
Chapter 3b – Development of Truss Equations 

Learning Objectives
• To derive the stiffness matrix for a bar element.

• To illustrate how to solve a bar assemblage by the direct
stiffness method.

• To introduce guidelines for selecting displacement
functions.

• To describe the concept of transformation of vectors in
two different coordinate systems in the plane.

• To derive the stiffness matrix for a bar arbitrarily oriented
in the plane.

• To demonstrate how to compute stress for a bar in the
plane.

• To show how to solve a plane truss problem.

• To develop the transformation matrix in three-
dimensional space and show how to use it to derive the
stiffness matrix for a bar arbitrarily oriented in space.

• To demonstrate the solution of space trusses.

Stiffness Matrix for a Bar Element

Inclined, or Skewed Supports

If a support is inclined, or skewed, at some angle  for the 
global x axis, as shown below, the boundary conditions on 
the displacements are not in the global x-y directions but in 
the x’-y’ directions.
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Stiffness Matrix for a Bar Element

Inclined, or Skewed, Supports

We must transform the local boundary condition of v’3 = 0 
(in local coordinates) into the global x-y system. 

Stiffness Matrix for a Bar Element

Inclined, or Skewed, Supports

Therefore, the relationship between of the components of the 
displacement in the local and the global coordinate systems 
at node 3 is:

3 3

3 3
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    
        

We can rewrite the above expression as:

   3 3 3' [ ]d t d

We can apply this sort of transformation to the entire 
displacement vector as:
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Stiffness Matrix for a Bar Element

Inclined, or Skewed, Supports

Where the matrix [T1]T is:

Both the identity matrix [I] and the matrix [t3] are 2 x 2 matrices.

The force vector can be transformed by using the same 
transformation.
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In global coordinates, the force-displacement equations are:

   [ ]f K d

Stiffness Matrix for a Bar Element

Inclined, or Skewed, Supports

Applying the skewed support transformation to both sides of 
the equation gives:

By using the relationship between the local and the global 
displacements, the force-displacement equations become:

Therefore the global equations become:
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

Determine the stiffness matrix 
for each element.

Consider the plane truss shown below. Assume E = 210 GPa, 
A = 6 x 10-4 m2 for element 1 and 2, and A =     (6 x 10-4)m2

for element 3. 
2
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The global elemental stiffness matrix for element 1 is:
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(2)cos 1 

Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The global elemental stiffness matrix for element 2 is:
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The global elemental stiffness matrix for element 3 is:
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

Using the direct stiffness method, the global stiffness matrix is:
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We must transform the global displacements into local 
coordinates. Therefore the transformation [T1] is:

2 2
2 2

2 2
2 2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0

0 0 0 0 

 
 
 
 

  
 
 
 
 

1

3

[ ] [0] [0]

[ ] [0] [ ] [0]

[0] [0] [ ]

I

T I

t

 
   
  

Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The first step in the matrix transformation to find the product of 
[T1][K].
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The next step in the matrix transformation to find the product of 
[T1][K][T1]T.
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

The displacement boundary conditions are:
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

By applying the boundary conditions the global force-
displacement equations are:
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Solving the equation gives: 2 11.91u mm
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Stiffness Matrix for a Bar Element

Example 9 – Space Truss Problem

Therefore:

The global nodal forces are calculated as:
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

The differential internal work (strain energy) dU in a one-
dimensional bar element is:

Let’s derive the equations for a bar element using the principle 
of minimum potential energy. 

The total potential energy, p, is defined as the sum of the 
internal strain energy U and the potential energy of the 
external forces :

p U   

( )( )( )x xdU y z x d    

Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

Summing the differential energy over the whole bar gives:

If we let the volume of the element approach zero, then:

x xdU d dV 
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x x
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U d dV


 
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For a linear-elastic material (Hooke’s law) as shown below:

x xE 
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

The potential energy of the external forces is:

The internal strain energy statement becomes

1

2 x x

V

U dV  

s
V S

X u dV T u dS f u


     
M

b x ix i
i 1

where Xb is the body force (force per unit volume), Tx is the 
traction (force per unit area), and fix is the nodal concentrated 
force. All of these forces are considered to act in the local x
direction.

Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

1. Formulate an expression for the total potential energy.

2. Assume a displacement pattern.

3. Obtain a set of simultaneous equations minimizing the 
total potential energy with respect to the displacement 
parameters.

Apply the following steps when using the principle of minimum 
potential energy to derive the finite element equations.
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

We can approximate the axial displacement as:

Consider the following bar element, as shown below:

2 2
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

Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

where N1 and N2 are the interpolation functions gives as:

Using the stress-strain relationships, the axial strain is:

x

du
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 
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The axial stress-strain relationship is:    [ ]x xD 

  [ ]{ }x B d 
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

The total potential energy expressed in matrix form is:

For the one-dimensional stress-strain relationship [D] = [E] 
where E is the modulus of elasticity. 

Therefore, stress can be related to nodal displacements as:

where {P} represented the concentrated nodal loads. 

   [ ][ ]x D B d 

               
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dx d P u X dV u T dS

2
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

If we substitute the relationship between    and    into the 
energy equations we get:

û d̂

            

           
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L
T TT T

p

T TT T

s

V S

A
d B D B d dx d P

2

d N X dV d N T dS

  

 



 b x

In the above expression for potential energy p is a function of 
the d, that is: p = p(          ). 1,u 2u

However, [B] and [D] and the nodal displacements u are not a 
function of x. 

x x
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

where

Integration the energy expression with respect to x gives:

       [ ] [ ] [ ]
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T TT T
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b b

We can define the surface tractions and body-force matrices 
as:
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

Minimization of p with respect to each nodal displacement 
requires that:

For convenience, let’s define the following
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 
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    1*
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Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

Simplifying the above expression gives:

The loading on a bar element is given as:

 * 2 2
1 1 2 22

2
E

U u u u u
L

  

    1 1 2 2

T

x xd f u f u f 

Therefore, the minimum potential energy is:

 1 2 1
1

2 2 0
2

p
x

AE
u u f

u L


   



 1 2 2
2

2 2 0
2

p
x

AE
u u f

u L


    



Stiffness Matrix for a Bar Element

Potential Energy Approach to Derive Bar Element Equations

The above equations can be written in matrix form as:

The stiffness matrix for a bar element is:

This form of the stiffness matrix obtained from the principle of 
minimum potential energy is identical to the stiffness matrix 
derived from the equilibrium equations. 

 
1 1

2 2

1 1
0

1 1
p x

x

u fAE
u fd L

      
            

  1 1

1 1

AE
k

L

 
   
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Stiffness Matrix for a Bar Element

Example 10 - Bar Problem

Consider the bar shown below:

The energy equivalent nodal forces due to the distributed load 
are:

   0 [ ] x

S

f N T dS  T    0

0

L
x

1f Lf Cx dx
f x

L

         
   

  

1x

2x

Stiffness Matrix for a Bar Element

Example 10 - Bar Problem

The total load is the area under the distributed load curve, or:

The equivalent nodal forces for a linearly varying load are:

f

f

 
 
 

1x

2x

21
( )( )

2 2

CL
F L CL 

1

1
of the total load

3 3x

F
f   2

2 2
of the total load

3 3x

F
f  

 
0

L
x

1
L Cx dx

x

L

     
 
  

 0

0

L2 3

L3

Cx Cx

2 3L

Cx

3L

 
 

 
  
 
 
 

2

2

CL

6

CL

3

 
    
 
  
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

Consider the axially loaded bar shown below. Determine the 
axial displacement and axial stress. Let E = 30 x 106 psi, 
A = 2 in2, and L = 60 in. Use (a) one and (b) two elements in 
the finite element solutions.

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The one-element solution:

The distributed load can be converted into equivalent nodal 
forces using:

   0 [ ] x

S

F N T dS  T  0
1x

2x

F
F

F

 
  
 

 
0

10
L

x
1

L x dx
x

L

     
 
  


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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The one-element solution:

 
0

10
L

1x

2x

x
1F L x dx

F x

L

         
   

  



6,000

12,000
1x

2x

F lb

F lb

   
     

2 2

2

10 10
- +

2 3

10
-

3

L L

L

 
    
 
  

2

2

10
-

6

10
-

3

L

L

 
    
 
  

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The one-element solution:

The element equations are:

(1) 6 1 1
10

1 1

 
   

k

16

2

6,0001 1
10

12,0001 1 0 x

u

R

     
          

1 0.006u in 

The second equation gives:

6
1 210 ( ) 12,000xu R   2 18,000xR lb 
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The one-element solution:

The axial stress-strain relationship is: { } [ ]{ }x xD 

 { } [ ]x E B d 

1

2

1 1 u
E

uL L

         

6 0 0.006
30 10

60

    
 

2 1u u
E

L

   
 

3,000 ( )psi T

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

The distributed load can be converted into equivalent nodal 
forces. 

