts is
given as: dS = b dx (where b is the width of the beam
element).

Therefore the total potential energy is:

7, = [ [ 10,2, dA dx— [T, vb dx —i(Piyvi -mg,)
X A X

i=1

Beam Stiffness

Potential Energy Approach to Derive

Beam Element Equations

d?v

The strain-displacement relationship is: ¢, = —yd7
We can express the strain in terms of nodal displacements
and rotations as:

12x —6L 6xL—-412 -12x+6L 6xL-2L°
&y =~ L3 L3 L3 L3 {d}

(&) = ~y[Bl{d}

X

12x —6L 6xL—-4L> -12x+6L 6xL-2L3
[B] = 3 3 3 3
L L L L

28/34
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Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

The stress-strain relationship in one-dimension is:
{o.} =[El{z )
where E is the modulus of elasticity. Therefore:

o,} =-y[E][B]{d {&) =-y[Bl{d}

The thtlal eyw/can be written in matrix form as:

M%{ V' e} dAdx - ij Tdx—{d}" {P)

Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

If we define, w = bT, as a line load (load per unit length) in the
y direction and the substitute the definitions of o, and ¢, the

total potential energy can be written in matrix form as:

, _jj y?{d} (BT (B]{d} dAdx - jw "INT ax -{d}’ {P}

Use the following definition for moment of inertia: | = jysz

Then the total potential energy expression becomes:

L

=f ' [BI'[Bl{d jdx— Jw {d} N]"dx —{d} {P}

0
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Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

Differentiating the total potential energy with respect to the
displacement and rotations (v4, v, ¢, and ¢,) and equating
each term to zero gives:

EII[B]T [B] dx {d}—jw[N]de—{P} =0
The nodal forces vectoris: {f}= IW[N]T dx +{P}

L
The elemental stiffness matrix is: [k]= EII[B]T [B] dx
0

Beam Stiffness

Potential Energy Approach to Derive
Beam Element Equations

Integrating the previous matrix expression gives:

[k]= EII[B]T[B] dx

12 6L -12 6L

EIl 6L 41> -6L 212 2
[k]== Y
tl-12 -6L 12 -6L -

6L 212 -6L 42
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Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

The governing differential equation for a one-dimensional

beam is: .
El [d ‘jj+w =0
dx

We can define the residual R as:

h d*v
I[El(d—4]+wJNi dx=0 i=123,and 4
X

0

If we apply integration by parts twice to the first term we get:

J:EI (V oo )N;IX = IEI (Vo) (No )+ LN, (V) = (N ) (V) ]

where the subscript x indicates a derivative with respect to x

Beam Stiffness

Galerkin’s Method to Derive Beam Element Equations

Since v =[N]{d}, then the second derivative of v with respect

to xis:
12x —6L 6xL—-4L> -12x+6L 6xL-2L°
VXX = L3 L3 L3 L3 {d}
or
vV, = [B]{d}

Therefore the integration by parts becomes:

T(Ni,XX)E|[B] dx {d}+jNiW dx + [Niv _(Ni,x)m]{d} ‘L —0

0

i=123,and 4
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Beam Stiffness
Galerkin’s Method to Derive Beam Element Equations

The above expression is really four equations (one for each
N;) and can be written in matrix form as:

L

[ (BT EI[B] dx {d} = —I[N]TW dx +| [NL,”m - [N]'V \:

0 0

The interpolation function in the last two terms can be
evaluated:

[NI,(x=0)=[0 1 0 0] NI, (x=L)=[0 0 0 1

[N](x=0)=[1 0 0 0] [N](x=L)=[0 0 1 0]

Beam Stiffness
Galerkin’s Method to Derive Beam Element Equations

Therefore, the last two terms of the matrix form of the Galerkin
formulation become (see the figure below):

i=1 = V(0) i=2 = m(0)
i=3 = V(L) i=4 = m(L)
JARY

‘ L
m(0) C — . .
L

V(o) V(L)
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Beam Stiffness
Galerkin’s Method to Derive Beam Element Equations

When beam elements are assembled, as shown below:
m(L)

: ) (| |

V(L) V(o)

Two shear forces and two moments form adjoining elements
contribute to the concentrated force and the concentrated
moment at the node common to both elements.

Beam Stiffness

Problems:

7.  Verify the four beam element equations are contained in
the following matrix expression.

EIT[B]T[B] dx {d}—jw[N]T dx—{P}=0

8. Do problems 4.10, 4.12, 4.18, 4.22, 4.40 and 4.47 in
your textbook.
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Beam Stiffness

Problems:
9. Work problem 4.36 in your using the SAP2000.

Attempt to select the lightest standard W section to
support the loads for the beam.

The bending stress must not exceed 160 MPa and the
allowable deflection must not exceed (L = 6 m)/360

End of Chapter 4b






