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TORSION OF COMPOUND B A R S - - A  RELAXATION 
SOLUTION 
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Northwestern University, Illinois 

{Received 30 June 1959) 

Summary--This paper deals with a finite-difference solution of the torsion problem of 
nonhomogeneous and compound prismatic bars. General, governing equations for both 
problems are developed and the boundary conditions for an interface between parts 
composed of homogeneous but different materials are stated. The case of multiply 
connected regions is discussed and integral conditions, analogous to the conditions in 
multiply connected homogeneous bars, are developed. 

Examples illustrating various types of problems are worked out and the accuracy of 
the method demonstrated by comparison with some known solutions. 
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d isp lacement  componen t s  in xyz  direct ion 
shear  stresses 
twis t  per  uni t  length 
modulus  of  r igidi ty  
P r a n d t l ' s  stress funct ion 
torque  
t angen t  and  normal  directions to curve 
ra t io  of  G 2 to G~ 

1. I N T R O D U C T I O N  

THE increasing use of  geometr ica l ly  compl ica ted  composi te  sections in prac t ice  
has p r o m p t e d  this inves t igat ion of the  tors ion of composi te  bars.  Composi te  
sections are used in reinforced concrete and  aircraf t ,  as well as o ther  more  
specialized appl icat ions,  and  the  me thods  presented  here should p rove  useful 
in solving the  tors ion p rob lem in these fields. 

Several  p rob lems  on the  torsion of com pound  pr i smat ic  bars  have  been solved 
ana ly t ica l ly  b y  Muskhelishvilli ,  1 Gorgidze, 2 Mitra,  3 T a k e y a m a ,  4 Suhareviki ,  5 
Sherman,  6 Cowan, 7 Craven s and  others.  The  problems solved general ly  deal t  
wi th  cross-sectional shapes  t h a t  could be m a p p e d  conformally ,  wi th  rela- 
t ive  ease. 

While these ana ly t ica l  solutions of  the torsion p rob lem for bo th  homo-  
geneous as well as composi te  bars  are exceedingly impor t an t ,  it is necessary  
to use re laxa t ion  me thods  to solve the  p rob lem of  even a homogeneous  bar  
when the  geome t ry  of the  cross-section becomes compl ica ted  as ins tanced  b y  
numerous  publ ica t ions  b y  Southwell ,  9 Shaw, 1° Allen, 11 Dobie 12 and  others  13-16. 
Since the  homogeneous  ba r  can be easily t r ea t ed  b y  re laxa t ion  methods ,  it 
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seemed logical to a t tempt  to extend these methods to cover the case of simply 
and multiply connected composite bars when the geometry of the cross- 
section is complicated. Indeed, the treatment of this more general case also 
turns out to be simple. 

I t  should be pointed out that  the purpose of the examples which were 
chosen for this paper is to illustrate how the method can be applied to the 
various general classes of problems, and not to illustrate the handling of 
especially complicated boundaries. More complex boundary shapes can be 
dealt with as usual by using a finer mesh size which will require more time 
to obtain the required solutions. I t  is anticipated that  any digital computer 
programmes available for solution of the Poisson equation could be easily 
adapted to the type of problems discussed. 

Equations will be developed for simply connected cross-sections, where 
the material has a continuously varying G, and then for those that  are com- 
posed of two distinct materials joined together, without slipping, at an inter- 
face. The additional conditions required in the case of a multiply connected 
cross-section will also be derived, and examples will be shown for each class 
of problem. Finally, the membrane analogy will be discussed in detail and 
other analogies pointed out. 

2. GOVERNING EQUATIONS FOR CONTINUOUSLY VARYING G 

Consider Fig. 1 and a material which has a continuously varying G in 
cross-section, but whose G is independent of z, i.e. 

G = G(x,  y) .  (1) 

/ 

I~'XG. 1. Torsion of a bar. Co-ordinates used. 

Following the notation used by Timoshenko and Goodier, 17 and using 
Prandtl 's  stress function ¢, which defines the two stress components by 

8¢ 8¢ (2) 
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and, with the other stresses equal to zero, we find that  the equilibrium equa- 
tions are automatically satisfied. If, in addition, we take the displacement 
components given by 

u = - O y z ,  v = O x z ,  

aw l 8 4 aw _ 1 84 Ox ' (3) 
8x - G Sy + Oy' ~Y G Sx 

all the relations between stresses and strains are determined correctly. To 
ensure continuity of the axial displacement w, we have, by  differentiating the 
final two expressions of (3), that  

O axYd+   =-2Go, 

or ~ (G ~¢x)+~ (G ~ - - ¢ y ) 3 x  8y = - 2 0 .  

