TOPIC 6 Structural Dynamics III Analysis of Elastic MDOF Systems

TOPIC 6 Structural Dynamics III Analysis of Elastic MDOF Systems

- Equations of Motion for MDOF Systems
- Uncoupling of Equations through use of Natural Mode Shapes
- Solution of Uncoupled Equations
- Recombination of Computed Response
- Modal Response Spectrum Analysis (By Example)
- Use of Reduced Number of Modes

Planar Frame with 36 Degrees of Freedom

Planar Frame with 36 Static Degrees of Freedom but with only THREE Dynamic DOF

Development of Flexibility Matrix

Development of Flexibility Matrix

Development of Flexibility Matrix

Concept of Linear Combination of Shapes (Flexibility)

$$U = \begin{cases} f_{11} \\ f_{21} \\ f_{31} \end{cases} V_1 + \begin{cases} f_{12} \\ f_{22} \\ f_{33} \end{cases} V_2 + \begin{cases} f_{13} \\ f_{23} \\ f_{33} \end{cases} V_3$$

$$U = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

$$FV = U$$
$$KU = V$$
$$K = F^{-1}$$

Idealized Structural Property Matrices

Static Condensation

$$\begin{bmatrix} K_{n,n} & K_{n,m} \\ K_{m,n} & K_{m,m} \end{bmatrix} \begin{bmatrix} r_n \\ r_m \end{bmatrix} = \begin{bmatrix} F_n \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} 1 & K_{n,n}r_n + K_{n,m}r_m = F_n \\ 2 & K_{m,n}r_n + K_{m,m}r_m = 0$$

DOF with mass

Massless DOF

Condensed Stiffness Matrix

Coupled Equations of Motion for Undamped Forced Vibration

 $M\ddot{U}(t) + KU(t) = V(t)$

$$\begin{bmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{bmatrix} \begin{bmatrix} \ddot{u}_1(t) \\ \ddot{u}_2(t) \\ \ddot{u}_3(t) \end{bmatrix} + \begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 + k_3 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \\ u_3(t) \end{bmatrix} = \begin{bmatrix} V_1(t) \\ V_2(t) \\ V_3(t) \end{bmatrix}$$

DOF 1 $m_1 \ddot{u}_1(t) + k_1 u_1(t) - k_1 u_2(t) = V_1(t)$

DOF 2 $m_2 \ddot{u}_2(t) - k_1 u_1(t) + k_1 u_2(t) + k_2 u_2(t) - k_2 u_3(t) = V_2(t)$

DOF 3 $m_3 \ddot{u}_3(t) - k_2 u_2(t) + k_2 u_3(t) + k_3 u_3(t) = V_3(t)$

Solutions for System in Undamped Free Vibration

 $M\ddot{u}(t) + Ku(t) = 0$

Assume $u(t) = \phi \sin \omega t$ $\ddot{u}(t) = -\omega^2 \phi \sin \omega t$

Then $K\phi - \omega^2 M\phi = 0$ has three (n) solutions:

Solutions for System in Undamped Free Vibration

 $K\phi = \omega^2 M\phi$ For a SINGLE Mode $K\Phi = M\Phi\Omega^2$ For ALL Modes

Where: $\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 \end{bmatrix}$ $\Omega^2 = \begin{bmatrix} \omega_1^2 & & \\ & \omega_2^2 & \\ & & \omega_3^2 \end{bmatrix}$ $\begin{bmatrix} \omega_3 \end{bmatrix} \\ \text{Note: Mode shape has arbitrary scale. Usually} \begin{bmatrix} \varphi_{1i} = 1.0 \\ \text{Or} \\ \Phi^T M \Phi = I \end{bmatrix}$

Mode Shapes for Idealized 3-Story Frame

Concept of Linear Combination of Mode Shapes (Change of Coordinates)

