Int.J. Mech. Sci. Pergamon Press Ltd. 1960. Vol. 1, pp. 356-365. Printed in Great Britain

TORSION OF COMPOUND BARS—A RELAXATION
SOLUTION

J. F. ELy and O. C. ZIENKIEWICZ
Northwestern University, Illinois

(Received 30 June 1959)

Summary—This paper deals with a finite-difference solution of the torsion problem of
nonhomogeneous and compound prismatic bars. General, governing equations for both
problems are developed and the boundary conditions for an interface between parts
composed of homogeneous but different materials are stated. The case of multiply
connected regions is discussed and integral conditions, analogous to the conditions in
multiply connected homogeneous bars, are developed.

Examples illustrating various types of problems are worked out and the accuracy of
the method demonstrated by comparison with some known solutions.

NOTATION

ayz co-ordinates
uvw displacement components in xyz direction
shear stresses

T(I‘Z’ TUZ
6 twist per unit length
G modulus of rigidity
¢ Prandtl’s stress function
T torque
s,n tangent and normal directions to curve
« ratio of G, to G,

1. INTRODUCTION

THE increasing use of geometrically complicated composite sections in practice
has prompted this investigation of the torsion of composite bars. Composite
sections are used in reinforced concrete and aircraft, as well as other more
specialized applications, and the methods presented here should prove useful
in solving the torsion problem in these fields.

Several problems on the torsion of compound prismatic bars have been solved
analytically by Muskhelishvilli,'! Gorgidze,? Mitra,® Takeyama,* Suhareviki,®
Sherman,® Cowan,? Craven® and others. The problems solved generally dealt
with cross-sectional shapes that could be mapped conformally, with rela-
tive ease.

While these analytical solutions of the torsion problem for both homo-
geneous as well as composite bars are exceedingly important, it is necessary
to use relaxation methods to solve the problem of even a homogeneous bar
when the geometry of the cross-section becomes complicated as instanced by
numerous publications by Southwell,® Shaw,1 Allen,!! Dobie!? and others13-1€,
Since the homogeneous bar can be easily treated by relaxation methods, it
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seemed logical to attempt to extend these methods to cover the case of simply
and multiply connected composite bars when the geometry of the cross-
section is complicated. Indeed, the treatment of this more general case also
turns out to be simple.

It should be pointed out that the purpose of the examples which were
chosen for this paper is to illustrate how the method can be applied to the
various general classes of problems, and not to illustrate the handling of
especially complicated boundaries. More complex boundary shapes can be
dealt with as usual by using a finer mesh size which will require more time
to obtain the required solutions. It is anticipated that any digital computer
programmes available for solution of the Poisson equation could be easily
adapted to the type of problems discussed.

Equations will be developed for simply connected cross-sections, where
the material has a continuously varying G, and then for those that are com-
posed of two distinet materials joined together, without slipping, at an inter-
face. The additional conditions required in the case of a multiply connected
cross-section will also be derived, and examples will be shown for each class
of problem. Finally, the membrane analogy will be discussed in detail and
other analogies pointed out.

2. GOVERNING EQUATIONS FOR CONTINUOUSLY VARYING ¢

Consider Fig. 1 and a material which has a continuously varying G in
cross-section, but whose (7 is independent of z, i.e.

G =Gz, y). (1)

- Soex

F1c. 1. Torsion of a bar. Co-ordinates used.

Following the notation used by Timoshenko and Goodier,!” and using
Prandtl’s stress function ¢, which defines the two stress components by

’Tyz

%

ox’

(2)
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and, with the other stresses equal to zero, we find that the equilibrium equa-
tions are automatically satisfied. If, in addition, we take the displacement
components given by

u=—0yz, v =6z,
ow 10 ow 1 0¢
-6;—§—3§+0y’ @— a%-ax, (3)

all the relations between stresses and strains are determined correctly. To
ensure continuity of the axial displacement w, we have, by differentiating the
final two expressions of (3), that

S-S 2

ox®  oy? dx ox Oy oy
1 ¢ 1 o¢
or a—x(a %)-}-@(a 3_3/) = —26. (4)
In the case of constant ¢ this reduces to the familiar Poisson equation
*d P
2 =29 - —
Vg = 7t o 2G6. (4a)

As the shear stress normal to the external boundary must be zero, it
follows from the definition (2) that the stress function on this boundary must
have a constant value. This constant can be arbitrarily fixed as zero. The
sufficient and necessary boundary condition on the external boundary C
becomes

$ =o. (5)

To determine the torque 7' acting on the section, we integrate

= ffR{xTyz - yTwz} da dy>

which, by substitution of (2) and (5), yields

T = 2f Rquxdy. (6)

