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Chapter 4a — Development of Beam Equations

Learning Objectives

u « To review the basic concepts of beam bending

A First Course In the + To derive the stiffness matrix for a beam element
Flolis Elemnl Mathed To demonstrate beam analysis using the direct stiffness
method
+ Toillustrate the effects of shear deformation in shorter
beams

» To introduce the work-equivalence method for replacing
distributed loading by a set of discrete loads

» To introduce the general formulation for solving beam
problems with distributed loading acting on them

+ To analyze beams with distributed loading acting on
them

Chapter 4a — Development of Beam Equations

Learning Objectives
u « To compare the finite element solution to an exact
A First Course in the solution for a beam
Finite Element Method + To derive the stiffness matrix for the beam element with
r nodal hinge
+ To show how the potential energy method can be used
to derive the beam element equations

» To apply Galerkin’s residual method for deriving the
beam element equations
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Development of Beam Equations
In this section, we will develop the stiffness matrix for a beam
element, the most common of all structural elements.

The beam element is considered to be straight and to have
constant cross-sectional area.
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Development of Beam Equations
We will derive the beam element stiffness matrix by using the
principles of simple beam theory.

The degrees of freedom associated with a node of a beam
element are a transverse displacement and a rotation.
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Development of Beam Equations

We will discuss procedures for handling distributed loading
and concentrated nodal loading.

We will include the nodal shear forces and bending moments
and the resulting shear force and bending moment diagrams
as part of the total solution.

SARNRNRRREEZCN

Development of Beam Equations

We will develop the beam bending element equations using
the potential energy approach.

Finally, the Galerkin residual method is applied to derive the
beam element equations

SARNRNRRREEZCN
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Beam Stiffness

Consider the beam element shown below.
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The beam is of length L with axial local coordinate x and
transverse local coordinate y.

The local transverse nodal displacements are given by v; and
the rotations by ¢,. The local nodal forces are given by f; and
the bending moments by m;,.

Beam Stiffness

At all nodes, the following sign conventions are used on the
element level:

Moments are positive in the counterclockwise direction.
Rotations are positive in the counterclockwise direction.
Forces are positive in the positive y direction.
Displacements are positive in the positive y direction.
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Beam Stiffness
At all nodes, the following sign conventions are used on the
global level:

1. Bending moments m are positive if they cause the beam
to bend concave up.

2. Shear forces V are positive is the cause the beam to

rotate clockwise.
m(\ /jm
V

-

Beam Stiffness

C ! ) (+) Bending Moment
C - ) (-) Bending Moment
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Beam Stiffness

A

(+) Shear Force

(-) Shear Force

-
-

Beam Stiffness

The differential equation governing simple linear-elastic beam
behavior can be derived as follows. Consider the beam
shown below.

(a) Undeformed beam under load w(x) (b) Deformed beam due to applied loading
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Beam Stiffness

The differential equation governing simple linear-elastic beam
behavior can be derived as follows. Consider the beam
shown below.

w(x)dx (dxj
)

Wl K 2
M =
1 Y2\ M +am
]
v oy

Write the equations of equilibrium for the differential element:
N dx
O M sige =0 = _ﬁ + (M +dM)—Vdx + W(X)%?j

+TZFy:0=/_¢+dV)—W(X)dX °

Beam Stiffness
From force and moment equilibrium of a differential beam

element, we get:

zMright—side =0 => -Vdx+dM=0 or V= ﬂ
ax

ZFy:O = —wdx-dV=0 or w=-—
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Beam Stiffness

The curvature « of the beam is related to the moment by:

1 M

K=—=—
p El

where pis the radius of the deflected curve, v is the
transverse displacement function in the y direction, E is the
modulus of elasticity, and / is the principle moment of inertia
about y direction, as shown below.

w(x)
p——] P
v(x)

R —
| | A
I = |

vlx)

(a) Portion of deflected curve of beam (b) Radius of deflected curve at v(x)

Beam Stiffness

The curvature, « for small slopes ¢ = % is given as:
X
d’v

K=—
dx?