 $U = \Phi Y$

$$U = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_2 \\ Y_3 \end{bmatrix}$$

$$U = \begin{cases} \phi_{11} \\ \phi_{21} \\ \phi_{31} \end{cases} Y_1 + \begin{cases} \phi_{12} \\ \phi_{22} \\ \phi_{33} \end{cases} Y_2 + \begin{cases} \phi_{13} \\ \phi_{23} \\ \phi_{33} \end{cases} Y_3$$
$$Modal Coordinate$$

$$KU = V$$
$$K\Phi Y = V$$
$$\Phi^T K\Phi Y = \Phi^T V$$

Orthogonality Conditions

$$\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 \end{bmatrix}$$

Generalized Stiffness

$$\Phi^T K \Phi = \begin{bmatrix} k_1^* & & \\ & k_2^* & \\ & & k_3^* \end{bmatrix}$$

Generalized Damping $\Phi^{T} C \Phi = \begin{bmatrix} c_{1}^{*} & & \\ & c_{2}^{*} & \\ & & c_{3}^{*} \end{bmatrix}$

Generalized Force $V^{*}(t)$

$$\Phi^{T}V(t) = \begin{cases} V_{1}^{T}(t) \\ V_{2}^{*}(t) \\ V_{3}^{*}(t) \end{cases}$$

Development of Uncoupled Equations of Motion

MDOF Equation of Motion: $M\ddot{u} + C\dot{u} + Ku = V(t)$

Transformation of Coordinates: $\mathcal{U} = \Phi y$ Substitution: $M \Phi \ddot{y} + C \Phi \dot{y} + K \Phi y = V(t)$ Premultiply by Φ^T : $\Phi^T M \Phi \ddot{y} + \Phi^T C \Phi \dot{y} + \Phi^T K \Phi y = \Phi^T V(t)$

Using Orthogonality Conditions: Uncoupled Equations of Motion are:

$$\begin{bmatrix} m_{1}^{*} & & \\ & m_{2}^{*} & \\ & & m_{3}^{*} \end{bmatrix} \begin{bmatrix} \ddot{y}_{1} \\ \ddot{y}_{2} \\ \ddot{y}_{3} \end{bmatrix} + \begin{bmatrix} c_{1}^{*} & & \\ & c_{2}^{*} & \\ & & c_{3}^{*} \end{bmatrix} \begin{bmatrix} \dot{y}_{1} \\ \dot{y}_{2} \\ \dot{y}_{3} \end{bmatrix} + \begin{bmatrix} k_{1}^{*} & & \\ & k_{2}^{*} & \\ & & k_{3}^{*} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} V_{1}^{*}(t) \\ V_{2}^{*}(t) \\ V_{3}^{*}(t) \end{bmatrix}$$

Earthquake "Loading" for MDOF System

Modal Earthquake Loading $V^*(t) = -\Phi^T MR \ddot{u}_s(t)$

Development of Uncoupled Equations of Motion (Explicit Form)

MODE 1
$$m_1^* \ddot{y}_1 + c_1^* \dot{y}_1 + k_1^* y_1 = V_1^*(t)$$

MODE 2 $m_2^* \ddot{y}_2 + c_2^* \dot{y}_2 + k_2^* y_2 = V_2^*(t)$

MODE 3
$$m_3^* \ddot{y}_3 + c_3^* \dot{y}_3 + k_3^* y_3 = V_3^*(t)$$

Simplify by Dividing Through by m^* and defining $\xi_i = \frac{c_i}{2m_{\cdot}^* \omega_{\cdot}}$

MODE 1
$$\ddot{y}_1 + 2\xi_1\omega_1\dot{y}_1 + \omega_1^2y_1 = V_1^*(t)/m_1^*$$

MODE 2
$$\ddot{y}_2 + 2\xi_2\omega_2\dot{y}_2 + \omega_2^2y_2 = V_2^*(t) / m_2^*$$

MODE 3 $\ddot{y}_3 + 2\xi_3\omega_3\dot{y}_3 + \omega_3^2y_3 = V_3^*(t) / m_3^*$

Definition of Modal Participation Factor

.1.