For purposes of computation it is convenient to rewrite the above relation-
ships in a non-dimensional form. Substituting

e=aL, y=y'L, G=GG, ¢=q¢(G,0L?,
in which L represents some typical dimension of the section, and G, some
typical value of G, we have, in place of (4) and (5),

247 52 ’ ’
RN A
¢ =0 or G. (8)
The stresses and the torque are given by
re= = (G002, ®)

T = 2G, 0L f & da' dy'. (10)
R
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3. GOVERNING EQUATIONS FOR A DISCONTINUOUS @G

We shall now consider the section shown in Fig. 2, where a discontinuity
occurs in the variation of @ at the interface C,, which separates regions R,
and R,. Clearly, if ¢; and G, refer to the values of  in the respective regions,
two functions, ¢, and ¢,, satisfying equation (4) in their domains, are required.

O

HIOIm

S>> = y

B e T PR

Fic. 2. Torsion of a composite bar.

On the external boundary, whether C, cuts it or not, the boundary condition (5)
still has to be imposed. However, to specify the problem completely, additional
requirements have to be imposed on the interface. These conditions must
ensure that: (a) the shear stresses normal to the interface are the same in
each region; and (b) the axial displacements are compatible on the interface.
The first of these can be expressed as

0 0
ﬁ ai; on G,

ds (11)

which can be satisfied by making

$1=¢y on G, (11a)

as the addition of arbitrary constants does not affect the results.
The second condition is satisfied if

ow,  Ow,
B = as OO0 Gy, (12)
which by the use of (3) can be shown to be equivalent to
1 0¢, 1 o,
Gon =G, on on G, (12a)

n being the direction of the normal to C,.

It can be seen that the stress function will be continuous across the inter-
face, but its derivatives will in general be discontinuous there. The problem
thus becomes very similar to those encountered in porous media flow, or in
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the determination of magnetic fields, when the permeabilities differ abruptly.
It is well known that phenomena of refraction of the flow lines occur in
such instances.

Considering the case of a bar made of two materials, each having constant
elastic properties, and using the non-dimensional notation of the previous
section, we have

V3 =—2 in R, (13)
Vg, = —2a in R, (14)
with ¢’ = 0 on external boundary and
$1 = 2, (15)
Jib_
e’ on'
on interface, in which arbitrarily
G, =G,
and o= %

These relations will be used in the illustrative examples shown later.

It should be noted that the methods of the previous section, using a
continuously varying G, could be used to solve this problem of a discontinuous ¢
at an interface, by approximating to the discontinuity in & by a continuous
but steep, variation. This is particularly easy to do in finite-difference treat-
ment, and will be illustrated later. The results obtained by using this pro-
cedure, however, are not as accurate (for a given mesh size) as those obtained
by assuming the G discontinuous, as does the method of this section.

4. MULTIPLY CONNECTED CROSS-SECTIONS

In the problems examined so far the condition of single-valued displace-
ments is automatically satisfied, as could be shown by integration of the
expressions (3). If, however, referring to Fig. 2, the region enclosed by C,
were empty, an additional condition would be required. Such a condition,
usually expressed in a form of a line integral, is well known for the problem
of torsion of multiply connected, homogeneous sections (see Timoshenko and
Goodier!?). For the problem on hand, where f; may be variable, an equivalent
condition has to be established. We shall derive this by taking the case of a
hole as a limiting case of the problem discussed in the previous section. Now
we shall take G, as being equal to a constant k£ in R,, and let this constant
tend to zero.

Clearly, one of the conditions on the “interface” now is that ¢, is equal
to a constant. Condition (12a) becomes insufficient in the limit, merely giving
dd,/on = 0, which is already implicit, no condition being imposed on o¢,/on.
However, integrating (12a) around the interface C,, we have

Logo _{ 1%
C, Gl on - C, G2 on’
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where (G, is a constant, while G, is a function of 2 and y. Applying Green’s
Theorem in two dimensions to the right-hand side, we obtain

1og, 1 &2 d’z & 952
— %1 d
.Gy on Gy fon,{ 3-"'32 drdy,
where A, is the area inside the curve (. Since ¢, is constant, equation (4a)
applies inside and on C,. Therefore we obtain after substitution

3€ 34’1 fL —20,0)dedy

1 d
f{; G ;" —204,,. (16)

n

It can be seen that this equation reduces to the familiar form when @, is

a constant; namely,
6¢1
§ ’——~ = —2G0AC’.

A sufficient number of boundary conditions is now available for a unique
solution of multiply connected sections.

