
Chapter 2 – Introduction to the Stiffness
(Displacement) Method

Learning Objectives
• To define the stiffness matrix

• To derive the stiffness matrix for a spring element

• To demonstrate how to assemble stiffness matrices into
a global stiffness matrix

• To illustrate the concept of direct stiffness method to
obtain the global stiffness matrix and solve a spring
assemblage problem

• To describe and apply the different kinds of boundary
conditions relevant for spring assemblages

• To show how the potential energy approach can be used
to both derive the stiffness matrix for a spring and solve
a spring assemblage problem

The Stiffness (Displacement) Method

This section introduces some of the basic concepts on which 
the direct stiffness method is based. 

The linear spring is simple and an instructive tool to illustrate 
the basic concepts. 

The steps to develop a finite element model for a linear spring 
follow our general 8 step procedure.

1. Discretize and Select Element Types - Linear spring
elements

2. Select a Displacement Function - Assume a variation
of the displacements over each element.

3. Define the Strain/Displacement and Stress/Strain
Relationships - use elementary concepts of equilibrium
and compatibility.
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The Stiffness (Displacement) Method

4. Derive the Element Stiffness Matrix and Equations -
Define the stiffness matrix for an element and then 
consider the derivation of the stiffness matrix for a linear-
elastic spring element. 

5. Assemble the Element Equations to Obtain the Global 
or Total Equations and Introduce Boundary 
Conditions - We then show how the total stiffness matrix 
for the problem can be obtained by superimposing the 
stiffness matrices of the individual elements in a direct 
manner. 

The term direct stiffness method evolved in reference to 
this method. 

The Stiffness (Displacement) Method

6. Solve for the Unknown Degrees of Freedom (or 
Generalized Displacements) - Solve for the nodal 
displacements.

7. Solve for the Element Strains and Stresses - The 
reactions and internal forces association with the bar 
element.

8. Interpret the Results
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The Stiffness (Displacement) Method

1. Select Element Type - Consider the linear spring shown 
below. The spring is of length L and is subjected to a 
nodal tensile force, T directed along the x-axis.

1xf 2xf

Note: Assumed sign conventions

The Stiffness (Displacement) Method

2. Select a Displacement Function - A displacement 
function u(x) is assumed.

 1 2u a a x

In general, the number of coefficients in the displacement 
function is equal to the total number of degrees of freedom 
associated with the element. We can write the 
displacement function in matrix forms as:

  1

1 x 2
2 2 x 1

1
a

u x
a

 
  

 
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The Stiffness (Displacement) Method

We can express u as a function of the nodal displacements 
ui by evaluating u at each node and solving for a1 and a2.

  1 1( 0)u x u a

   2 2 1( )u x L u a L a

Solving for a2:

2 1
2

u u
a

L




Substituting a1 and a2 into u gives:

   
 

2 1
1

u u
u x u

L







Boundary Conditions

        
   

1 21
x x

u u
L L

The Stiffness (Displacement) Method

In matrix form:

Or in another form:

            
1

2

1
ux x

u
uL L

  
  

 
1

1 2
2

u
u N N

u

Where  N1 and N2 are defined as:

The functions Ni are called interpolation functions
because they describe how the assumed displacement 
function varies over the domain of the element. In this case 
the interpolation functions are linear.

  1 21
x x

N N
L L
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The Stiffness (Displacement) Method

1

2

1
ux x

u
uL L

            

  1
1 2

2

u
u N N

u

 
  

 

2

x
N

L


1 2u a a x 

1 1
x

N
L

 

 1 2 1N N

The Stiffness (Displacement) Method

3. Define the Strain/Displacement and Stress/Strain 
Relationships - Tensile forces produce a total elongation 
(deformation)  of the spring. For linear springs, the force 
T and the displacement u are related by Hooke’s law:

T k

where deformation of the spring  is given as:

  ( ) (0)u L u 2 1u u  

1xf 2xf

T T

 1xf T

2xf T
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The Stiffness (Displacement) Method

4. Step 4 - Derive the Element Stiffness Matrix and 
Equations - We can now derive the spring element 
stiffness matrix as follows:

Rewrite the forces in terms of the nodal displacements:

    1 2 1xT f k u u

   2 2 1xT f k u u

We can write the last two force-displacement relationships 
in matrix form as:

    
        

1 1

2 2

x

x

f uk k

f uk k

   1 1 2xf k u u

    2 1 2xf k u u

The Stiffness (Displacement) Method
This formulation is valid as long as the spring deforms 
along the x axis. The coefficient matrix of the above 
equation is called the local stiffness matrix k:

 
   

k k

k k
k

5. Step 4 - Assemble the Element Equations 
and Introduce Boundary Conditions

The global stiffness matrix and the global force vector
are assembled using the nodal force equilibrium equations, 
and force/deformation and compatibility equations.

 


   ( )

1

N
e

e

KK k  


   ( )

1

N
e

e

FF f

where k and f are the element stiffness and force matrices 
expressed in global coordinates.
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The Stiffness (Displacement) Method

6. Step 6 - Solve for the Nodal Displacements

Solve the displacements by imposing the boundary 
conditions and solving the following set of equations:

    F K d

7. Step 7 - Solve for the Element Forces

Once the displacements are found, the forces in each 
element may be calculated from:

T k

 F Kd

  2 1k u u

The Stiffness Method – Spring Example 1

Consider the following two-spring system shown below:

where the element axis x coincides with the global axis x.

For element 1:
1 11 1

3 31 1

x

x

f uk k

f uk k

    
        

For element 2:
3 2 2 3

2 2 2 2

x

x

f k k u

f k k u

     
         
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The Stiffness Method – Spring Example 1

We can write the nodal equilibrium equation at each node as:

Both continuity and compatibility require that both elements 
remain connected at node 3.

(1) (2)
3 3u u

(1)
1 1x xF f (2)

2 2x xF f(1) (2)
3 3 3x x xF f f 

Element number

The Stiffness Method – Spring Example 1

In matrix form the above equations are:

Therefore the force-displacement equations for this spring 
system are:

1 1 1 1 3xF k u k u  2 2 3 2 2xF k u k u  

       3 1 1 1 3 2 3 2 2xF k u k u k u k u

F Kd
1 1 1 1

2 2 2 2

3 1 2 1 2 3

0

0
x

x

x

F k k u

F k k u

F k k k k u

     
         
           

where F is the global nodal force vector, d is called the 
global nodal displacement vector, and K is called the 
global stiffness matrix.

Element 1 Element 2
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The Stiffness Method – Spring Example 1

The elemental stiffness matrices may be written for each 
element.

Assembling the Total Stiffness Matrix by Superposition

Consider the spring system defined in the last example:

For element 1: For element 2:

 
   

1 3

11 1(1)

31 1

u u

uk k

uk k
k

 
   

3 2

2 2 3(2)

2 2 2

u u

k k u

k k u
k

The Stiffness Method – Spring Example 1

For element 2:

Write the stiffness matrix in global format for element 1 as 
follows:

(1)
1 1

(1)
1 2 2

(1)
3 3

1 0 1

0 0 0

1 0 1

x

x

x

u f

k u f

u f

    
        

         

(1)
1 1

(1)
2 2 2

(1)
3 3

0 0 0

0 1 1

0 1 1

x

x

x

u f

k u f

u f

    
        

         
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The Stiffness Method – Spring Example 1

The above equations give:

Apply the force equilibrium equations at each node. 

     
         
           

1 1 1 1

2 2 2 2

1 2 1 2 3 3

0

0
x

x

x

k k u F

k k u F

k k k k u F

(1)
1 1

(2)
2 2

(1) (2)
3 3 3

0

0
x x

x x

x x x

f F

f F

f f F

     
           
     

    

The Stiffness Method – Spring Example 1

To avoid the expansion of the each elemental stiffness 
matrix, we can use a more direct, shortcut form of the 
stiffness matrix. 