Therefore: 9’V _M M = E,d_ZV
dx* El dx?

Substituting the moment expression into the moment-load
equations gives:
d_2 Eld_zv —_W(X)
dx?|  dx?

For constant values of E/, the above equation reduces to:

Ei [2—;‘@ ——w(x)
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Beam Stiffness
Step 1 - Select Element Type

We will consider the linear-elastic beam element shown below.

vt

¢1»m1f/]' /’ _x r@ my, ¢,

- L -
Sy Sy

Beam Stiffness

Step 2 - Select a Displacement Function

Assume the transverse displacement function v is:
v=ax’+a,x’+a,x+a,

The number of coefficients in the displacement function a; is
equal to the total number of degrees of freedom associated
with the element (displacement and rotation at each node).
The boundary conditions are:

v(x=0)=v, vix=L)=v,
dv dv
dX x=0 - ¢1 a x=L - ¢2
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Beam Stiffness

Step 2 - Select a Displacement Function

Applying the boundary conditions and solving for the unknown
coefficients gives:

v(0)=v,=a, v(l)=v, =al’+a,l’ +a,l +a,

dv(0)
ax

dv(L)
ax

= ¢1 = a3 = ¢2 = 3a1L2 + 282L + a3

Solving these equations for a4, a,, a5, and a, gives:
2 1
V= [L—3(v1 _V2)+F(¢1 +¢2)}x3

3 1 ,
{—L—z(v1 -~ VZ)_Z(2¢1 + 6, )}x +PX+V,

Beam Stiffness

Step 2 - Select a Displacement Function

In matrix form the above equations are: v = [N]{d}

V1
{d} = f INI=[N, N, N, N,]
2
?,
where
1 1
N, =F(2x3 -3x’L+L%) N, =F(X3L—2x2L2 +xL°)

N, = %(—2x3 +3x°L) N, = L1—3(X3L - x*L?)
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Beam Stiffness

Chapter 4 - Development of Beam Equations - Part 1
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Step 2 - Select a Displacement Function

N, N,, N5, and N, are called the interpolation functions for a
beam element.
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Beam Stiffness

Step 3 - Define the Strain/Displacement
and Stress/Strain Relationships

The stress-displacement relationship is: &, (X,y)=

%
ax

where u is the axial displacement function.

We can relate the axial displacement to the transverse
displacement by considering the beam element shown

below:

i1

D

/

dx

[ X, U
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Beam Stiffness

Step 3 - Define the Strain/Displacement
and Stress/Strain Relationships

Beam Stiffness

Step 3 - Define the Strain/Displacement
and Stress/Strain Relationships

One of the basic assumptions in simple beam theory is that
planes remain planar after deformation, therefore:

du d’v
“00)= g =

Moments and shears are related to the transverse
displacement as:

m(x):E/(Z_Z] V(x):E/(Z_;Z]

12/39
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Use beam theory sign convention for shear force and bending
moment.

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Using beam theory sign convention for shear force and
bending moment we obtain the following equations:

3
f, =V = EI% =%(12v1 +6Lg,—12v, +6L4, )
x=0
d’v El
f, =V =-EI°2| =E.(-12v,-6Lg, +12v, - 6Lg,)
y dx3 - L3
2
m=-m=-619Y - 53'(6Lv1 +41%¢, —6Lv, +21%,)
ax®| , L
2
m,=m = EI% = %(6Lv1 +21%, —6Lv, +4L°,)
x=L
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

In matrix form the above equations are:

f;y : —12 6L V1 fly V1

m,| _er| eL_(ar2)i-eL (2] )¢ ml_ )
f,| L|-12 -6L , 12 -6L||v, | |v.
m, 6L 212 —6L 412 |4, m, &,

where the stiffness matrix is:

12 6L -12 6L
B 6L 4[> 6L 2I?
3|12 6L 12 -6L

6L 2> -6L 417

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Beam stiffness based on Timoshenko Beam Theory

The total deflection of the beam at a point x consists of two
parts, one caused by bending and one by shear force. The
slope of the deflected curve at a point x is:

=0(0)+B(x)
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Beam stiffness based on Timoshenko Beam Theory

The relationship between bending moment and bending
deformation is:

dg(x)
M(x)= 1=

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Beam stiffness based on Timoshenko Beam Theory

o |
i e

The relationship between shear force and shear deformation is:

V(x)=k,AGpB(x)

where kA is the shear area.