In the case of constant G this reduces to the familiar Poisson equation 

a~5 824 
V 2 ¢ = ~ ± ~ y ~ -  2GO. 

(4) 

(4a) 

As the shear stress normal to the external boundary must be zero, it 
follows from the definition (2) that  the stress function on this boundary must 
have a constant value. This constant can be arbitrarily fixed as zero. The 
sufficient and necessary boundary condition on the external boundary C 
becomes ¢ = 0. (5) 

To determine the torque T acting on the section, we integrate 

T = ffa(X-%z - Y~'xz} dx dy, 

which, by substitution of (2) and (5), yields 

T = 2 f f R ¢  dx dy. (6) 

For purposes of computation it is convenient to rewrite the above relation- 
ships in a non-dimensional form. Substituting 

x = x 'L,  y = y 'L,  G = G'G o, ¢ = 4 ' ( G  00L2), 

in which L represents some typical dimension of the section, and G o some 
typical value of G, we have, in place of (4) and (5), 

¢ ' = 0  or G. (8) 

The stresses and the torque are given by  

% . z = - ( G o O L )  88¢n',, (9) 

T = 2G 00L4ffdp ' dx' dy'. (10) 
.)dR 
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3. G O V E R N I N G  E Q U A T I O N S  FOR A D I S C O N T I N U O U S  G 

We shall now consider the  section shown in Fig. 2, where a d iscont inui ty  
occurs in the  var ia t ion  of  G at  the  interface Ca, which separates regions R 1 
and  R a. Clearly, if  G 1 and G a refer to the  values of  G in the respect ive regions, 
two functions,  ¢1 and Ca, sat isfying equat ion (4) in their  domains,  are required.  

Z 

FIc. 2. Torsion of a composite bar. 

JLX 

On the  externa l  boundary ,  whether  C 2 cuts it  or not,  the  b o u n d a ry  condit ion (5) 
still has to be imposed. However ,  to specify the  problem completely,  addi t ional  
requi rements  have  to be imposed on the  interface. These conditions mus t  
ensure t ha t :  (a) the  shear  stresses normal  to the  interface are the  same in 
each region;  and  (b) the  axial displacements  are compatible  on the interface.  
The first of  these can be expressed as 

~¢1 8¢2 
8 s -  8s- on C 2, (11) 

which can be satisfied by  making 

¢ 1 = ¢ 2  on C2, ( l l a )  

as the  addi t ion  of  a rb i t r a ry  constants  does no t  affect the  results. 
The  second condit ion is satisfied if  

8w1= 8wa 
8s ~ s  on Ca, (12) 

which by  the  use of  (3) can be shown to be equivalent  to 

1 8¢1 = 1 8¢8 
on Ca, (12a) 

G 1 8n G~ 8n 

n being the  direct ion of  the  normal  to  Ca. 
I t  can be seen t ha t  the  stress funct ion will be cont inuous across the  inter-  

face, bu t  its der ivat ives  will in general  be discontinuous there.  The problem 
thus  becomes ve ry  similar to those encounte red  in porous media  flow, or in 
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the determination of magnetic fields, when the permeabilities differ abruptly. 
I t  is well known that  phenomena of refraction of the flow lines occur in 
such instances. 

Considering the case of a bar made of two materials, each having constant 
elastic properties, and using the non-dimensional notation of the previous 
section, we have V 2 ¢ ~ = - 2  in R1, (13) 

V 2 ¢ ~ = - 2 a  in R2, (14) 

with ¢' = 0 on external boundary and 

¢; = ¢~, (15) 

on interface, in which arbitrarily 

e 1 ~ e 0 

G2 
and ~ = G~" 

These relations will be used in the illustrative examples shown later. 
I t  should be noted that  the methods of the previous section, using a 

continuously varying G, could be used to solve this problem of a discontinuous G 
a t  an interface, by approximating to the discontinuity in G by a continuous 
but steep, variation. This is particularly easy to do in finite-difference treat- 
ment, and will be illustrated later. The results obtained by using this pro- 
cedure, however, are not as accurate (for a given mesh size) as those obtained 
by assuming the G discontinuous, as does the method of this section. 