For element 1, the total force of the triangular-shaped 
distributed load is:

1
(30 .)(300 ) 4,500

2
lb

inin lb 
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

Based on equations developed for the equivalent nodal force of 
a triangular distributed load, develop in the one-element 
problem, the nodal forces are:

(1)
1

(1)
2

1
(4,500)

3
2

(4,500)
3

x

x

f

f

        
   

  

1,500

3,000

lb

lb

 
   

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

For element 2, the applied force is in two parts: a triangular-
shaped distributed load and a uniform load. The uniform load 
is:

(30 )(300 / ) 9,000in lb in lb 

(2)
2

(2)
3

1 1
(9,000) (4,500)

2 3

1 2
(9,000) (4,500)

2 3

x

x

f

f

            
         

The nodal forces for element 2 are:

6,000

7,500

lb

lb

 
   
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

The final nodal force vector is:

The element stiffness matrices are: 

(1)
1 1

(1) (2)
2 2 2

(2)
3 3

x x

x x x

x x

F f

F f f

F f

  
       

   
   

(1) (2) 1 12
1 1

AE
L

 
 
 

 


k k

1 2

2           3

3

1,500

9,000

7,500xR

 
   
  

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

The assembled global stiffness matrix is:

The assembled global force-displacement equations are:

6

1 1 0

2 10 1 2 1

0 1 1

 
     
  

K

1
6

2

3

1 1 0 1,500

2 10 1 2 1 9,000

0 1 1 0 7,500x

u

u

R

      
            
          

element 1

element 2
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

After the eliminating the row and column associated with u3x, 
we get:

Solving the equation gives:

16

2

1 1 1,500
2 10

1 2 9,000

u

u

     
          

1

2

0.006

0.00525

u in

u in

 

 

6
2 32 10 7,500xu R    3 18,000xR 

Solving the last equation gives:

Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

The axial stress-strain relationship is:

1(1)

2

1 1 x
x

x

d
E

dL L


         

0.0061 1

30 30 0.00525
E

          
750 ( )psi T
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Stiffness Matrix for a Bar Element

Example 11 - Bar Problem

The two-element solution:

The axial stress-strain relationship is:

2(2)

3

1 1 x
x

x

d
E

dL L


         

0.005251 1

30 30 0
E

         
5,250 ( )psi T

Stiffness Matrix for a Bar Element

Comparison of Finite Element Solution to Exact Solution

In order to be able to judge the accuracy of our finite element 
models, we will develop an exact solution for the bar element 
problem. 

The exact solution for the displacement may be obtained by:

where the force P is shown on the following free-body diagram.

0

1
( )

L

u P x dx
AE

 

 1
( ) (10 )

2
P x x x 25x
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Stiffness Matrix for a Bar Element

Comparison of Finite Element Solution to Exact Solution

Therefore:

Applying the boundary conditions:

0

1
( )

L

u P x dx
AE

  21
5

x

o

u x dx
AE

 

3

1

5
( ) 0

3

x
u L C

AE
  

The exact solution for axial displacement is:

 3 35
( )

3
u L x L

AE
  ( )

( )
P x

x
A

 

3

1

5

3

x
C

AE
 

3

1

5

3

L
C

AE
  

25x

A


Stiffness Matrix for a Bar Element

Comparison of Finite Element Solution to Exact Solution

A plot of the exact solution for displacement as compared to 
several different finite element solutions is shown below.

One element

Two elements
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Stiffness Matrix for a Bar Element

Comparison of Finite Element Solution to Exact Solution

A plot of the exact solution for axial stress as compared to 
several different finite element solutions is shown below.