15/39
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Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Beam stiffness based on Timoshenko Beam Theory

You can review the details in your book, but by including the
effects of shear deformations into the relationship between
forces and nodal displacements a modified elemental
stiffness can be developed.

Beam Stiffness

Step 4 - Derive the Element Stiffness Matrix
and Equations

Beam stiffness based on Timoshenko Beam Theory

o |
i e

12 6L i —12 6L
o El | 6L (419’ 6L (2-9)L2 __12E)
TC(1+g)|—127 L 12 6L k AGL

16/39
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Beam Stiffness

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

Consider a beam modeled by two beam elements (do not
include shear deformations):

b1

1000 1b-ft

RAANNNNNNRNY

Assume the E/ to be constant throughout the beam. A force of
1,000 /b and moment of 1,000 /b-ft are applied to the mid-

point of the beam.

Beam Stiffness

AN
— O 29 ) @ 3
" 1 . /!
N
1000 Ib

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

The beam element stiffness matrices are:

G 1000 1b-ft
/| —
c® ) 0
~d
L L

=N
BN

1000 b

vy # Vo #2

(12 6L 12 6L

(o _El|l 6L 4’ 6L 2
|12 -6L 12 -6L
6L 212 -eL 4L

vy ¢2 vy ¢3

(12 6L 12 6L

o _El| 6L 4 6L 2’
|12 6L 12 6L
6L 2 6L 4L

17/39
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Beam Stiffness

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

In this example, the local coordinates coincide with the global
coordinates of the whole beam (therefore there is no
transformation required for this problem).

The total stiffness matrix can be assembled as:

F, 12 6L -12 6L | O 0 ||v,

M, 6L 4L° —6L 212 | 0 0 ||

Fy| EI|-12 6L [12+412 -6L+6L1-12 6L ||v,

M| | 6L 2L -BLIBL 41°+4L’}-6L 2L° |4,

F,, 0 o I 12 —6L 12 6L ||v,

M, 0 0 , 6L 217 —B6L 417 || ¢,
Element 1 Element 2

Beam Stiffness

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

The boundary conditions are: v, =¢, =v, =0

F, (12 6L ! -12 6L ' 0 ' 0 (0
M, 6L 4L2E_ 6L 212 io 0 |0
Fy,| EI|-12 6L} 12412 —6L+6L | 12 6L ||V,
My[ L°| 6L _2L* ) -6L+6L 4L°+4L° 1-6L 20" ||4,
Fo| |00 12 6L 112 i-6L|0
M, 0 0 ' 6L 21 1 -BL ! 4% || g,

18/39
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Beam Stiffness

Step 5 - Assemble the Element Equations
and Introduce Boundary Conditions

By applying the boundary conditions the beam equations

reduce to:
—1,000 /b 24 0 6L ||v,
1,000 Ibft =£3l 0 8L 27 |14,
0 6L 27 417 ||¢,

Beam Stiffness

Step 6 - Solve for the Unknown Degrees of Freedom

Solving the above equations gives:

_ 87503 437502

~12512 + 6251
2 = ra
12EI

hp=—z——rad 4

125(2 1251
=———ra
4El

El

d

Step 7 - Solve for the Element Strains and Stresses

V1
2 2
m(x)= EI(%J:EI(Z ’:’j f
X X )
%,

The second derivative of N is linear; therefore m(x) is linear.