Typical Modal Equation:

$$\ddot{y}_i + 2\xi_i w_i \dot{y}_i + w_i^2 y_i = \frac{V_i^*(t)}{m_i^*}$$

recall $V_i^*(t) = -\phi_i^T Mr \ddot{v}_g(t)$

Right hand side = Modal Participation Factor P_i

$$\frac{-\frac{\phi_i^T Mr}{m_i^*}}{m_i^*} \ddot{v}_g(t)$$

Concept of Effective Modal Mass

For each Mode *i* $M_i = P_i^2 m_i^*$

Development of a Modal Damping Matrix

In Previous Development, We have Assumed:

$$\Phi^T C \Phi = \begin{bmatrix} c_1^* & & \\ & c_2^* & \\ & & c_3^* \end{bmatrix}$$

Two Methods Described Herein:

- Rayleigh "Proportional Damping"
- Wilson "Discrete Modal Damping"

Rayleigh Proportional Damping

 $C = \alpha M + \beta K$

Rayleigh Proportional Damping

$$C = \alpha M + \beta K$$

For Modal Equations to Be Uncoupled:

$$2\omega_n\xi_n=\phi_n^T C\phi_n$$

Using Orthogonality Conditions:

$$2\omega_n \xi_n = \alpha + \beta \omega_n^2 \qquad \longleftarrow$$
$$\xi_n = \frac{1}{2\omega_n} \alpha + \frac{\omega_n}{2} \beta$$

Assumes $\Phi^T M \Phi = I$

Rayleigh Proportional Damping (Example)

Frequency, Radians/Sec.

Rayleigh Proportional Damping (Example) 5% Damping in Modes 1 & 2, 1 & 3, 1 & 4, or 1 & 5

Proportionality Factors (5% each indicated mode)

Modes	α	β
1 & 2	.36892	0.00513
1&3	.41487	0.00324
1 & 4	.43871	0.00227
1 & 5	.45174	0.00173

Rayleigh Proportional Damping

 $C = \alpha M + \beta K$

Wilson Damping

FORMATION OF EXPLICIT DAMPING MATRIX FROM "WILSON" MODAL DAMPING

Wilson Damping (Example) 5% Damping in Modes 1 and 2, 3 10% in Mode 5, Zero in Mode 4

Wilson Damping (Example) 5% Damping in all Modes

Solution of MDOF Equations of Motion

- Explicit (Step by Step) Integration of Coupled Equations
- Explicit Integration of FULL SET of Uncoupled Equations
- Explicit Integration of PARTIAL SET of Uncoupled Equations
- Modal Response Spectrum Analysis

Computed Response for Piecewise Linear Loading

EXAMPLE of MDOF Response of Structure Responding to 1940 El Centro Earthquake

m₁=1.0 k-s²/in $\rightarrow u_1(t)$ k₁=60 k/in $m_2 = 1.5 \text{ k-s}^2/\text{in}$ $\rightarrow u_2(t)$ k₂=120 k/in m₃=2.0 k-s²/in $\rightarrow u_3(t)$ k₃=180 k/in

Assume Wilson Damping with 5% critical in each mode.

N-S Component of 1940 El Centro Earthquake. Maximum acceleration = 0.35 g

Form Property Matrices:

Normalization of Modes using $\Phi^T M \Phi = I$

$$\Phi = \begin{bmatrix} 0.749 & 0.638 & 0.208 \\ 0.478 & -0.384 & -0.534 \\ 0.223 & -0.431 & 0.514 \end{bmatrix} \text{ vs } \begin{bmatrix} 1.000 & 1.000 & 1.000 \\ 0.644 & -0.601 & -2.57 \\ 0.300 & -0.676 & 2.47 \end{bmatrix}$$

Example (Continued) Mode Shapes and Periods of Vibration

Write Uncoupled (Modal) Equations of Motion:

Modal Participation Factors

Modal Scaling $\phi_{i,1} = 1.0$ $\phi_i^T M \phi_i = 1.0$

Modal Participation Factors

$$1.425 \begin{cases} 1.000\\ 0.644\\ 0.300 \end{cases} = 1.911 \begin{cases} 0.744\\ 0.480\\ 0.223 \end{cases}$$

using $\phi_{1,1} = 1$ using $\phi_1^T M \phi_1 = 1$

Effective Modal Mass

$$\overline{M_n} = P_n^2 m_n$$

	M n	%	Accum%
Mode 1	3.66	81	81
Mode 2	0.64	14	95
Mode 3	0.20	5	100%
	4.50	100%	

Example (Continued) MODAL Displacement Time Histories (From NONLIN)