One element

Two elements

Stiffness Matrix for a Bar Element

Comparison of Finite Element Solution to Exact Solution

A plot of the exact solution for axial stress at the fixed end 
(x = L) as compared to several different finite element 
solutions is shown below.
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Stiffness Matrix for a Bar Element
Galerkin’s Residual Method and Its Application 

to a One-Dimensional Bar

There are a number of weighted residual methods. 

However, the Galerkin’s method is more well-known and will be 
the only weighted residual method discussed in this course. 

In weighted residual methods, a trial or approximate function is 
chosen to approximate the independent variable (in our 
case, displacement) in a problem defined by a differential 
equation. 

The trial function will not, in general, satisfy the governing 
differential equation. 

Therefore, the substitution of the trial function in the differential 
equation will create a residual over the entire domain of the 
problem.

Stiffness Matrix for a Bar Element
Galerkin’s Residual Method and Its Application 

to a One-Dimensional Bar

Therefore, the substitution of the trial function in the differential 
equation will create a residual over the entire domain of the 
problem.

minimum
V

RdV 
In the residual methods, we require that a weighted value of 

the residual be a minimum over the entire domain of the 
problem. 

The weighting function W allows the weighted integral of the 
residuals to go to zero.

0
V

RW dV 
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Stiffness Matrix for a Bar Element
Galerkin’s Residual Method and Its Application 

to a One-Dimensional Bar

Using Galerkin’s weighted residual method, we require the 
weighting functions to be the interpolation functions Ni. 
Therefore:

0 1, 2, ,i

V

RN dV i n  

Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

Let’s derive the bar element formulation using Galerkin’s 
method. The governing differential equation is:

Applying Galerkin’s method we get:

0
d du

AE
dx dx

   
 

0

0 1, 2, ,
L

i

d du
AE N dx i n

dx dx
    
  

We now apply integration by parts using the following general 
formula:

rds rs sdr  
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Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

If we assume the following: 

then integration by parts gives:

ir N

d du
ds AE dx

dx dx
   
 

0 0

0
L L

i
i

dNdu du
N AE AE dx

dx dx dx
 

0

L

i

d du
AE N dx

dx dx
   
 

rds rs sdr  

idN
dr dx

dx


du
s AE

dx


Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

Recall that:

1 2
1 2

dN dNdu
u u

dx dx dx
  1

2

1 1 udu
udx L L

         

Our original weighted residual expression, with the 
approximation for u becomes:

1

20

1 1L
i

udN
AE dx

udx L L

        


0

L

i

du
N AE

dx

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Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

Substituting N1 for the weighting function Ni gives:

11

20

1 1L udN
AE dx

udx L L

        


1

20

1 1 1L u
AE dx

uL L L

               


 1 2 1x

AE
u u f

L
  

1
0

L
du

N AE
dx 0x

du
AE

dx 


0x x

AE


 1xf
0x x

A




 1 22

AEL
u u

L
 

1
0

L
du

N AE
dx



Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

Substituting N2 for the weighting function Ni gives:

12

20

1 1L udN
AE dx

udx L L

        


1

20

1 1 1L u
AE dx

uL L L

              


 1 2 2x

AE
u u f

L
   

2
0

L
du

N AE
dx x L

du
AE

dx 

 x x L
AE


 2xfx x L

A




 1 22

AEL
u u

L
  

2
0

L
du

N AE
dx


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Stiffness Matrix for a Bar Element

Example 12 - Bar Element Formulation

Writing the last two equations in matrix form gives:

1 1

2 2

1 1

1 1
x

x

u fAE
u fL

     
         

This element formulation is identical to that developed from 
equilibrium and the minimum potential energy approach.

Symmetry and Bandwidth

In this section, we will introduce the concepts of symmetry to 
reduce the size of a problem and of banded-symmetric 
matrices and bandwidth. 

In many instances, we can use symmetry to facilitate the 
solution of a problem. 

Symmetry means correspondence in size, shape, and 
position of loads; material properties; and boundary 
conditions that are mirrored about a dividing line or plane. 

Use of symmetry allows us to consider a reduced problem 
instead of the actual problem. Thus, the order of the total 
stiffness matrix and total set of stiffness equations can be 
reduced.
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Symmetry and Bandwidth - Example 1

Solve the plane truss problem shown below. The truss is 
composed of eight elements and five nodes.

