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Chapter 3a — Development of Truss Equations

Learning Objectives

u « To derive the stiffness matrix for a bar element.

A First Course in the » Toillustrate how to solve a bar assemblage by the direct
Finite Element Method stiffness method.

» To introduce guidelines for selecting displacement
functions.

» To describe the concept of transformation of vectors in
two different coordinate systems in the plane.

» To derive the stiffness matrix for a bar arbitrarily oriented
in the plane.

» To demonstrate how to compute stress for a bar in the
plane.

* To show how to solve a plane truss problem.

» To develop the transformation matrix in three-
dimensional space and show how to use it to derive the
stiffness matrix for a bar arbitrarily oriented in space.

» To demonstrate the solution of space trusses.

Development of Truss Equations

Having set forth the foundation on which the direct stiffness
method is based, we will now derive the stiffness matrix for
a linear-elastic bar (or truss) element using the general
steps outlined in Chapter 2.

We will include the introduction of both a local coordinate
system, chosen with the element in mind, and a global or
reference coordinate system, chosen to be convenient (for
numerical purposes) with respect to the overall structure.

We will also discuss the transformation of a vector from the
local coordinate system to the global coordinate system,
using the concept of transformation matrices to express
the stiffness matrix of an arbitrarily oriented bar element in
terms of the global system.
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Development of Truss Equations
Next we will describe how to handle inclined, or skewed,
supports.

We will then extend the stiffness method to include space
trusses.

We will develop the transformation matrix in three-dimensional
space and analyze a space truss.

We will then use the principle of minimum potential energy
and apply it to the bar element equations.

Finally, we will apply Galerkin’s residual method to derive the
bar element equations.

Development of Truss Equations
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Development of Truss Equations

Development of Truss Equations
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Development of Truss Equations

Development of Truss Equations
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Development of Truss Equations

Two retractable roof panels creating
a 256’ x 410 roof opening

Video board box truss supporting
1.2 million pound center-hung
video board

Roof mechanization rails

1\

180" wide x 120
tall operable glass
doors

Arch truss
bearing pin
assembly

17" wide x 35 deep
arch box truss,
(radius = 1024.25")
25" wide
thrust block

e
\—13'“75':71‘

slurry wall box abutment

Development of Truss Equations
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Development of Truss Equations
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Stiffness Matrix for a Bar Element

Consider the derivation of the stiffness matrix for the linear-
elastic, constant cross-sectional area (prismatic) bar
element show below.

b——x u
1 L 2

T <—] .
—uy. fix F—— U /o,

This application is directly applicable to the solution of pin-
connected truss problems.
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Stiffness Matrix for a Bar Element

Consider the derivation of the stiffness matrix for the linear-
elastic, constant cross-sectional area (prismatic) bar
element show below.

b——x u
1 L 2

T ~-— F——T
——uy, fix F—— U /o,

where T is the tensile force directed along the axis at
nodes 1 and 2, x is the local coordinate system directed
along the length of the bar.

Stiffness Matrix for a Bar Element

Consider the derivation of the stiffness matrix for the linear-
elastic, constant cross-sectional area (prismatic) bar
element show below.

b——x u
1 L 2

y— T
—uy. fix F—— U /o,

The bar element has a constant cross-section A, an initial
length L, and modulus of elasticity E.

The nodal degrees of freedom are the local axial
displacements u, and u, at the ends of the bar.
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Stiffness Matrix for a Bar Element
The strain-displacement relationship is: ¢ = g_u o=Ee¢
X

From equilibrium of forces, assuming no distributed loads
acting on the bar, we get:

Ao, =T = constant

Combining the above equations gives:

AE d_u =T =constant
dx

Taking the derivative of the above equation with respect to the
local coordinate x gives:

i(AE d_”j 0
dx dx

Stiffness Matrix for a Bar Element

The following assumptions are considered in deriving the bar
element stiffness matrix:

1. The bar cannot sustain shear force: f,, =f,, =0
2. Any effect of transverse displacement is ignored.

3. Hooke’s law applies; stress is related to strain: o, =Ee¢,
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Stiffness Matrix for a Bar Element
Step 1 - Select Element Type

We will consider the linear bar element shown below.

b——x u
1 L 2

T ~-— F——T
——uy, fix F—— U /o,

The bar element has a constant cross-section A, an initial
length L, and modulus of elasticity E.

Stiffness Matrix for a Bar Element

Step 2 - Select a Displacement Function

Alinear displacement function u is assumed: u=a, +a,X

The number of coefficients in the displacement function, a;, is
equal to the total number of degrees of freedom associated
with the element.