MODAL Response Time Histories:

Compute Story Displacement Time-Histories: $u(t) = \Phi y(t)$

Compute Story Shear Time-Histories:

Displacements and Forces at time of Maximum Displacement t = 6.04 seconds

Displacements and Forces at time of Maximum Shear t = 3.18 seconds

Example (Response Spectrum Method)

Modal Equations of MotionModal Maxima $\ddot{y}_1 + 0.458 \dot{y}_1 + 21.0 y_1 = 1.425 \ddot{v}_g(t)$ $\overline{y}_1 = 1.425 * 3.47 = 4.94$ " $\ddot{y}_2 + 0.983 \dot{y}_2 + 96.6 y_2 = -0.511 \ddot{v}_g(t)$ $\overline{y}_2 = 0.511 * 3.04 = 1.55$ " $\ddot{y}_3 + 1.457 \dot{y}_3 + 212.4 y_3 = 0.090 \ddot{v}_g(t)$ $\overline{y}_3 = 0.090 * 1.20 = 0.108$ "

Time, Seconds

Computing Story Displacements $\begin{cases}
1.000 \\
0.644 \\
0.300
\end{cases}
4.940 =
\begin{cases}
4.940 \\
3.181 \\
1.482
\end{cases}$

MODE 1

$$\begin{cases} 1.000 \\ -0.601 \\ -0.676 \end{cases} 1.550 = \begin{cases} 1.550 \\ -0.931 \\ -1.048 \end{cases}$$

MODE 3

$$\begin{cases} 1.000\\ -2.570\\ 2.470 \end{cases} 0.108 = \begin{cases} 0.108\\ -0.278\\ 0.267 \end{cases}$$

Modal Combination Techniques (For Displacement)

Sum of Absolute Values

$$\begin{cases} 4.940 + 1.550 + 0.108 \\ 3.181 + 0.931 + 1.048 \\ 1.482 + 1.048 + 0.267 \end{cases} = \begin{cases} 6.60 \\ 5.16 \\ 2.80 \end{cases}$$

Square Root of the Sum of the Squares

$$\left\{
\begin{array}{l}
\sqrt{4.940^2 + 1.550^2 + 0.108^2} \\
\sqrt{3.181^2 + 0.931^2 + 1.048^2} \\
\sqrt{1.482^2 + 1.048^2 + 0.267^2}
\end{array}
\right\} =
\left\{
\begin{array}{l}
5.18 \\
3.48 \\
1.84 \\
\end{array}
\right\}$$

At time of Max. Displacement

MODE 2

MODE 1

 $\begin{cases} 0.108 - (-0.278) \\ -0.278 - 0.267 \\ 0.267 - 0 \end{cases} = \begin{cases} 0.386 \\ -0.545 \\ 0.267 \end{cases}$

 $\begin{cases} 0.386(60) \\ -0.545(120) \\ 0.267(180) \end{cases} = \begin{cases} 23.2 \\ -65.4 \\ 48.1 \end{cases}$

Computing Interstory Shears: SRSS Combination

At time of Max. Shear

At time of Max. Displacement

Envelope = Maximum per Story

Using Less than Full (Possible) Number of Natural Modes

MODAL Response Time Histories:

Using Less than Full Number of Natural Modes Time-History for **MODE** 1

 $y(t) = \begin{bmatrix} y_1(t1) & y_1(t2) & y_1(t3) & y_1(t4) & y_1(t5) & y_1(t6) & y_1(t7) & y_1(t8) & \dots & y_1(tn) \\ y_2(t1) & y_2(t2) & y_2(t3) & y_2(t4) & y_2(t5) & y_2(t6) & y_2(t7) & y_2(t8) & \dots & y_2(tn) \\ y_3(t1) & y_3(t2) & y_3(t3) & y_3(t4) & y_3(t5) & y_3(t6) & y_3(t7) & y_3(t8) & \dots & y_3(tn) \end{bmatrix}$