A vertical load of 2P is applied at node 4. Nodes 1 and 5 are 
pin supports. Bar elements 1, 2, 7, and 8 have an axial 
stiffness of AE and bars 3, 4, 5, and 6 have an axial stiffness 
of AE. 

Symmetry and Bandwidth - Example 1

In this problem, we will use a plane of symmetry. 

The vertical plane perpendicular to the plane truss passing 
through nodes 2, 4, and 3 is the plane of symmetry because 
identical geometry, material, loading, and boundary 
conditions occur at the corresponding locations on opposite 
sides of this plane. 
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Symmetry and Bandwidth - Example 1

For loads such as 2P, occurring in the plane of symmetry, 
one-half of the total load must be applied to the reduced 
structure. 

For elements occurring in the plane of symmetry, one-half of 
the cross-sectional area must be used in the reduced 
structure.

Symmetry and Bandwidth - Example 1

Element  C S C2 S2 CS

1 45° 0.707 0.707 0.5 0.5 0.5

2 315° 0.707 -0.707 0.5 0.5 -0.5

3 0° 1 0 1 0 0

4 270° 0 -1 0 1 0

5 90° 0 1 0 1 0
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Symmetry and Bandwidth - Example 1

Element  C S C2 S2 CS

1 45° 0.707 0.707 0.5 0.5 0.5

2 315° 0.707 -0.707 0.5 0.5 -0.5

3 0° 1 0 1 0 0

4 270° 0 -1 0 1 0

5 90° 0 1 0 1 0

1 1 2 2

(1)

1 1 1 1

1 1 1 1

2 1 1 1 1

1 1 1 1

u v u v

AE

L

  
   
  
   

k

1 1 3 3

(2)

1 1 1 1

1 1 1 1

2 1 1 1 1

1 1 1 1

u v u v

AE

L

  
   
  
   

k

Symmetry and Bandwidth - Example 1

Element  C S C2 S2 CS

1 45° 0.707 0.707 0.5 0.5 0.5

2 315° 0.707 -0.707 0.5 0.5 -0.5

3 0° 1 0 1 0 0

4 270° 0 -1 0 1 0

5 90° 0 1 0 1 0

1 1 4 4

(3)

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

u v u v

AE

L

 
 
 
 
 
 

k

2 2 4 4

(4)

0 0 0 0

0 1 0 1

2 0 0 0 0

0 1 0 1

u v u v

AE

L

 
  
 
  

k
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Symmetry and Bandwidth - Example 1

Element  C S C2 S2 CS

1 45° 0.707 0.707 0.5 0.5 0.5

2 315° 0.707 -0.707 0.5 0.5 -0.5

3 0° 1 0 1 0 0

4 270° 0 -1 0 1 0

5 90° 0 1 0 1 0

3 3 4 4

(5)

0 0 0 0

0 1 0 1

2 0 0 0 0

0 1 0 1

u v u v

AE

L

 
  
 
  

k

Symmetry and Bandwidth - Example 1

Since elements 4 and 5 lie in the plane of symmetry, one half 
of their original areas have been used in developing the 
stiffness matrices. 

The displacement boundary conditions are:

1 1 2 3 4 0u v u u u    

By applying the boundary conditions the force-displacement 
equations reduce to:

2

3

4

2 0 1 0

0 2 1 0
2

1 1 2

v
AE

v
L

v P

     
         
          
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Symmetry and Bandwidth - Example 1

We can solve the above equations by separating the matrices 
in submatrices (indicated by the dashed lines). Consider a 
general set of equations shown below:

Solving the first equation for d1 gives:

11 12 1

21 22 2

0K K d

K K d F

    
    
   

11 1 12 2 0K d K d 

21 1 22 2K d K d F 

1
1 11 12 2d K K d 

Substituting the above equation in the second matrix equation 
gives:

Simplifying this expression gives:

 1
21 11 12 2 22 2K K K d K d F  

 1
22 21 11 12 2K K K K d F 

Symmetry and Bandwidth - Example 1

The previous equations can be written as:

where:

Therefore, the displacements d2 are:

If we apply this solution technique to our example global 
stiffness equations we get:

2ck d F
1

22 21 11 12ck K K K K 

  1

2 cd k F




1
1

1 01 1 2[1]
2 2 0 1 1

2

c

AE
k

L


                        

Simplifying:

1
[1]

2c

AE
k

L

       
  1 2

c

L
k

AE



2

3

4

2 0 1 0

0 2 1 0
2

1 1 2

v
AE

v
L

v P

     
         
          

1

2

AE

L
    
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Symmetry and Bandwidth - Example 1

Therefore, the displacements d2 are:

The remaining displacements can be found by substituting the 
result for v4 in the global force-displacement equations.