Applying the boundary conditions and solving for the unknown
coefficients gives:

9/53
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Stiffness Matrix for a Bar Element

Step 2 - Select a Displacement Function

Or in another form: u =[N, Nz]{u1}
u2

where N; and N, are the interpolation functions gives as:
X X
N,=1-= N, ==
1 L 2L
The linear displacement
function u plotted over the u

length of the bar elementis
shown here. =2

Stiffness Matrix for a Bar Element

Step 3 - Define the Strain/Displacement
and Stress/Strain Relationships

_d_u_uz_u1
“odx L

The stress-displacement relationship is: €

Step 4 - Derive the Element Stiffness Matrix and Equations
We can now derive the element stiffness matrix as follows:
T =Ao,

Substituting the stress-displacement relationship into the
above equation gives:

T=AE(U2_U1J
L
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Stiffness Matrix for a Bar Element
Step 4 - Derive the Element Stiffness Matrix and Equations
The nodal force sign convention, defined in element figure, is:

fo=-T f, =T

therefore, _ _
f, = AE (—“1 L“2 j f, = AE (—“2 : = j

Writing the above equations in matrix form gives:

=20 I

Notice that AE/L for a bar element is analogous to the spring
constant k for a spring element.

Stiffness Matrix for a Bar Element
Step 5 - Assemble the Element Equations

and Introduce Boundary Conditions

The global stiffness matrix and the global force vector are
assembled using the nodal force equilibrium equations, and
force/deformation and compatibility equations.

K=[K]=2K"  F={F}=Yf
e=1 e=1

Where k and f are the element stiffness and force matrices
expressed in global coordinates.
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Stiffness Matrix for a Bar Element
Step 6 - Solve for the Nodal Displacements

Solve the displacements by imposing the boundary conditions
and solving the following set of equations:

F=Ku

Step 7 - Solve for the Element Forces

Once the displacements are found, the stress and strain in
each element may be calculated from:

&

=d—u=u2_u1 O =Eg
X dX L X X

Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

Consider the following three-bar system shown below. Assume
for elements 1 and 2: A =1 in? and E = 30 (10°) psi and for
element 3: A=2in?and E = 15 (10°) psi.

3000 Ib

?;@ 2] 0 3 © 4 x
30 in, —=f+— 30 in. —=}+—30 in.

4 90 in. é

Determine: (a) the global stiffness matrix, (b) the displacement
of nodes 2 and 3, and (c) the reactions at nodes 1 and 4.
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Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

For elements 1 and 2:

1 2 node numbers for element 1
2 3 node numbers for element 2

6
k(”:k(Z):(‘l)(30><10 ){ 1 _1}" :106[ 1 _1}'1).
_1 in _1 n

30 1 1

For element 3:

3 4 node numbers for element 3

k(g):M{j —1}%:10{_1 1

b/
30 1 1 1 J/m

As before, the numbers above the matrices indicate the
displacements associated with the matrix.

Stiffness Matrix for a Bar Element

Example 1 - Bar Problem

Assembling the global stiffness matrix by the direct stiffness
methods gives:

E1 E2 E3
11110 0

| 47570
K=10°"-5-— ',
0 -1 21=1
T I
0 0.=1_1

Relating global nodal forces related to global nodal
displacements gives:

1-1 0 0ffu,
-1.2 -1 0}|y,
0 -1 2 1|y,
0 0 -1 1)y,

X

X :106

X

X
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Stiffness Matrix for a Bar Element
Example 1 - Bar Problem

The boundary conditions are: U, =u, =0

F, 11=1 0! 0](0
Fou | _ 40 -1 g'é"li i"o' u,
F,, 0i-1 2i-1||u,
F,, 00 1! 1|0

Applying the boundary conditions and the known forces
(F, = 3,000 Ib) gives:

PR W

Stiffness Matrix for a Bar Element

Example 1 - Bar Problem

Solving for u, and u, gives: u, =0.002in
u, =0.001in

The global nodal forces are calculated as:

Fi 1-1 0 0 0 —-2,000
F. - - :

2| _ 108 1 2 -1 0/]0.002 _ 3,000 b
Fax 0 -1 2 -1(|0.001 0

Fiy 0O 0-1 1 0 -1,000
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Stiffness Matrix for a Bar Element

Selecting Approximation Functions for Displacements

Consider the following guidelines, as they relate to the one-
dimensional bar element, when selecting a displacement
function.

1. Common approximation functions are usually
polynomials.

2. The approximation function should be continuous within
the bar element.

=
~—Q
_'|

d

Stiffness Matrix for a Bar Element

Selecting Approximation Functions for Displacements

Consider the following guidelines, as they relate to the one-
dimensional bar element, when selecting a displacement
function.

3. The approximating function should provide interelement
continuity for all degrees of freedom at each node for
discrete line elements, and along common boundary lines
and surfaces for two- and three-dimensional elements.

X4

/
OR

=
~—Q

d
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Stiffness Matrix for a Bar Element

Selecting Approximation Functions for Displacements

Consider the following guidelines, as they relate to the one-
dimensional bar element, when selecting a displacement
function.

For the bar element, we must ensure that nodes common
to two or more elements remain common to these
elements upon deformation and thus prevent overlaps or
voids between elements.