19/39
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Beam Stiffness

Step 6 - Solve for the Unknown Degrees of Freedom

Solving the above equations gives:

87513 37512
—— N

12512 _ 6251
v, = - """ ra
12EI

4EI

12512 _ 1251
- "
El

¢ = d ¢ = d

Step 7 - Solve for the Element Strains and Stresses

V1

d’v d*N | ¢
V(x)=El|— | =El !
() [dx"‘] (dxz] v,
9,

The third derivative of N is a constant; therefore V(x) is
constant.

Beam Stiffness
Step 7 - Solve for the Element Strains and Stresses
Assume L =120 in, E = 29x108 psi, and / = 100 in*:

v,=-0.0433in  ¢,=-7.758x10°rad ¢, =5.586x10"* rad

Element #1:
V1
2 2
m(x) =1l L] g SN 9
dx ax ) v,
9,
m, = %(GLV1 +4L1%¢, —6Lv, +2L2¢2) =3,875Ib-ft

_El

m. = —
2 L3

(6Lv,+2L°¢, —6Lv, +4L%¢,) =3,562.5Ib-ft

20/39



CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 1 21/39

Beam Stiffness
Step 7 - Solve for the Element Strains and Stresses
Assume L = 120 in, E = 29x108 psi, and / = 100 in*:

v,=-0.0433in  ¢,=-7.758x10°rad ¢, =5.586x10"* rad

Element #2:
V1
2 2
m(x) =1l LY ] g CN |9
dx ax® ) v,
#

m, = %(SLV2 +41%¢, —6Lv, + 2L2¢3) =-2,562.5b-ft

El

m, =—
3 L3

(6Lv, +2L%¢, —BLv, +4L%4,) =0

Beam Stiffness
Step 7 - Solve for the Element Strains and Stresses
Assume L =120 in, E = 29x108 psi, and / = 100 in*:

v,=-0.0433in  ¢,=-7.758x10°rad ¢, =5.586x10"* rad

Element #1:
V1
d’v d*N | ¢
V(x)=Ell — | = El 1
=658 ) -G o
?,
f,, =%(12v1 +6L¢ —12v, +6Lp,) =T743.75b

. _El

o =

(-12v, —6L¢ +12v, —6L¢,) =-T43.75Ib
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Beam Stiffness

Step 7 - Solve for the Element Strains and Stresses
Assume L = 120 in, E = 29x108 psi, and / = 100 in*:

v,=-0.0433in  ¢,=-7.758x10°rad ¢, =5.586x10"* rad

Element #2:
V1
d’v d®N | ¢
V(x)=Ell — | = El 1
-5 ) -G o
?,

f, = %(1 2v, + 6L, ~12v, +6Lg) =-256.251b

f, = %(—12\/2 —6Lg, +12v, —BL4, ) = 256.251b

Beam Stiffness

Step 7 - Solve for the Element Strains and Stresses

5
1000 1b-ft
2 1
Z—- O ) @ 3
7 + 7]
A L L 1
o
1000 Ib
) _
437505 \AF =-1,000/b
3,562.51b-ft 2562501

—3,875/b-ft

AM =-1,000/b - ft
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Beam Stiffness
Example 1 - Beam Problem

Consider the beam shown below. Assume that E/ is constant
and the length is 2L (no shear deformation).

P
L |

l
I 2 \-{Q-\\- 3

The beam element stiffness matrices are:

ENNNANAN

va # va 72 va 23 v3 3

12 6L -12 6L 12 6L -12 6L
o _El 6L 4> 6L 212 o _El 6L 4> 6L 21
3|12 -6L 12 -6L S -12 6L 12 -6L
6L 21> -6L 42 6L 212 6L 4l?

Beam Stiffness
Example 1 - Beam Problem

The local coordinates coincide with the global coordinates of
the whole beam (therefore there is no transformation required
for this problem).