 
   

3 2

2 2 3(2)

2 2 2

u u

k k u

k k u
k

The global stiffness matrix may be constructed by directly 
adding terms associated with the degrees of freedom in k(1)

and k(2) into their corresponding locations in the K as 
follows: 1 2 3

1 1 1

2 2 2

1 2 1 2 3

0

0

u u u

k k u

k k u

k k k k u

 
   
    

K

 
   

1 3

11 1(1)

31 1

u u

uk k

uk k
k
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The Stiffness Method – Spring Example 1

Boundary conditions are of two general types:

1. homogeneous boundary conditions (the most common) 
occur at locations that are completely prevented from 
movement;

2. nonhomogeneous boundary conditions occur where finite 
non-zero values of displacement are specified, such as the 
settlement of a support.

In order to solve the equations defined by the global 
stiffness matrix, we must apply some form of constraints or 
supports or the structure will be free to move as a rigid body.

Boundary Conditions

The Stiffness Method – Spring Example 1

Consider the equations we developed for the two-spring 
system. We will consider node 1 to be fixed u1 = 0. The 
equations describing the elongation of the spring system 
become:

1 1 1

2 2 2 2

1 2 1 2 3 3

0 0

0
x

x

x

k k F

k k u F

k k k k u F

     
         
           

Expanding the matrix equations gives:

1 1 3xF k u 

2 2 3 2 2xF k u k u  

 3 2 2 1 2 3xF k u k k u   
2 3Solve for andu u






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The Stiffness Method – Spring Example 1

Once we have solved the above equations for the unknown 
nodal displacements, we can use the first equation in the 
original matrix to find the support reaction.

The second and third equation may be written in matrix form 
as:

2 22 2

3 32 1 2

x

x

u Fk k

u Fk k k

     
          

1 1 3xF k u 

For homogeneous boundary conditions, we can delete the 
row and column corresponding to the zero-displacement 
degrees-of-freedom.

The Stiffness Method – Spring Example 1

Expanding the matrix equations gives:

Let’s again look at the equations we developed for the two-
spring system. 

However, this time we will consider a nonhomogeneous 
boundary condition at node 1:  u1 = . 

The equations describing the elongation of the spring 
system become:

1 1 1

2 2 2 2

1 2 1 2 3 3

0

0
x

x

x

k k F

k k u F

k k k k u F

     
         
           

1 1 1 3xF k k u  2 2 3 2 2xF k u k u  

3 1 1 3 2 3 2 2xF k k u k u k u    
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The Stiffness Method – Spring Example 1

By considering the second and third equations because 
they have known nodal forces we get:

2 2 3 2 2xF k u k u   3 1 1 3 2 3 2 2xF k k u k u k u    

In matrix form the above equations are:

2 22 2

3 3 12 1 2

x

x

u Fk k

u F kk k k 
     

           

For nonhomogeneous boundary conditions, we must transfer 
the terms from the stiffness matrix to the right-hand-side force 
vector before solving for the unknown displacements.

The Stiffness Method – Spring Example 1

Once we have solved the above equations for the unknown 
nodal displacements, we can use the first equation in the 
original matrix to find the support reaction.

1 1 1 3xF k k u 
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The Stiffness Method – Spring Example 2

Consider the following three-spring system:

The elemental stiffness matrices for each element are:

 
   

1 3

1

3

(1) 1 1
1000

1 1
k

3 4

3

4

(2) 1 1
2000

1 1

 
   

k

4 2

4

2

(3) 1 1
3000

1 1

 
   

k

The Stiffness Method – Spring Example 2

Using the concept of superposition (the direct stiffness 
method), the global stiffness matrix is:

The global force-displacement equations are:

1000 0 1000 0

0 3000 0 3000

1000 0 3000 2000

0 3000 2000 5000

 
  
  
   

K

1 1

2 2

3 3

4 4

1000 0 1000 0

0 3000 0 3000

1000 0 3000 2000

0 3000 2000 5000

x

x

x

x

u F

u F

u F

u F

     
                              

Element 2

Element 1

Element 3
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The Stiffness Method – Spring Example 2

We have homogeneous boundary conditions at 
nodes 1 and 2  (u1 = 0 and u2 = 0). 