1 ® 2 @

3
O O O
L L

The linear function is then called a conforming (or
compatible) function for the bar element because it
ensures both the satisfaction of continuity between
adjacent elements and of continuity within the element.

Stiffness Matrix for a Bar Element

Selecting Approximation Functions for Displacements

Consider the following guidelines, as they relate to the one-
dimensional bar element, when selecting a displacement
function.

4. The approximation function should allow for rigid-body
displacement and for a state of constant strain within the
element.

Completeness of a function is necessary for
convergence to the exact answer, for instance, for
displacements and stresses.

3

Exact solution —*

Displacement

T
-

/' * Convergence to

exact solution

——————*=— Number of elements
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Stiffness Matrix for a Bar Element
Selecting Approximation Functions for Displacements

The interpolation function must allow for a rigid-body
displacement, that means the function must be capable of
yielding a constant value.

Consider the follow situation: u=a, a=u=u,
Therefore: u=Nu, +N,u, =(N; +N,)a,
Since u =a, then: u=a,=(N,+N,)a,

This means that: N, +N, =1

The displacement interpolation function must add to unity at
every point within the element so the it will yield a constant
value when a rigid-body displacement occurs.

Stiffness Matrix for a Bar Element

Transformation of Vectors in Two Dimensions
In many problems it is convenient to introduce both local and
global (or reference) coordinates.

Local coordinates are always chosen to conveniently
represent the individual element.

Global coordinates are chosen to be convenient for the whole
structure.

17/53
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Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Given the nodal displacement of an element, represented by
the vector d in the figure below, we want to relate the
components of this vector in one coordinate system to
components in another.

Ay

f

Y
1
-

Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Let’s consider that d does not coincide with either the local or
global axes. In this case, we want to relate global
displacement components to local ones. In so doing, we will
develop a transformation matrix that will subsequently be

used to develop the global stiffness matrix for a bar element.

Ay

f

18/53
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Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

We define the angle @ to be positive when measured
counterclockwise from x to x’. We can express vector
displacement d in both global and local coordinates by:

d=uji+v,j=ui +vij

f

Y
1
-

Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Consider the following diagram:

Y

Using vector addition: a+b =i
Using the law of cosines, we get: |a|=|i|cosé |a|=cosé

Similarly: |b|=|i|sin®@ |b|=sing
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Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Consider the following diagram:

The vector a is in the i'direction and b is in the j'direction,
therefore:

a=|a|i'=(cosd)i b=|b|(-j)=(sind)(-i)

Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Consider the following diagram:

Y

The vector i can be rewritten as: [ i=cosfi—sindj ]

The vector j can be rewritten 25: [j =sin@i' +cosé j ]

Therefore, the displacemeft vector is:

ui+v,j=u,(cos@i —sind j)+v,(sin@i +cosd j)=ui +vij

20/53
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Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

Consider the following diagram:

i 6
Combining like coefficients of the local unit vectors gives:
u,cos@+v,sind =u, C =cosd {u{}:{c SH
—u,sind+Vv,cosf =V, S=sing vij LS C

U,
Vi

|

Stiffness Matrix for a Bar Element
Transformation of Vectors in Two Dimensions

The previous equation relates the global displacement d to
the d’ local displacements

The matrix is called the transformation matrix: [ (S: i}

The figure below shows u” expressed in terms of the global
coordinates x and y.
y

u'=Cu+Sv

21/53
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Stiffness Matrix for a Bar Element
Example 2 - Bar Element Problem

The global nodal displacement at node 2 is u, = 0.1 in and
v, = 0.2 in for the bar element shown below. Determine the
local displacement.

Using the following expression we just derived, we get:

u’'=Cu+Sv

u, =co0s60°(0.1)+5sin60°(0.2) =0.223in

Stiffness Matrix for a Bar Element
Global Stiffness Matrix

We will now use the transformation relationship developed

above to obtain the global stiffness matrix for a bar element.

— X, U

22/53
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Stiffness Matrix for a Bar Element
Global Stiffness Matrix

We known that for a bar element in local coordinates we have:

f’ _ 1
w| AEL T =1 f—Kd
f,, L -1 1]y,

We want to relate the global element forces f to the global
displacements d for a bar element with an arbitrary
orientation.

f

1x

f,
=k
f

2x

< € < c
N =
—
]
=
o

f

2y

Stiffness Matrix for a Bar Element
Global Stiffness Matrix

Using the relationship between local and global components,
we can develop the global stiffness matrix.

We already know the transformation relationships:
u; =u,cosé +v,sind u, =u,cosé+v,sind

Combining both expressions for the two local degrees-of-
freedom, in matrix form, we get:

U, d=T4d

ul [c s 0 0]y,
u,J |0 0 C S|y, T*{csoo}

v “loocC s

2
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Stiffness Matrix for a Bar Element
Global Stiffness Matrix

A similar expression for the force transformation can be
developed.
f

1x

f.] [c s 0 0]},
./ 10 0 C s||f,

f

f=Tf

Substituting the global for€e expression into element force
equation gives: flekd = Tf =Kk'd'

Substituting the transformation betw% a%global

displacements gives: -
d=Td Tf=kTd

Stiffness Matrix for a Bar Element
Global Stiffness Matrix

The matrix T* is not a square matrix so we cannot invert it.