4. M U L T I P L Y  C O N N E C T E D  C R O S S - S E C T I O N S  

In the problems examined so far the condition of single-valued displace- 
ments is automatically satisfied, as could be shown by integration of the 
expressions (3). If, however, referring to Fig. 2, the region enclosed by C~ 
were empty, an additional condition would be required. Such a condition, 
usually expressed in a form of a line integral, is well known for the problem 
of torsion of multiply connected, homogeneous sections (see Timoshenko and 
Goodier17). For the problem on hand, where G 1 may be variable, an equivalent 
condition has to be established. We shall derive this by taking the case of a 
hole as a limiting case of the problem discussed in the previous section. Now 
we shall take G 2 as being equal to a constant k in R2, and let this constant 
tend to zero. 

Clearly, one of the conditions on the "interface" now is that  ¢1 is equal 
to a constant. Condition (12a) becomes insufficient in the limit, merely giving 
~¢2/~n = O, which is already implicit, no condition being imposed on ~¢1/~n. 
However, integrating (12a) around the interface C2, we have 
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where G2 is a constant, while G 1 is a function of x and y. Applying Green's 
Theorem in two dimensions to the right-hand side, we obtain 

1 0¢1 1 f (  I02¢2+a2¢,tdxdy, 
c, G1 an - G 2 JJAo, [ ~x~x2 aY ~ 

where Ac, is the area inside the curve C9.. Since G2 is constant, equation (4a) 
applies inside and on C 2. Therefore we obtain after substitution 

1 0¢1 
c, G1 ~n 

1 a¢1 

c, Gx an 

- - - - =  1 ( ~ "  ( 
j j ~v, -- 2G~. O) dx dy 

- _ 20At,. (16) 

I t  can be seen tha t  this equation reduces to the familiar form when G 1 is 
a constant;  namely, 

= -- 2GOAv. 0¢1 
C, ~n 

A sufficient number of boundary conditions is now available for a unique 
solution of multiply connected sections. 

I t  can be observed tha t  as G 2 tends to zero, ¢2 must become constant in 
region R~ to satisfy the governing equation (4), and the analogy of the "floating 
disc" is again applicable, as it is in the case of homogeneous sections. 

5. MEMBRANE AND OTHER ANALOGIES 

I t  has been pointed out tha t  the torsion problem of a homogeneous bar is 
analogous, mathematically, with several other physical problems. These 
include the membrane under constant pressure, the problem of viscous flow 
of fluid in a tube, flow of a current in a conductor of variable thickness, and in 
general any of the physical problems which satisfy Poisson's or Laplace's 
equation. These analogies can be extended to the case of a composite bar in 
torsion with rewarding results. We shall discuss only one of these, namely, 
the membrane analogy. I t  is well known tha t  the deflections of a membrane 
subjected to a constant pressure and tension satisfy the equation 

V2z = q 
T 

(in which q is a pressure, T the membrane tension and Z the deflection). I t  can 
easily be shown that  in the case of a membrane with variable tension the 
equivalent expression is 

( bz\ O / ~z) 
ax 

The analogy with equation (4) is now obvious if 

1 
T = ~ ,  q = 2 0 ,  z-=¢. 

24 
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Discontinuous var ia t ion of G can be in te rpre ted  as a discontinuous var ia t ion 
of the membrane  tension and because 

- A q  
~z T~n= 

by  statics, all the  other  relationships for interface conditions, as well as for 
mul t ip ly  connected regions, can be deduced. I t  should be observed tha t  the 
var ia t ion of  T implies existence of  d is t r ibuted forces parallel to the x y  p lanes - -  
which in the  case of  an interface becomes a line force. As a possible experi- 
menta l  solution the  membrane  analogy does not  appear  practicable.  

6. E X A M P L E S  

The governing equat ions and their  respect ive bounda ry  conditions can be 
easily t rans formed into suitable finite-difference relationships and a solution 
can then  be obta ined by  applicat ion of re laxat ion methods.  As the  techniques 
of  bo th  are well known and described in m a n y  tex ts  (e.g. Allen n) it  is not  
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Fro. 3(a). Example A. Torsion of a square composite bar; a = l; 
values of ¢' × 104. 

proposed to e laborate  on these mat te r s  here. The general t r ea tmen t  of  
Poisson's equat ion is now vir tual ly  s tandard  for the  usual Neumann  and 
Dirichlet  bounda ry  conditions and the  main problems encountered  here are 
those per ta ining to  the interface between the  two materials.  Again, as the  
conditions at  the  interface are essentially similar to  those encountered  in the 
t r e a tme n t  of seepage or magnet ic  field problems in media of  different perme- 
abihties, techniques or re laxat ion t r e a tmen t  are well known. These, used for 
the  first t ime by  Christopherson, TM are excel lent ly described in Allen's text ,  
and no special difficulty was encountered  in their  applicat ion in the examples 
solved. 