The global force-displacement equations reduce to:

1 1

2 2

3 3

4 4

1000 0 1000 0

0 3000 0 3000

1000 0 3000 2000

0 3000 2000 5000

x

x

x

x

u F

u F

u F

u F

     
                              

The Stiffness Method – Spring Example 2

Substituting for the known force at node 4 (F4x = 5,000 lb) 
gives:

Solving for u3 and u4 gives:

3

4

3000 2000 0

2000 5000 5,000

u

u

 
               

 3 4

10 15

11 11
u in u in
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The Stiffness Method – Spring Example 2

To obtain the global forces, substitute the displacement in 
the force-displacement equations.

Solving for the forces gives:

1

2

10
113

15
114

1000 0 1000 0 0

0 3000 0 3000 0

1000 0 3000 2000

0 3000 2000 5000

x

x

x

x

F

F

F

F

     
                          

   1 2

10,000 45,000

11 11x xF lb F lb

 3 4

55,000
0

11x xF F lb 5,000lb

The Stiffness Method – Spring Example 2

Next, use the local element equations to obtain the force in 
each spring.

The local forces are:

For element 1:      
        

1

10
113

1000 1000 0

1000 1000
x

x

f

f

  1 3

10,000 10,000

11 11x xf lb f lb

A free-body diagram of the spring element 1 is shown below.
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The Stiffness Method – Spring Example 2

Next, use the local element equations to obtain the force in 
each spring.

The local forces are:

For element 2:

A free-body diagram of the spring element 2 is shown below.

     
        

10
113

15
114

2000 2000

2000 2000
x

x

f

f

  3 4

10,000 10,000

11 11x xf lb f lb

The Stiffness Method – Spring Example 2

Next, use the local element equations to obtain the force in 
each spring.

The local forces are:

For element 3:

A free-body diagram of the spring element 3 is shown below.

     
        

15
114

2

3000 3000

3000 3000 0
x

x

f

f

  4 2

45,000 45,000

11 11x xf lb f lb
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The Stiffness Method – Spring Example 3

Consider the following four-spring system:

The spring constant k = 200 kN/m and the displacement 
 = 20 mm. 

Therefore, the elemental stiffness matrices are:

 
      

(1) (2) (3) (4) 1 1
200 /

1 1
kN mk k k k

The Stiffness Method – Spring Example 3

Using superposition (the direct stiffness method), the global 
stiffness matrix is:

200 200 0 0 0

200 400 200 0 0

0 200 400 200 0

0 0 200 400 200

0 0 0 200 200

 
   

   
   
  

K

Element 1 Element 2 Element 3 Element 4
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The Stiffness Method – Spring Example 3

The global force-displacement equations are:

1 1

2 2

3 3

4 4

5 5

200 200 0 0 0

200 400 200 0 0

0 200 400 200 0

0 0 200 400 200

0 0 0 200 200

x

x

x

x

x

u F

u F

u F

u F

u F

     
                    

           
          

Applying the boundary conditions (u1 = 0 and u5 = 20 mm) 
and the known forces (F2x, F3x, and F4x equal to zero) gives:

2

3

4

5

0400 200 0 0

0200 400 200 0

00 200 400 200

0 0 200 200 0.02 x

u

u

u

F

     
                              

The Stiffness Method – Spring Example 3

Rearranging the first three equations gives:

2

3

4

400 200 0 0

200 400 200 0

0 200 400 4

u

u

u

     
          
         

Solving for u2, u3, and u4 gives:

2 3 40.005 0.01 0.015u m u m u m  

Solving for the forces F1x and F5x gives:

1 200(0.005) 1.0xF kN   

5 200(0.015) 200(0.02) 1.0xF kN   
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The Stiffness Method – Spring Example 3

Next, use the local element equations to obtain the force in 
each spring.

For element 1:      
        

1

2

200 200 0

200 200 0.005
x

x

f

f

  1 21.0 1.0x xf kN f kN

For element 2:      
        

2

3

200 200 0.005

200 200 0.01
x

x

f

f

  2 31.0 1.0x xf kN f kN

The Stiffness Method – Spring Example 3

Next, use the local element equations to obtain the force in 
each spring.