Let’s expand the relationship between local and global
displacement.

Uy C S 0 0}y,
V] _ -S C 0 0}y, d =Td
u, 0 0 C S||u,
A 0 0 -SC||v,
where T is:
C S 0 0]
T- -SC 0 0
0 0 C S
0 0 -S C|

24/53
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Stiffness Matrix for a Bar Element
Global Stiffness Matrix

We can write a similar expression for the relationship between
local and global forces.

fi] | C
| |-
fox

’
foy

f;
f
f,
f,

X

’ f=Tf

X

wn
oo OWwm
O nw o o

0
0
Cc
-S

o O

y

Therefore our original local coordinate force-displacement
expression

f’ 1 -1||u;
1’X — E j f! = kldl
g1 1|

Stiffness Matrix for a Bar Element
Global Stiffness Matrix

May be expanded: fr 1.0 -1 0](u;
ful AE|O0 O O Of|v;
£ L [=10 1 0||u
f5, 000 0f|v

The global force-displacement equations are:
f=k'd = Tf=k'Td

Multiply both side by T-" we get: f=T"'k'Td

where T-1is the inverse of T. It can be shown that: T =T"
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Stiffness Matrix for a Bar Element
Global Stiffness Matrix
The global force-displacement equations become: f =T'k'Td

Where the global stiffness matrix k is: k = T'k'T

Expanding the above transformation gives:
c? CS -c? -Cs
k- AE|CS s* -cs -s?
~L|-c? €S c? Cs
-Cs -8* cs §°
We can assemble the total stiffness matrix by using the above
element stiffness matrix and the direct stiffness method.

e=1 e=1

Stiffness Matrix for a Bar Element
Global Stiffness Matrix

Local forces can be computed as:

., 1.0 -10](u 1 0-10][c S 0 0]y
fy| AE[O 0 0 Ofjv;| AE|O0 O O 0||-S C 0 Of]v,
[ L|-10 1 0lluf L|-10 100 0 C S|y
f), 000 0f|v, 0000J0 0-ScC]|ly,
fr Cu, +Sv, -Cu, - Sv,

fy |  AE 0

o[ L |-Cu,—Sv,+Cu, +Sv,

f5y 0
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Stiffness Matrix for a Bar Element
Example 3 - Bar Element Problem

For the bar element shown below, evaluate the global stiffness
matrix. Assume the cross-sectional area is 2 in?, the length
is 60 in, and the E is 30 x 108 psi.

Vi
c? CS -c? -Cs
AE| CS S* —cs -S?
"L |-c? ¢S ¢ CS
e -CS -S* ¢cs S?

k

Therefore: C =co0s30° = g S =sin30° =%

Stiffness Matrix for a Bar Element
Example 3 - Bar Element Problem

The global elemental stiffness matrix is:

%o % %
. (2in)(30x10° psi) By By
A/ A/
Simplifying the global elemental stiffness matrix is:

0.750 0.433 -0.750 -0.433
0433 0.250 -0.433 -0.250 |
-0.750 -0.433 0.750 0.433
—0.433 -0.250 0.433 0.250

k =10° 7z
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Stiffness Matrix for a Bar Element
Computation of Stress for a Bar in the x-y Plane

For a bar element the local forces are related to the local

displacements by: 7 AEM 1 11w
1 x| _ e - 1

The fofce—displacement equation forf,, is:

. AE uy
fzx:T[_1 1]{u;}

The stress in terms of global displacement is:
u1

E C SO0 O0]||v E
G:f[_1 1]{0 . S} u; =r[—Cu1—Sv1+Cu2+Sv2]

vy

Stiffness Matrix for a Bar Element
Example 4 - Bar Element Problem

For the bar element shown below, determine the axial stress.
Assume the cross-sectional area is 4 x 104 m2, the length is
2 m, and the E is 210 GPa.

2

The global displacements are known as
u, =0.25 mm, v, =0, u, = 0.5 mm,

and v, = 0.75 mm. -
o= %[—Cu1 —Sv, +Cu, + SV, | I I
210x10°[ 1 V3 1 V3
2 20.25)- Y2 (0) + = (0.5) + Y2 (0.75) |
o > 2( ) ) (0) 2( ) 4 (0.75) |,

o =81.32x10° W/, =81.32MPa
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Stiffness Matrix for a Bar Element
Solution of a Plane Truss

We will now illustrate the use of equations developed above
along with the direct stiffness method to solve the following
plane truss example problems.

A plane truss is a structure composed of bar elements all lying
in a common plane that are connected together by
frictionless pins.

The plane truss also must have loads acting only in the
common plane.