Expanding the above equations gives the values for the 
displacements.

2 4

2PL
d v

AE
  

2

3

1
1 0 22
0 1 1

2

v PL
v AE

                      
  

2

3

PL
v AE
v PL

AE

        
   

  

Symmetry and Bandwidth

The coefficient matrix (stiffness matrix) for the linear equations 
that occur in structural analysis is always symmetric and 
banded. 

Because a meaningful analysis generally requires the use of a 
large number of variables, the implementation of 
compressed storage of the stiffness matrix is desirable both 
from the viewpoint of fitting into memory (immediate access 
portion of the computer) and computational efficiency.
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Symmetry and Bandwidth

Another method, based on the concept of the skyline of the 
stiffness matrix, is often used to improve the efficiency in 
solving the equations. 

The skyline is an envelope that begins with the first nonzero 
coefficient in each column of the stiffness matrix (see the 
following figure). 

In skyline, only the coefficients between the main diagonal 
and the skyline are stored. 

In general, this procedure takes even less storage space in 
the computer and is more efficient in terms of equation 
solving than the conventional banded format. 

Symmetry and Bandwidth

A matrix is banded if the nonzero terms of the matrix are 
gathered about the main diagonal. 

To illustrate this concept, consider the plane truss shown on 
below. 

We can see that element 2 connects 
nodes 1 and 4. 

Therefore, the 2 x 2 submatrices at 
positions 1-1, 1-4, 4-1, and 4-4 will 
have nonzero coefficients. 
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Symmetry and Bandwidth

The total stiffness matrix of the plane truss, shown in the 
figure below, denotes nonzero coefficients with X’s. 

The nonzero terms are within the some band. Using a banded 
storage format, only the main diagonal and the nonzero 
upper codiagonals need be stored. 

Symmetry and Bandwidth

We now define the semibandwidth: nb as    nb = nd(m + 1)

where nd is the number of degrees of freedom per node and 
m is the maximum difference in node numbers determined 
by calculating the difference in node numbers for each 
element of a finite element model. 

In the example for the plane truss shown above, 

m = 4 - 1 = 3    and    nd = 2; 

nb = 2(3 + 1) = 8
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Symmetry and Bandwidth

Execution time (primarily, equation-solving time) is a function 
of the number of equations to be solved. 

Without using banded storage of global stiffness matrix K, the 
execution time is proportional to (1/3)n3, where n is the 
number of equations to be solved. 

Using banded storage of K, the execution time is proportional 
to n(nb)2

The ratio of time of execution without banded storage to that 
using banded storage is then (1/3)(n/nb)2

Symmetry and Bandwidth

Execution time (primarily, equation-solving time) is a function 
of the number of equations to be solved. 

square matrix upper triangular  matrix

banded matrix skyline matrix
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Symmetry and Bandwidth

For the plane truss example, this ratio is (1/3)(24/8)2 = 3

Therefore, it takes about three times as long to execute the 
solution of the example truss if banded storage is not used. 

Symmetry and Bandwidth

Several automatic node renumbering schemes have been 
computerized. 

This option is available in most general-purpose computer 
programs. Alternatively, the wavefront or frontal method are 
popular for optimizing equation solution time. 

In the wavefront method, elements, instead of nodes, are 
automatically renumbered. 

In the wavefront method the assembly of the equations 
alternates with their solution by Gauss elimination. 
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Symmetry and Bandwidth

The sequence in which the equations are processed is 
determined by element numbering rather than by node 
numbering. 

The first equations eliminated are those associated with 
element 1 only. 

Next the contributions to stiffness coefficients from the 
adjacent element, element 2, are eliminated. 

If any additional degrees of freedom are contributed by 
elements 1 and 2 only these equations are eliminated 
(condensed) from the system of equations. 