It can be observed that as G, tends to zero, ¢, must become constant in
region R, to satisfy the governing equation (4), and the analogy of the ““floating
dise” is again applicable, as it is in the case of homogeneous sections.

5. MEMBRANE AND OTHER ANALOGIES

It has been pointed out that the torsion problem of a homogeneous bar is
analogous, mathematically, with several other physical problems. These
include the membrane under constant pressure, the problem of viscous flow
of fluid in a tube, flow of a current in a conductor of variable thickness, and in
general any of the physical problems which satisfy Poisson’s or Laplace’s
equation. These analogies can be extended to the case of a composite bar in
torsion with rewarding results. We shall discuss only one of these, namely,
the membrane analogy. It is well known that the deflections of a membrane
subjected to a constant pressure and tension satisfy the equation

q
Viz =
Zz2 = T

(in which q is a pressure, 7' the membrane tension and Z the deflection). It can
easily be shown that in the case of a membrane with variable tension the

equivalent expression is
7 oz 0 0z
a(Ta)%(T@) =-9

The analogy with equation (4) is now obvious if

24
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Discontinuous variation of G can be interpreted as a discontinuous variation
of the membrane tension and because

0
$7 5 =40

by statics, all the other relationships for interface conditions, as well as for
multiply connected regions, can be deduced. It should be observed that the
variation of 7' implies existence of distributed forces parallel to the xy planes—
which in the case of an interface becomes a line force. As a possible experi-
mental solution the membrane analogy does not appear practicable.

6. EXAMPLES

The governing equations and their respective boundary conditions can be
easily transformed into suitable finite-difference relationships and a solution
can then be obtained by application of relaxation methods. As the techniques
of both are well known and described in many texts (e.g. Allen!!) it is not
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Fic. 3(a). Example A. Torsion of a square composite bar; o« = 1;
values of ¢’ x 10%.

proposed to elaborate on these matters here. The general treatment of
Poisson’s equation is now virtually standard for the usual Neumann and
Dirichlet boundary conditions and the main problems encountered here are
those pertaining to the interface between the two materials. Again, as the
conditions at the interface are essentially similar to those encountered in the
treatment of seepage or magnetic field problems in media of different perme-
abilities, techniques or relaxation treatment are well known. These, used for
the first time by Christopherson,!® are excellently described in Allen’s text,
and no special difficulty was encountered in their application in the examples
solved.

Examples A and B (Figs. 3(a—c) and 4) show problems in which straight
and curved interfaces between two materials occur respectively. The accuracy
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of the relaxation solution can be seen from the table below, in which the
stiffness of the bars of example A obtained from a relatively coarse mesh
solution are compared with values computed by a series solution developed
by Muskhelishvillil.
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Fic. 3(b). Example A. Torsion of a square composite bar; a = 2;
T = 0-1941 (GOL%); values of ¢’ x 10%
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Fic. 3(c). Example A. Torsion of a square composite bar; « = 3;
T = 0-2358 (G, 0L*); values of ¢" x 104
T = D(G,0L%)
Torsional rigidity, D
Values of
By relaxation Timoshenko Muskhelishvilli* | (9, discrepancy)
a=1 0-1388 0-1406 0-1407 1-28
a=2 0-1941 0-1972 1-57
a=3 0-2358 0-2399 1-71

* Only two terms of the series solution were used, and these values are always greater than the
true value. The error increases with increasing a.
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To test the alternative method of satisfying the interface conditions, in
one of the examples [see Fig. 3(c)], G was assumed to vary in a continuous
way from G, to G, within a distance of one mesh length. The finite difference
expression of equation (4) can now be used directly at all mesh points. Values
in parentheses, [Fig. 3(c) ], refer to an assumed continuous variation of @, while
the others are for a discontinuous variation of G.
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Fic. 4. Example B. Torsion of a square bar with a circular insert;
a = 10; values of ¢’ x 104
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The coarseness of the mesh resulted in an error of about 6 per cent in the
final stiffness as compared with the exact solution, i.e. it proved to be less
accurate than the method employing the correct interface conditions. The
procedure may, however, be advantageous when numerous curved inter-
faces occur.

In example C (Fig. 5) the case of a multiply connected region is considered
in which the interface between two materials cuts the hole boundary. The
procedure followed here was essentially the same as described by Shaw!® for
the treatment of multiply connected, homogeneous shafts. Solutions with a
constant and arbitrary value of the stress function on the hole boundary are
first obtained using the governing equation (4) and excluding the non-
homogeneous term. Then a solution of the full equation with a zero value of
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the stress function of the hole boundary is computed, and the final solution
obtained by a linear combination of these. This combined solution satisfies
the integral condition (16). Again no special difficulties were encountered.
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