The total stiffness matrix can be assembled as:

F, (12 6L 12 6L ' 0 0 |[v
M, 6L 4[> -6L 200 0 ||4
F,| B2 —eL 724 0 2 6L ||y,
M,[Tr| 6L 212 10 8% 1-6L 2|4,
F, 0770 152 60 12 -eLl|v,
M, 0 0 6L 202 -6L 412 ||y,

Element 1 Element 2
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Beam Stiffness
Example 1 - Beam Problem

The boundary conditions are: v, =Vv,=¢, =0

F, (12 6L (-12) 6L | 0 0 (v,
M, 6L 42 1-6L12°1 0 0 ||¢4
Fy| EI|-12 —-6L1 241 0 i-12 6L ||0
M,["T| 6L 21> | 0 81> [-6L 21 ||4
F,, 0 0 i-121-6L112 -6L|[|0
M, 0 0 '6L!2L2!-6L 42||0

Beam Stiffness

By applying the boundary conditions the beam equations

reduce to: _p 12 6L 6L]([v,
0= % 6L 4L* 2% J¢
0 6L 27 8L%||4,
7L
Solving the above equations gives: 3
v, ,
& ¢ (= s 3
L L Z 4E|
%
. & G |
\ 4




CIVL 7/8117

Chapter 4 - Development of Beam Equations - Part 1

Beam Stiffness
Example 1 - Beam Problem

The positive signs for the rotations indicate that both are in the
counterclockwise direction.

The negative sign on the displacement indicates a deformation
in the -y direction.

F, 12 6L -12 6L O 0 (7%
M, 6L 47 6L 2[* O 0 3
Fy| P|-12 6L 24 0 -12 6L || 0
M,[ aL| 6L 212 0 82 -6L 22| 1
F,, 0 0 -12 -6L 12 -6L|| O
M, | 0 0 6L 22 -6L 4% 0
Beam Stiffness
Example 1 - Beam Problem
The local nodal forces for element 1:
f, 12 6L -12 6L |[-74 -P
m,| P| 6L 4> 6L 2I? 31 0
f,,| 4L|-12 -6L 12 -6L|| O [ | P
m, 6L 2[*> -6L 4l° 1 -PL
The local nodal forces for element 2:
f, 12 6L -12 6L |[0 1.5P
m,| P 6L 4> 6L 2% ||1 ] PL
f,, | 4L|-12 -6L 12 -6L|[|0[ |-1.5P
m, 6L 27 -6L 47 ]|0 0.5PL

25/39
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Beam Stiffness

Example 1 - Beam Problem

Chapter 4 - Development of Beam Equations - Part 1

26/39

The free-body diagrams for the each element are shown

below.

O]

P

L

©)

P

3P
HEC
PL

L

P

2

JPL
2

Combining the elements gives the forces and moments for the
original beam.

P
1

¥

Beam Stiffness

STRV Y
-]

Example 1 - Beam Problem

(STEP
w

Therefore, the shear force and bending moment diagrams are:

Vv
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Beam Stiffness

Example 2 - Beam Problem

Consider the beam shown below. Assume E = 30 x 10° psi and
I =500 in* are constant throughout the beam. Use four
elements of equal length to model the beam.

Elastic

curve \
3

I[l 000 b

10,000 1b

. N

4‘ e
f—10 11 —# 10 ft

k(l) L3

Beam Stiffness

El

Vi
12
6L

-12

6L

- . —
— E ! e
- L A

—
—+7I{J ft —ta+——10 t|—-|

The beam element stiffness matrices are:

i
6L
412
—6L
212

Example 2 - Beam Problem

Using the direct stiffness method, the four beam element
stiffness matrices are superimposed to produce the global

stiffness matrix.

—&6f.+ 6L 1

Element 1
oS
R, 12 6L -12
My | 6L 4L? —6L
Fyy -1z —sL ' 25 12
M, 6L _ 217 |-6L+ 6L 4L +4L” ]
Fy | _Elo 0o | -12
M LA 0 _ 6L
Fiy Lo 0 0
My [0 o 0
Fsy 00 0
M; 00 0

ity K1)

-12 6L
-6L 2I?