Stiffness Matrix for a Bar Element
Example 5 - Plane Truss Problem

The plane truss shown below is composed of three bars
subjected to a downward force of 10 kips at node 1. Assume
the cross-sectional area A = 2 in? and E is 30 x 106 psi for all
elements.

Determine the x and y displacement at node 1 and stresses in
each element.

_r_gg e
7
N

10,000 1b ¥
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Stiffness Matrix for a Bar Element

Example 5 - Plane Truss Problem

Element Node 1 Node 2 0 C S
1 1 2 90° 0 1
2 1 3 450 0.707 0.707
3 1 4 Q° 1 0

_;g;, e
7
N

10,000 1b ¥

Stiffness Matrix for a Bar Element

c* Cs -c* Cs
Example 5 - Plane Truss Problem AE[CS & s _ﬂ

k

. . L|-c2 cs ¢c? cs
The global elemental stiffness matrix are:

-cs -s* ¢cs §?

u1 VI u2 VZ

i .
element 1: c-0 s-1 = k(ﬂ:%&;o"s')

element 2. ¢ _(2in*)(30x10%psi)| 1 1 —1 ~1],

m\g‘

s= = k@

240,/2in -1 -1 1 1

-1 -1 1 1

1 0-10
element 3: c-1 s-o0 ko - 2in)30x10%psi) 0 0 0 0Ff,,
120in 10 1 0/""
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Stiffness Matrix for a Bar Element
Example 5 - Plane Truss Problem

The total global stiffness matrix is:

1354 0354 0 O ||-0.354 -0.354|) -1 © element 1
0.354 1354 0 -1|-0354 -0.354)) 0 O
0 0 0 o 0 0 0 0 element 2
K=5x10%2 0 1 0 0 0 0 by element 3
-0.354 -0.354] 0 0O |0.354 0354 0 O
-0.354 -0.354] 0 O |0.354 0354 0 O
-1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

The total global force-displacement equations are:

0 1354 0354 0 0 -0354 -0354 —1 0|y,
10,000 0354 1354 0 -1 -0.354 0354 0 O ||y,
Fax 0 o 00 o0 o o olfo

E
2y | 5105 © 4 01 o0 o o oljo
Fax -0354 -0354 0 O 0354 035 0 0|0
Fay 0354 0354 0 0 0354 035 0 0|0
Fiy 1 0 00 0 o 1 0ollo

0 0 00 0 0 0 0

Fay L 110

Stiffness Matrix for a Bar Element
Example 5 - Plane Truss Problem

Applying the boundary conditions for the truss, the above
equations reduce to:

0 1354 0354 '0 0 -0354 -0.354 -1 0

-10, 000 !

0 0354 1354 10 -1 -0354 -0354 0 O
Fax 0 0 70 0 "0 00 o
F 11
2y | 54105| O 110 1 0 0 0 0
Fax 0354 -0354,0 0 0354 0354 0 O
Fay 0354 —0.354!0 0 0354 0354 0 O
Fox -1 0 1o 0 0 0 10

0 0 ,0 0 0O 0 0 0
F4y L 1 i

oooooo:f_é:
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Stiffness Matrix for a Bar Element

Example 5 - Plane Truss Problem

Applying the boundary conditions for the truss, the above

equations reduce to:
0 _5x10° 1.354 0.354 ||u,
-10,000 0.354 1.354||v,

Solving the equations gives:  u, =0.414x1072in
v, =-1.59%x107in

. - _E
The stress in an element is: o = r[—Cu_—Sv +Cu +Sv}

where m is the local node number

Stiffness Matrix for a Bar Element

Example 5 - Plane Truss Problem

Element Node 1 Node 2 17 C S
1 1 2 90° 0 1
2 1 3 450 0.707 0.707
3 1 4 Q° 1 0

E
o= r[—Cu —Sv +Cu + Sv}

6
element1 o= 30122)0 [-v,]=3,965 psi

6
element2 %= —30122)0 [(0.707)u, +(0.707)v,] =1,471psi
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Stiffness Matrix for a Bar Element

Example 5 - Plane Truss Problem

Element Node 1 Node 2 17 C S
1 1 2 90° 0 1
2 1 3 450 0.707 0.707
3 1 4 0° 1 0

E
o= r[—Cu —Sv +Cu + Sv}

6
element 3 0'(3)—301;100 [-u,]= 1,035 psi

Stiffness Matrix for a Bar Element
Example 5 - Plane Truss Problem

Let’s check equilibrium at node 1:

Tll 2 3
v
o () -
A
45
2\ 45 4
| s @ <:§ x
L
X3
-—~m10ﬁ—-|
10,000 1b ¥

> F, =f? cos(45°) +¥

3F, =f?sin(45°) +£" ~10,0001b
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Stiffness Matrix for a Bar Element
Example 5 - Plane Truss Problem

Let’s check equilibrium at node 1:

e 2 3
©)
v
o (1) -
A
X 435
A\ 45° 4 e
1 - L @ <:§\ x
L
X3
4—%10([4-|
10,000 b ¥

> F, =(1,471psi)(2in?)(0.707) - (1,035 psi)(2in*) =0

ZFy = (3,965 psi)(2in*)+ (1,471 psi)(2in*)(0.707)-10,000 = 0

Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem

Develop the element stiffness matrices and system equations
for the plane truss below.