 $u(t) = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 \end{bmatrix} y(t)$ Transformation: 3 x nt 3 x 3 x nt 3 x nt

Time-History for **DOF** 1 \neg

 $u(t) = \begin{bmatrix} u_1(t1) & u_1(t2) & u_1(t3) & u_1(t4) & u_1(t5) & u_1(t6) & u_1(t7) & u_1(t8) & \dots & u_1(tn) \\ u_2(t1) & u_2(t2) & u_2(t3) & u_2(t4) & u_2(t5) & u_2(t6) & u_2(t7) & u_2(t8) & \dots & u_2(tn) \\ u_3(t1) & u_3(t2) & u_3(t3) & u_3(t4) & u_3(t5) & u_3(t6) & u_3(t7) & u_3(t8) & \dots & u_3(tn) \end{bmatrix}$

Using Less than Full (Possible) Number of Natural Modes Time-History for **MODE** 1 $y(t) = \begin{bmatrix} y_1(t1) & y_1(t2) & y_1(t3) & y_1(t4) & y_1(t5) & y_1(t6) & y_1(t7) & y_1(t8) & \dots & y_1(tn) \\ y_2(t1) & y_2(t2) & y_2(t3) & y_2(t4) & y_2(t5) & y_2(t6) & y_2(t7) & y_2(t8) & \dots & y_2(tn) \end{bmatrix}$ Mode 3 NOT Analyzed $u(t) = \begin{bmatrix} \phi_1 & \phi_2 \end{bmatrix} y(t)$ Transformation: 3 x nt 3 x 2 2 x nt 3 x nt Time-History for **DOF** 1 \frown $u(t) = \begin{bmatrix} u_1(t1) & u_1(t2) & u_1(t3) & u_1(t4) & u_1(t5) & u_1(t6) & u_1(t7) & u_1(t8) & \dots & u_1(tn) \\ u_2(t1) & u_2(t2) & u_2(t3) & u_2(t4) & u_2(t5) & u_2(t6) & u_2(t7) & u_2(t8) & \dots & u_2(tn) \\ u_3(t1) & u_3(t2) & u_3(t3) & u_3(t4) & u_3(t5) & u_3(t6) & u_3(t7) & u_3(t8) & \dots & u_3(tn) \end{bmatrix}$

Using Less than Full (Possible) Number of Natural Modes (Modal Response Spectrum Technique)

"Exact"

5.11

2.86

Displacement

Sum of Absolute Values

$$\begin{cases} 4.940 + 1.550 + 0.108 \\ 3.181 + 0.931 + (-0.278) \\ 1.482 + 1.048 + 0.267 \end{cases} = \begin{cases} 6.60 \\ 3.83 \\ 2.80 \end{cases} \qquad \begin{cases} 6.49 \\ 4.112 \\ 2.53 \end{cases}$$

Square Root of the Sum of the Squares

$$\begin{cases} \sqrt{4.940^{2} + 1.550^{2} + 0.108^{2}} \\ \sqrt{3.181^{2} + 0.931^{2} + (-0.278)^{2}} \\ \sqrt{1.482^{2} + 1.048^{2} + 0.267^{2}} \end{cases} = \begin{cases} 5.18 \\ 3.33 \\ 1.84 \end{cases} \qquad \begin{cases} 5.18 \\ 3.31 \\ 1.82 \end{cases}$$
 At time of Max.
$$3 \text{ modes } 2 \text{ modes} \end{cases}$$

NEHRP Provisions allow an Approximate Modal Analysis Technique Called the "EQUIVALENT LATERAL FORCE PROCEDURE"

- Empirical Period of Vibration
- Smoothed Response Spectrum
- Compute Total Base Shear V as if SDOF
- Distribute V Along Height assuming "Regular" Geometry
- Compute Displacements and Member Forces using Standard Procedures