12 6L
-6L 4L°

Element 2

e és Ly iy s #s

0 0 0 0 00

0 0 0 0 0 0

12 6" o 0 0 o

—6L 2L 0 0 0 0

T TeLyer 120 T T T lo o

~6f+6I_ 4L2 44121 6L 2 _: 0

-12 6L | 1Z42T TSBLFEL T S17 6Ly
6L _ 202 ' -6Li6L_aL?44L? 6L 2071
0 :_ -2 —6L 12 6rl
o _s___ 2 e ar?!

Element 3

Element 4

]

#
L

o3

vy
Py
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Beam Stiffness

Example 2 - Beam Problem
The boundary conditions for this problem are:

V1:¢1:V3:V5:¢5:O

v & vz i vy s [t ' I és
Fiy 1 1 ! 1 0
M, 1 | 1 I ;
_____ e oo — ] i
F 12412 T DL Y 6L \ 6L 0 0 -
M 1-6L 4 6L 4L +4L7 | 1202 0 0 1 #
Fyy El I i T I -
=q|l==-=-=- R R s Rttt sttt 4--==- 3
My | 6L TR (4LE 4402 6L i &
Fiy ] 0 1 1 —6L 12412 —6L+6L | v
My | 0 o | P 2rr er 6L 4r244r7! s
Bl T —- e e el S = = o e Rl= === !
! 1 1 1 1 s
Ms 1 1 1 1 114

Beam Stiffness

Example 2 - Beam Problem
The boundary conditions for this problem are:
Vi=¢h=V;=V; =¢; =0

After applying the boundary conditions the global beam
equations reduce to:

(24 0 6L 0 0 ][v,| ([-10,000/b

0 82 2> 0 0 ||4 0
% 6L 21> 8> -6L 2I°|i¢, ;= 0

0O 0 -6L 24 0 ||v,| |-10,0001/b

0 0 2 0 8|4 0
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Beam Stiffness

Example 2 - Beam Problem

29/39

Substituting L = 120 in, E = 30 x 10° psi, and / = 500 in* into
the above equations and solving for the unknowns gives:

v, =v, =-0.048 in

¢$=¢=¢=0

The global forces and moments can be determined as:

F, = 5kips M,= 25 kipsft
,y = —10 kips M, =0

F,, = 10 kips M, =0

F,, =-10 kips M,=0

F;, = Skips M, = -25 kips-ft

Beam Stiffness

Example 2 - Beam Problem
The local nodal forces for element 1:

f, 12 6L -12 6L
m| EI| 6L 4 -6L 2/
f,| LC|-12 6L 12 —6L
m, 6L 22 6L 4l

The local nodal forces for element 2:

f,, 12 6L -12 6L
m,| EI| 6L 4 -6L 2L
f,,| |12 -6L 12 -6L

m, 6L 2[* -6L 41

0 5 kips
0 | |25kft
-0.048( |-5kips
0 25 kft
—0.048) (-5 kips
0 | |-25kift
0 | | 5kips
0 —25 k-t
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Beam Stiffness

Example 2 - Beam Problem
The local nodal forces for element 3:

f, 12 6L -12 6L][ 0 5 kips
m,| EI|l 6L 42 -6L 20°|] 0 25 k-ft
f,| 2|12 —6L 12 -6L||-0.048( |-5kips
m, 6L 212 -6L 42|| o 25 k-t

The local nodal forces for element 4:

f,, 12 6L -12 6L7(-0.048) (-5 kips
m,| EI| 6L 4 6L 22| 0 | |-25kft
f,| C|-12 6L 12 —6L|| 0 [ | 5kips
my 6L 22 -6L 42|| O 25 k-t

Beam Stiffness
Example 2 - Beam Problem

Note: Due to symmetry about the vertical plane at node 3, we
could have worked just half the beam, as shown below.

|
curve 10,000 1b | 10,000 1b
2 | \ ] 4 5 ?
-y = - ,—V
4‘ - -.i <3 - - &{Q\ I - 2




CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 1 31/39

Beam Stiffness

Example 3 - Beam Problem

Consider the beam shown below. Assume E = 210 GPa and
I =2 x 104 m* are constant throughout the beam and the
spring constant k = 200 kN/m. Use two beam elements of
equal length and one spring element to model the structure.