P4

Assume the stiffness of each element is constant. Use the
numbering scheme indicated. Solve the equations for the
displacements and compute the member forces. All elements
have a constant value of AE/L

34/53



CIVL 7/8117 Chapter 3 - Truss Equations - Part 1 35/53

Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem

Develop the element stiffness matrices and system equations
for the plane truss below.

P4

Member Node 1 Node 2 Elemental o
Stiffness
1 1 2 k 0
2 2 3 k 3n/4
3 1 3 k /2

Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem

Compute the elemental stiffness matrix for each element. The
general form of the matrix is:

c> Cs -c* Cs
_AE|CS S* -cs -S§°

k
L|-c? -CS c? cCs
CS -S? ¢cs s?
Member Node 1 Node 2 Elemental o
Stiffness
1 1 2 k 0
2 2 3 k 3n/4

3 1 3 Kk /2
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Stiffness Matrix for a Bar Element

Example 6 - Plane Truss Problem

For element 1: GV, v, v,
10 -10]| u,
KO — Kk 00 O0O0] v,
-10 10| u,
00 O0O0] v,
Member Node 1 Node 2 Elemental o0
Stiffness
1 1 2 k 0
2 2 3 k 3n/4
3 1 3 k /2
Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem
For element 2: u, v, u v,
1-1-1 1] u,
k‘2)=5 -1 1 1 -1] v,
211 1 1 1] u,
1 -1 -1 1] v,
Member Node 1 Node 2 Elemental o0
Stiffness
1 1 2 k 0
2 2 3 k 3n/4
3 1 3 k /2
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Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem
For element 3: uoov,ou, v,
0O 0O u,
K@ — 0 10 -1 v,
0 00 O] ug
0 10 1] v,
Member Node 1 Node 2 Elemental o0
Stiffness
1 1 2 k 0
2 2 3 k 3n/4
3 1 3 k /2

Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem

Assemble the global stiffness matrix by superimposing the
elemental global matrices.

2 0|-2 0 0 0 u, element 1

0 2 0 0 0 _2 V1 element 2

KZK _2 0 3 _1 _1 1 UZ element 3
2l 0 0]-1 1] 1 v,
0 of-1 11 —u,
0 2| 1 —11-1 3| v,
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Stiffness Matrix for a Bar Element

Example 6 - Plane Truss Problem

The unconstrained (no boundary conditions satisfied)

equations are: "2 0 -2 0 0 0](y) [F,
0 2 0 0 0 -2|[v,| |F,

k|2 0 3 -1 -1 1lju| |P

200 0 <1 1 1 ||v,[ |-R

0 0 -1 1 1 -1||u| |Fy

L0 2 1 -1 -1 3||v,] |F,

The displacement at nodes 1 and 3 are zero in both directions.

Applying these conditions to the system equations gives:

2 012 010 O0]f0 Fie
0 2,0 0,0 2/|0]| |F
k|2 0,3 1,1 1|yl |P
2(0 011 111 Allv| |-k
0 0! 111 110 F,,
0 211 111 3]0 Fay

Stiffness Matrix for a Bar Element
Example 6 - Plane Truss Problem

Applying the boundary conditions to the system equations
gives:

k| 3 —1|ju,| | P,
2 -1 11|v,| |-P,
Solving this set of equations is fairly easy. The solution is:

_P-P, , _P-3P,

u
2 K 2 K
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Stiffness Matrix for a Bar Element

Example 6 - Plane Truss Problem

Using the force-displacement relationship the force in each
member may be computed.

Member (element) 1: fix Cu, +Sv,-Cu, -Sv,
fy | 0
C=1 S=0 f,.[ | -Cu,—Sv,+Cu, +Sv,
f,y 0
P,—P
f1x=k(—Cu2):k - 1k 2j =_(P1_P2) f,1=0
P,—P
fZX:k(Cuz):k[ = j _p_P, £, =0

Stiffness Matrix for a Bar Element

Example 6 - Plane Truss Problem

Using the force-displacement relationship the force in each
member may be computed.

Member (element) 2: fox Cu, +Sv, -Cu, -Sv,
f 0
1 1 Y=k
C= —E S= E f3x —Cl.l2 —SV2 +CU3 +SV3
iy 0
X VZ)

f,, =k(Cu, +

(e ]

)
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Stiffness Matrix for a Bar Element

Example 6 - Plane Truss Problem

Using the force-displacement relationship the force in each
member may be computed.