For element 3:

For element 4:

     
        

3

4

200 200 0.01

200 200 0.015
x

x

f

f

  3 41.0 1.0x xf kN f kN

     
        

4

5

200 200 0.015

200 200 0.02
x

x

f

f

  4 51.0 1.0x xf kN f kN
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The Stiffness Method – Spring Example 4

Consider the following spring system:

The boundary conditions are: 1 3 4 0u u u  

The compatibility condition at node 2 is:

(1) (2) (3)
2 2 2 2u u u u  

The Stiffness Method – Spring Example 4

Using the direct stiffness method: the elemental stiffness 
matrices for each element are:

Using the concept of superposition (the direct stiffness 
method), the global stiffness matrix is:

1 2

1

2

1 1(1)

1 1

k k

k k

 
   

k
 

   

2 3

2

3

2 2(2)

2 2

k k

k k
k

2 4

2

4

3 3(3)

3 3

k k

k k

 
   

k

 
 

    
  

 
 
  

1 2 3 4

1

2

3

4

11

1 2 3 31 2

2 2

3 3

00

00

0 0

kk

k k k kk k

k k

k k

K
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 
 

    
  

 
 
  

1 2 3 4

1

2

3

4

11

1 2 3 31 2

2 2

3 3

00

00

0 0

kk

k k k kk k

k k

k k

K

The Stiffness Method – Spring Example 4

Applying the boundary conditions (u1 = u3 = u4 = 0) the 
stiffness matrix becomes:

The Stiffness Method – Spring Example 4

Applying the known forces (F2x = P) gives:

Solving the equation gives:

 1 2 3 2P k k k u  

2
1 2 3

P
u

k k k


 

Solving for the forces gives:

1 1 2 3 2 2 4 3 2x x xF k u F k u F k u     
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Potential Energy Approach to Derive Spring 
Element Equations

One of the alternative methods often used to derive the 
element equations and the stiffness matrix for an element is 
based on the principle of minimum potential energy. 

This method has the advantage of being more general than 
the methods involving nodal and element equilibrium 
equations, along with the stress/strain law for the element.

The principle of minimum potential energy is more adaptable 
for the determination of element equations for complicated 
elements (those with large numbers of degrees of freedom) 
such as the plane stress/strain element, the axisymmetric 
stress element, the plate bending element, and the three-
dimensional solid stress element.  

Total Potential Energy

The total potential energy p is defined as the sum of the 
internal strain energy U and the potential energy of the 
external forces :

p U   

Strain energy is the capacity of the internal forces (or 
stresses) to do work through deformations (strains) in the 
structure.

The potential energy of the external forces  is the capacity 
of forces such as body forces, surface traction forces, and 
applied nodal forces to do work through the deformation of 
the structure.
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Total Potential Energy

Recall the force-displacement relationship for a linear 
spring:

The differential internal work (or strain energy) dU in the 
spring is the internal force multiplied by the change in 
displacement which the force moves through:

F kx

 dU Fdx kx dx 

Total Potential Energy

The total strain energy is:

The strain energy is the area under the force-displacement 
curve. The potential energy of the external forces is the 
work done by the external forces:

  2

0

1

2

x

L

U dU kx dx kx   

Fx  
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Total Potential Energy

Therefore, the total potential energy is:

The concept of a stationary value of a function G is shown 
below:

21

2p kx Fx  

The function G is expressed in terms of x. 

To find a value of x yielding a stationary value of G(x), we 
use differential calculus to differentiate G with respect to x
and set the expression equal to zero.

0
dG

dx


Total Potential Energy

We can replace G with the total potential energy p and the 
coordinate x with a discrete value di. To minimize p we first 
take the variation of p (we will not cover the details of 
variational calculus):

The principle states that equilibrium exist when the di define 
a structure state such that p = 0 for arbitrary admissible 
variations di from the equilibrium state. 

1 2
1 2

...p p p
p n

n

d d d
d d d

  
   

  
   
  
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Total Potential Energy

Total Potential Energy

To satisfy p = 0, all coefficients associated with di must be 
zero independently, therefore:

 
0 1, 2, , 0p p

i

i n or
d d

  
  

 

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Total Potential Energy – Example 5

Consider the following linear-elastic spring system subjected 
to a force of 1,000 lb. 