P = 50 kN

NNANNNNN

k = 200 kN/m

4

Beam Stiffness

Example 3 - Beam Problem
The beam element stiffness matrices are:

vy # Vo 2 Vo # v3 #3

12 6L -12 6L 12 6L -12 6L
o _El 6L 4> 6L 212 o _El 6L 42 -6L 212
212 6L 12 -6L 2|12 -6L 12 -6L
6L 212 6L 4l2 6L 21> -6L 4l°

The spring element stiffness matrix is:

R kK 0 —k
k<3>=“i _ﬂ = k®=/0 0 0
B k 0 k
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Beam Stiffness

Example 3 - Beam Problem

Using the direct stiffness method and superposition gives the
global beam equations.

Element 2
Element 1
F, :1'2' 6L 12 eL! 0 0 /0 7(v
M, (6L 4 6L 22, 0 0/ 0|4
F, 112 6L'24 01 12 “6L' 0 ||y, \
Ell , | 21 ! kL
M, ==_{ 6L 22,0 82, -6L 2% 0 |{¢ k'="—
I i b=—==a -2 El
F,, 0 o0 112 6L, 12+k'| 6 2
M, 0 0 6L 2% 6L 45} 0 ||
F., 0 0 0 0, -k | 0, K[,

Element 3

Beam Stiffness

Example 3 - Beam Problem
The boundary conditions for this problem are: v,=¢,=v,=v, =0

F, 12 6L -12] 6L 0 0, 07(0
M, 6L 42 -BL,2* 0 0,0]lO
Py | | S U | © @
M, = 6L 2L 0 :8L2 —6L 2L2: 0 |14, ':E
F, 0 0 -121-6L 12+k"' —-6L1 —Kk'||Vv,
M, 0 0 6Li2’ 6L _ 4} 0 (4
Fiy o 0 o0!0 -k 0!k]lO
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Beam Stiffness

Example 3 - Beam Problem

After applying the boundary conditions the global beam
equations reduce to:

8> 6L 2% |(g, 0

2

F,, =% —6L 12+k' —6L |{v,=<-P
M, 2[> 6L 4L ||g, 0
Solving the above _3PL ( j
equations gives:
7 7PL3 KL
AR B
; 12 El
’ 9PL2( ]
El 12+

Beam Stiffness

Example 3 - Beam Problem
Substituting L =3 m, E =210 GPa, I =2 x 10* m*, and
k = 200 kN/m in the above equations gives:
vy, =-0.0174m
¢, =-0.00249 rad
¢, =-0.00747 rad

Substituting the solution back into the global equations gives:

0
0
0

(12 6L -12 6L 0 0
6L 4L* -6L 2° 0 0
-12 6L 24 O -12 6L

_n
<

<
o o oo

P El

M, =5 6L 22 0 82 8L 2 ~0.00249 rad
F, 0 0 -12 6L 12+k' —6L —k'|| -0.0174 m
M, 0 0 6L 202 -6L 4l ~0.00747 rad
F, Lo 0 0 0 -k 0 Kk 0

<
L
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Beam Stiffness

Example 3 - Beam Problem
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Substituting L =3 m, E =210 GPa, I =2 x 10* m*, and
k = 200 kN/m in the above equations gives:

vy, =-0.0174m
¢, =-0.00249 rad
¢, =—0.00747 rad

Substituting the solution back into the global equations gives:

F, ~69.9 kN
M, —69.7 kKN -m 69.9 kN 50 kN
F, 116.4 kN l\ ) j
M, = 0 : ,/ 3m T Im 13
Fsy —50 kN 69.7 kN - m 3.5 kN
M3 0 116.4 kN
F., 3.5kN
Beam Stiffness
Example 3 - Beam Problem
P = 50 kN
g 1 ® 2 @ 3y
/
yy
7 SO <
| Q) k = 200 kN/m
- Im - Im 2
l
= 4

The variation of shear force and bending moment is:

—69.9kN

46

69.7 kNm

.5 kN

-139.5kNm
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Beam Stiffness

Distributed Loadings

Beam members can support distributed loading as well as
concentrated nodal loading.

