

What is CIVL 7117?

Instructor:

Dr. Charles Camp, Office: EN 106B Phone: 678-3169 (office) Email: cvcamp@memphis.edu

Office hours: An "open door policy" or by appointment

What is CIVL 7117?

Course Objectives

- 1. Overview basic concepts of mathematical modeling and discuss the process of converting a structural system into a discrete model.
- 2. Introduce the stiffness method for spring elements.
- 3. Develop the formulation for bar elements to solve truss problems.
- 4. Discuss the concepts of modeling symmetry and bandwidth for truss analysis.

What is CIVL 7117?

Course Objectives

- 5. Develop the formulation for beam elements to solve beam and plane frame problems.
- 6. Develop of plane stress and plane strain formulations.
- 7. Structural dynamics; vibration of a spring–mass system and natural frequencies of beams and frames.
- Application of the finite element method to problems in structural engineering and mechanics using the Structural Analysis Program 2000 (SAP2000)

	What is CIVL 7117?			
Course Outline by Week				
1.	Introduction to Finite Elements - Chapter 1			
2.	Introduction to the Stiffness Method - Chapter 2			
3.	Development of Truss Equations - Chapter 3			
4.	Development of Truss Equations with SAP2000 applications;			
	Symmetry, and Bandwidth for Truss Analysis - Chapters 3 and 3b			
5.	Development of Beam Equations - Chapter 4			
6.	Development of Beam Equations with SAP2000 applications			
7.	Development of Plane Frame and Grid Equations - Chapter 5			
8.	Development of Plane Frame and Grid Equations - Chapter 5			
9.	Mid-term Exam			
10.	Development of The Plane Stress Element - Chapter 6			
11	Practical Canaidaration on Madeling Chapter 7			

- Practical Consideration on Modeling Chapter 7
 Development of Linear Strain Triangles (LST) Chapter 8
- Development of Plate Bending Element Chapter 12
 Structural Dynamics Chapter 16
- 15. Final Exam

> The final grades for the course will be based on the following percentages:

Components	Percentages
Homework	20%
Mid-Term Exam	40%
Final Exam	40%

What is CIVL 7117?

Grading

Final letter grades will be based on the following scale which reflects the percentages as noted above.

Exam/Homewrok/Projects	Grade
90-100	A
80-89	В
70-79	С
60-69	D
Below 60	F

What is CIVL 7117?

Make-up Work

- Generally, if a student misses an exam a score of zero will be awarded.
- However, the student may be allowed to make-up an exam or turn in their homework notebook late if a valid reason for the absence is presented to the instructor at the next class meeting.
- If a student must miss an exam because of a conflict in their schedule the student must notify the instructor in writing at least two days prior to the absence.