Symmetry and Bandwidth

As one or more additional elements make their contributions 
to the system of equations and additional degrees of freedom 
are contributed only by these elements, those degrees of 
freedom are eliminated from the solution. 

This repetitive alternation between assembly and solution was 
initially seen as a wavefront that sweeps over the structure in 
a pattern determined by the element numbering. 

The wavefront method, although somewhat more difficult to 
understand and to program than the banded-symmetric 
method, is computationally more efficient. 
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Symmetry and Bandwidth

A banded solver stores and processes any blocks of zeros 
created in assembling the stiffness matrix. 

These blocks of zero coefficients are not stored or processed 
using the wavefront method. 

Many large-scale computer programs are now using the 
wavefront method to solve the system of equations. 

Homework Problems

3b.Do problems 3.50 and 3.55 on pages 146 - 165 in your 
textbook “A First Course in the Finite Element Method” by 
D. Logan.

4. Use SAP2000 and solve problems 3.63 and 3.67.
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Homework Problems

5. Do problem B.9 in your textbook “A First Course in the 
Finite Element Method” by D. Logan.

Determine the bandwidths of the plane trusses shown in 
the figure below. What conclusions can you draw 
regarding labeling of nodes? 

Homework Problems

6. Solve the following truss problems. You may use 
SAP2000 to do truss analysis.

a) For the plane truss shown below, 
determine the nodal displacements and 
element stresses. 

Nodes 1 and 2 are pin joints. 
Let E = 107 psi and the A = 2.0 in2 for 
all elements. 

1

3

5

7

2

4

6

85 k

10 k

10 k

10 ft

10 ft

10 ft

10 ft
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Homework Problems

b) For the 25-bar truss shown below, determine the displacements and 
elemental stresses.  Nodes 7, 8, 9, and 10 are pin connections. 
Let E = 107 psi and the A = 2.0 in2 for the first story and A = 1.0 in2 for 
the top story. Table 1 lists the coordinates for each node. Table 2 lists 
the values and directions of the two loads cases applied to the 25-bar 
space truss.

12

3
4

5 6

7
9

8

10

Node x (in) y (in) z (in)

1 -37.5 0.0 200.0

2 37.5 0.0 200.0

3 -37.5 37.5 100.0

4 37.5 37.5 100.0

5 37.5 -37.5 100.0

6 -37.5 -37.5 100.0

7 -100.0 100.0 0.0

8 100.0 100.0 0.0

9 100.0 -100.0 0.0

10 -100.0 -100.0 0.0

Note: 1 in = 2.54 cm

Homework Problems

12

3
4

5 6

7
9

8

10

Case Node Fx (kip) Fy (kip) Fz (kip)

1

1 1.0 10.0 -5.0

2 0.0 10.0 -5.0

3 0.5 0.0 0.0

6 0.5 0.0 0.0

2
1 0.0 20.0 -5.0

2 0.0 -20.0 -5.0

Note: 1 kip = 4.45 kN

b) For the 25-bar truss shown below, determine the displacements and 
elemental stresses.  Nodes 7, 8, 9, and 10 are pin connections. 
Let E = 107 psi and the A = 2.0 in2 for the first story and A = 1.0 in2 for 
the top story. Table 1 lists the coordinates for each node. Table 2 lists 
the values and directions of the two loads cases applied to the 25-bar 
space truss.
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Homework Problems
c) For the 72-bar truss shown below, determine the displacements and 

elemental stresses.  Nodes 1, 2, 3, and 4 are pin connections. 
Let  E = 107 psi and the A = 1.0 in2 for the first two stories and A = 0.5 
in2 for the top two stories. Table 3 lists the values and directions of the 
two loads cases applied to the 72-bar space truss.

120 in

60 in

60 in

60 in

60 in

1

5

9

13

17

2

6

10

14

18

1

2

3

4

5
6

9

7

8
10

11

12

13

1415

16

17

18

(a)

(b)

Case Node Fx (kip) Fy (kip) Fz (kip)

1

17 0.0 0.0 -5.0

18 0.0 0.0 -5.0

19 0.0 0.0 -5.0

20 0.0 0.0 -5.0

2 17 5.0 5.0 -5.0

Note: 1 kip = 4.45 kN

End of Chapter 3b
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