Member (element) 3: fie Cu, +Sv, -Cu, -Sv,
ol 0
C=0 S=1 fy —Cu, —Sv, +Cu, +Sv,
fy, 0
f1x = f1y =
fy, = f,, =

3y

The solution to this simple problem can be readily checked by
using simple static equilibrium equations.

Stiffness Matrix for a Bar Element
Example 7 - Plane Truss Problem

Consider the two bar truss shown below.

l %33 @ ¥ , I' P = 1000 kN

X5 E ; l § = 50 mm
|

| 4m |

Determine the displacement in the y direction of node 1 and
the axial force in each element.

Assume E =210 GPaand A =6 x 104 m?
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Stiffness Matrix for a Bar Element

Example 7 - Plane Truss Problem

The global elemental stiffness matrix for element 1 is:

0030‘1):%:0.6 0.36 048 -0.36 —0.48
K _ 210x10°(6x10*)| 048 0.64 -0.48 -0.64
- 5 -0.36 -0.48 0.36 0.48

sino® =% _0.8
5 ~0.48 -0.64 0.48 0.64

Simplifying the above expression gives:

u, v, u, v,
0.36 0.48 -0.36 -0.48
0.48 0.64 -0.48 -0.64
-0.36 -0.48 0.36 0.48
~0.48 -0.64 0.48 0.64

k" = 25,200

Stiffness Matrix for a Bar Element

Example 7 - Plane Truss Problem

The global elemental stiffness matrix for element 2 is:

cosd? =0 00 0 -0
k(z)_(210><106)(6><10'4) 010 -1

sing? =1 4 000D O
0-10 1

Simplifying the above expression gives:

uov, u, v,

0O 0 0 O

0 125 0 -1.25
k® = 25,200

0 0 0 O

0 125 0 1.25
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Stiffness Matrix for a Bar Element

Example 7 - Plane Truss Problem

The total global equations are:

F 036 0.48| -0.36 -048]0 01t ements
Fy 0.48 1.89| -0.48 -0.640 -1.25||v,
E _ _ element 2
2| _ 5000|036 048 036 0480 0/|u,
F, -048 -0.64 048 0.64] 0 A
F., 0 0 0 ) 0/|u,
Fa, 0 -1.25 0 0|0 1.25]|v,
The displacement boundary conditions are:
u =90 u,=v,=uU,=v, =0
Stiffness Matrix for a Bar Element
Example 7 - Plane Truss Problem
The total global equations are:
Fix 036 __048 036 048 0 __ 0](s
P _ 048 __ 1.8 BEU SIS SIS | |V,
F i _
2| _ o5 90| 036 048] 036 048 0 0/|0
Fay -048 064! 048 064 0 0(]0
Fa 0 01 0 00 0|0
|
Fyy 0 -1.25 0 0 0 125/||0

By applying the boundary conditions the force-displacement
equations reduce to:

P =25,200(0.485 +1.89v,)
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Stiffness Matrix for a Bar Element
Example 7 - Plane Truss Problem

Solving the equation gives: v, =(2.1x107°)P -0.255

By substituting P = 1,000 kN and 6= -0.05 m in the above
equation gives:

v, =0.0337m
The local element forces for element 1 are:
u, =-0.05
{f“}=25,2oo{ 1 —1“0.6 08 0 0 } v, =0.0337
f, -1 10 0 0608 u,
V2
The element forces are: f,, =—-76.6kN f,, =76.7kN
Tension
Stiffness Matrix for a Bar Element
Example 7 - Plane Truss Problem
The local element forces for element 2 are:
u, =-0.05
{f1x}:31’500[ 1 —1}{0 10 o} v, =0.0337
f, -1 1][0 0 0 1 U,
V3
The element forces are: f,, =1,061kN f,, ==1061kN

Compression
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Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Let’s derive the transformation matrix for the stiffness matrix for
a bar element in three-dimensional space as shown below:

Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The coordinates at node 1 are x,, y4, and z,, and the coor-
dinates of node 2 are x,, y,, and z,. Also, let 6,, €, and ¢, be
the angles measured from the global x, y, and z axes,

respectively, to the local axis.
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Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The three-dimensional vector representing the bar element is

gives as: .. P
d=ui+vj+wk=u'i"+v'j +w’k

Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Taking the dot product of the above equation with i’ gives:
u@i-i")+v(j-i")+w(k-i')y=u’

By the definition of the dot product we get:

ii=X"X_c ji-Y2Vi_c ki=Z :
L L L

where L:\/(Xz_x1)2+(y2_y1)2+(22_Z1)2
C, =cosd, C, =cosg, C, =cosd,

where C,, Cy, and C, are projections of i'on to i, j, and k,
respectively.
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Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

Therefore: u'=C,u+CVv+Cw

The transformation between local and global displacements is:

u1 ' *
v d=Td
{u{}_{CXCyCZ 00 o} w,
Ué 00 OCnyCz u, Cxcycz 000
V2 {o 0 ocxcycj
VV2

Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The transformation from the local to the global stiffness matrix
is: c,0
C,0

Ty r c,0|AE[ 1 -1][c,c,c,0 00
— k= z e x>~y Yz
k=TkT 0C,| L [—1 1}{0 0 0C,C,C,

Cf Cny Csz : _Cf _Cny _Csz
cc, Cf c¢c,,<cc <€ -Ccc
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Stiffness Matrix for a Bar Element

Transformation Matrix and Stiffness Matrix for
a Bar in Three-Dimensional Space

The global stiffness matrix can be written in a more convenient
form as:

c? CC, CC,

A A
k:—{ } a=|CC, C? CgC,
C.C, CC, C?

Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Consider the space truss shown below. The modulus of
elasticity, E = 1.2 x 106 psi for all elements. Node 1 is
constrained from movement in the y direction.

|
370 %) (0, 36, 72)

To simplify the stiffness matrices
for the three elements, we will
express each element in the
following form:

ko AE[ 2 A1
L2 2

E = 1000 1b
(0, 0, —48:2
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Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Consider element 1: L = \/(xz —X )+ (Y, =Y )P +(z, - 2,)

L? = (-72)? +(36)* = 80.5in

72

=2 =-0.894

80.5

Cy = i =0.447
80.5

C,=0

0.80 -0.40 0 —
A=/-040 020 O
0 0 O : 1000 1b
(0, 0,

Stiffness Matrix for a Bar Element
Example 8 — Space Truss Problem

Consider element 1:
:(0.302in2)(1.2x106psi) A A,
80.5in " 3

k

1000 1h

(0, 0, —48)
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Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Consider element 2: L = \/(xs X, Y +(Ys =Y, ) +(2,-2,)

L® = |(-72)? +(36)* +(72)* =108in

c -12_ 0667
108
c, =0 _0333
v =108
c, -2 _0.667
108

0.444 -0222 -0.444] — |
Ai=[-0222 0111 0.444
_0.444 0444 0.444

E 000
o, 0, —43:24: I b

Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Consider element 2:

u v w u v ow
10100 33

k:(0.729in2)(1.2x106psi) A 2], ,
108in .y A" 3

1000 1h

(0, 0, —48)
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Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Consider element 3: L = \/(x4 X+ (Y, -y, +(z, -2

L® = J(-72) +(-48)? = 86.5in

c -—12_ 0832
86.5

c, =0

c, -2 _ 0555
86.5

0692 0 0.462
i=l 0 0 o0
0462 0 0.308 al

(0, 0, —43:24:

Stiffness Matrix for a Bar Element
Example 8 — Space Truss Problem

Consider element 3:

~ (0.187in?)(1.2x10°psi)[ 2 -1, )
86.5in -2 A" ;

k

The boundary conditions are:
u2 :V2 :W2 = 0
u3 =V3 :W3 = 0 /
u4 = V4 = W4 = 0
V1 B O (0, 0, 1000 Ih
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Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

Canceling the rows and the columns associated with the
boundary conditions reduces the global stiffness matrix to:

I.l1 W1

[ 8,997-2,403
| 2,403 4,398
The global force-displacement equations are:
8,997 -2,403|(u,| [ ©
2,403 4,398 ||w,| |-1000
Solving the equation gives:

u, =-0.0711in w, =-0.2662 in

Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

It can be shown, that the local forces in an element are:
u.

<

=

f.] ag[-c, ¢, C, C, C, C,
./~ L|c, ¢ ¢ -C -C, -C,

jx X y z

= < c

The stress in an element is:

c

<

S

E
a:r[—cx -c, -C, ¢, ¢, C,|

s < c
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Stiffness Matrix for a Bar Element
Example 8 — Space Truss Problem

The stress in element 1 is:

~0.0711
0
6 —|
o-“’:1'2X10 [0.894 -0.447 0 -0.894 0.447 0.] 0.2662
80.5 0
0
o' = 948 psi 0
The stress in element 2 is: ~0.0711
0
6 —
‘2>=1'2X;0 [0.667 -0.333 -0.667 -0.667 0.333 0.667] 02062
0
0

o? =1,445 psi

Stiffness Matrix for a Bar Element

Example 8 — Space Truss Problem

The stress in element 3 is: ~0.0711
0
‘3>=1'2X1°6[o.s32 0 0555 -0.832 0 -0.555] 02662
86.5
0
0

o® =2,843 psi
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Stiffness Matrix for a Bar Element
Problems:

2. Verify the global stiffness matrix for a three-dimensional
bar. Hint: First, expand T* to a 6 x 6 square matrix, then
expand k to 6 x 6 square matrix by adding the
appropriate rows and columns of zeros, and finally,
perform the matrix triple product k = T'k’T.

3a. Do problems 3.4, 3.10, 3.12, 3.15a,b, 3.18, 3.23, 3.37,
3.43, and 3.48 on pages 146 - 165 in your textbook “A
First Course in the Finite Element Method” by D. Logan.

End of Chapter 3a