Evaluate the potential energy for various displacement 
values and show that the minimum potential energy also 
corresponds to the equilibrium position of the spring.

Total Potential Energy – Example 5

The total potential energy is defined as the sum of the 
internal strain energy U and the potential energy of the 
external forces :

p U   

The variation of p with respect to x is:

Fx  21

2
U kx

0p
p x

x


 


 



Since x is arbitrary and might not be zero, then: 0p

x





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Total Potential Energy – Example 5

Using our express for p, we get:

If we had plotted the total 
potential energy function p

for various values of 
deformation we would get:

 2 21 1
500( ) 1,000

2 2
lb

inp kx Fx x lb x    


  


0 500 1,000p x

x
 2.0x in

Total Potential Energy

Let’s derive the spring element equations and stiffness 
matrix using the principal of minimum potential energy. 
Consider the linear spring subjected to nodal forces shown 
below:

The total potential energy p

 2

2 1 1 1 2 2

1

2p x xk u u f u f u    

Expanding the above express gives:

 2 2
2 1 2 1 1 1 2 2

1
2

2p x xk u u u u f u f u     
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Total Potential Energy

Let’s derive the spring element equations and stiffness 
matrix using the principal of minimum potential energy. 
Consider the linear spring subjected to nodal forces shown 
below:

Recall:

Therefore:

 
0 1, 2, , 0p p

i

i n or
d d

  
  

 


 2 1 1
1

2 2 0
2

p
x

k
u u f

u


    



 2 1 2
2

2 2 0
2

p
x

k
u u f

u


   



Total Potential Energy

Let’s derive the spring element equations and stiffness 
matrix using the principal of minimum potential energy. 
Consider the linear spring subjected to nodal forces shown 
below:

In matrix form the equations are:

1 1

2 2

x

x

f uk k

f uk k

    
        

Therefore:  1 2 1xk u u f 

 1 2 2xk u u f  
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Total Potential Energy – Example 6

Obtain the total potential energy of the spring system shown 
below and find its minimum value.

The potential energy p for element 1 is:

 2(1)
1 3 1 1 1 3 3

1

2p x xk u u f u f u    

 2(2)
2 4 3 3 3 4 4

1

2p x xk u u f u f u    

The potential energy p for element 2 is:

Total Potential Energy – Example 6

Obtain the total potential energy of the spring system shown 
below and find its minimum value.

The potential energy p for element 3 is:

The total potential energy p for the spring system is:

 2(3)
3 2 4 2 2 4 4

1

2p x xk u u f u f u    

3
( )

1

e
p p

e

 


 
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Total Potential Energy – Example 6

Minimizing the total potential energy p:


    


(1)

1 3 1 1 1
1

0p
xk u k u f

u


   


(3)

3 2 3 4 2
2

0p
xk u k u f

u

(1) (2)
1 3 1 1 2 4 2 3 3 3

3

0p
x xk u k u k u k u f f

u


      




      


(2) (3)

2 4 2 3 3 2 3 4 4 4
4

0p
x xk u k u k u k u f f

u

Total Potential Energy – Example 6

In matrix form:
1 1 11

3 3 2 2
(1) (2)

21 2 3 3 31
(2) (3)

3 2 32 4 4 4

0 0

00

0

0

x

x

x x

x x

k u fk

k k u f

kk k u f fk

k k kk u f f

     
                               

Using the following force equilibrium equations:

(1)
1 1x xf F

(3)
2 2x xf F

(2) (3)
4 4 4x x xf f F 

(1) (2)
3 3 3x x xf f F 

CIVL 7/8117 Chapter 2 - The Stiffness Method 31/32



Total Potential Energy – Example 6

The global force-displacement equations are:

The above equations are identical to those we obtained 
through the direct stiffness method. 

1 1

2 2

3 3

4 4

1000 0 1000 0

0 3000 0 3000

1000 0 3000 2000

0 3000 2000 5000

x

x

x

x

u F

u F

u F

u F

     
                              

Homework Problems

1. Do problems 2.4, 2.10, and 2.22 on pages 66 - 71 in 
your textbook “A First Course in the Finite Element 
Method” by D. Logan.

End of Chapter 2
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