Therefore, we must be able to account for distributed loading.

Consider the fixed-fixed beam subjected to a uniformly
distributed loading w shown the figure below.

wi(lb/ft)

L

INNAANNRRNNN

ANNNNNNNANNS

The reactions, determined from structural analysis theory, are
called fixed-end reactions.

Beam Stiffness

Distributed Loadings

In general, fixed-end reactions are those reactions at the ends
of an element if the ends of the element are assumed to be
fixed (displacements and rotations are zero).

2 3
wlL

_ WL~ _wL”
=1 M=
(P A~y

L o
wlL w_L
2 9

Therefore, guided by the results from structural analysis for the
case of a uniformly distributed load, we replace the load by
concentrated nodal forces and moments tending to have the
same effect on the beam as the actual distributed load.
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Beam Stiffness

Distributed Loadings
The figures below illustrates the idea of equivalent nodal loads
for a general beam. We can replace the effects of a uniform

load by a set of nodal forces and moments.

e THE PN i
&Qq L _& ‘& L &;‘ 12

»wo
wi(x) f
mi, L
]
N

Beam Stiffness

Work Equivalence Method
This method is based on the concept that the work done by

the distributed load is equal to the work done by the discrete
nodal loads. The work done by the distributed load is:

Wdistributed = .[W (X) V(X) dX
0
where v(x) is the transverse displacement. The work done by
the discrete nodal forces is:

Wnodes = m1¢1 + m2¢2 + f1yv1 + f2yv2

The nodal forces can be determined by setting
W,,.q0es fOr arbitrary displacements and rotations.

Weistributed =
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Beam Stiffness

Example 4 - Load Replacement

Consider the beam, shown below, and determine the
equivalent nodal forces for the given distributed load.

T 1]

Using the work equivalence method or: W, .00 = Wioges

L

jw(x) v(x)dx =mg +myp, +f, v, +1f, v,
0

Beam Stiffness
Example 4 - Load Replacement

Evaluating the left-hand-side of the above expression with:

w(x)=-w
v(x)z{g(v —v )+i(¢ +¢ )}x3
L3 1 2 L2 1 2

3 1 ,
{—F(w - VZ)_Z(2¢1 + ¢2)} X2+ X +V,

gives:
L L L2
jw v(x) dx ZTW(W —vz)——4W(¢1 +d,)—Lw(v,-v,)
0
[? [?
+ 3W (2¢1 +¢2)_ 2W ¢, —wLv,
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Beam Stiffness
Example 4 - Load Replacement

Using a set of arbitrary nodal displacements, such as:
Vi=V,=¢,=0 ¢ =1

The resulting nodal equivalent force or moment is:

Mg, + myp, + v, +f, v, = jw(x) v(x)dx
0

w2 2., [ wl?
m=——--—-Lw+—w|=——
2 12

Beam Stiffness
Example 4 - Load Replacement

Using a set of arbitrary nodal displacements, such as:

V1:V2:¢1:0 ¢2:1

The resulting nodal equivalent force or moment is:

Mg, + myp, + v, +f, v, = jw(x) v(x)dx
0

- wl?  wl?)_ wl?
2 4 3 12

38/39
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Beam Stiffness
Example 4 - Load Replacement

Setting the nodal rotations equal zero except for the nodal
displacements gives:

f,, _—%-{-LW—L __Lw
2
o2 2

Summarizing, the equivalent nodal forces and moments are:

T s & s g

End of Chapter 4a