Examples  A and B (Figs. 3(a-c) and 4) show problems in which s t ra ight  
and  curved interfaces between two materials  occur respectively.  The accuracy  



T o r s i o n  o f  c o m p o u n d  b a x s - - a  r e l a x a t i o n  s o l u t i o n  363 

of the  re laxa t ion  solution can be seen f rom the  tab le  below, in which the  
stiffness of the bars of example A obtained from a relatively coarse mesh 
solution are compared with values computed by a series solution developed 
by MuskhelishvilliL 
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FIG. 3(b).  E x a m p l e  A. T o r s i o n  o f  a s q u a r e  c o m p o s i t e  b a r ;  a = 
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T = 0.1941 (GOL4); va l ue s  o f  ¢ '  x 104 . 

(1710) (2623) (2837) (2388) (1989) (1500) (863) 

FIG. 3(c). E x a m p l e  A. T o r s i o n  o f  a s q u a r e  c o m p o s i t e  b a r ;  a = 3; 
T = 0"2358 (G o OL4); v a h m s  o f ~ '  x 104. 

L 
T 

~ X  

T = D(Go 8L 4) 

T o r s i o n a l  r ig id i ty ,  D 
V a l u e s  o f  

B y  r e l a x a t i o n  T i m o s h e n k o  Muskhe l i shv i l l i*  ( % d i s c r e p a n c y  ) 

a = 1 0-1388 0-1406 0-1407 1.28 
= 2 0.1941 0-1972 1.57 

a = 3 0.2358 0.2399 1.71 

* Only two terms of the series solution were used, and these values are always greater  t han  the 
t rue  value. The error increases wi th  increasing a. 



364 J .  :F. ELY a n d  O. C. ZIENKIEViICZ 

To tes t  the  a l t e rna t ive  me thod  of sat isfying the interface condit ions,  in 
one of the  examples  [see Fig. 3(c)], G was assumed to v a r y  in a cont inuous  
way  f rom G 1 to G 2 within  a dis tance of one mesh length.  The finite difference 
expression of equa t ion  (4) can now be used direct ly  a t  all mesh  points.  Values 
in parentheses ,  [Fig. 3(c) ], refer to an assumed cont inuous var ia t ion  of G, while 
the  others  are for a d iscont inuous  var ia t ion  of  G. 

FIG. 4. Example B. Torsion of a square bar with a circular insert; 
= 10; values o f ~ ' ×  104 . 

The  coarseness of  the  mesh resul ted in an  error  of  abou t  6 per  cent in the  
final stiffness as compared  wi th  the  exac t  solution, i.e. it p roved  to be less 
accura te  t h a n  the  me thod  employing  the correct  interface conditions.  The  
procedure  may ,  however ,  be advan t ageous  when  numerous  curved  inter-  
faces occur. 

In  example  C (Fig. 5) the  case of  a mul t ip ly  connected region is considered 
in which the  interface be tween two mater ia l s  cuts the  hole boundary .  The  
procedure  followed here was essential ly the  same as described b y  Shaw 1° for 
the  t r e a t m e n t  of  mul t ip ly  connected,  homogeneous  shafts.  Solutions wi th  a 
cons tan t  and  a r b i t r a r y  value of the  stress funct ion on the  hole b o u n d a r y  are 
first ob ta ined  using the  governing equat ion (4) and  excluding the  non- 
homogeneous  te rm.  Then  a solution of  the  full equa t ion  with  a zero value of 
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the  s t ress  f u n c t i o n  of  the  bole  b o u n d a r y  is c o m p u t e d ,  a n d  the  f inal  so lu t i on  

o b t a i n e d  b y  a l i nea r  c o m b i n a t i o n  of these.  Th i s  c o m b i n e d  s o l u t i o n  satisfies 

the  i n t e g r a l  c o n d i t i o n  (16). A g a i n  no  special  diff icul t ies  were e n c o u n t e r e d .  

FIG. 5. Example C. Torsion of a composite bar with a circular hole. 
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