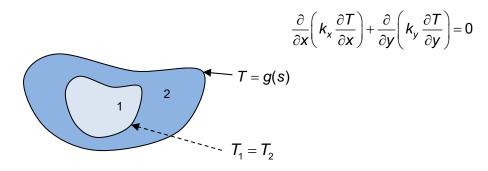
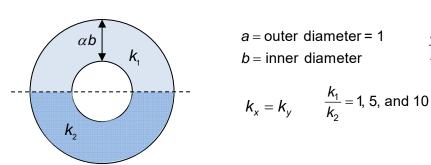
CIVL 7111 - Special Modelling Project 10

Heat Transfer - Steady State Heat Conduction


<u>Problem Statement</u> - Consider the problem of the steady state heat conduction. The general two-dimensional boundary-value problem is

$$\frac{\partial}{\partial x} \left(k_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial T}{\partial y} \right) = 0 \quad \text{in } \Omega$$

$$T = g(s) \quad \text{on } \Gamma$$


where the dependent variable T is the temperature and k_x and k_y are the thermal conductivites in the x and y directions.

Consider the a cross-section shown in the diagram below:

 $\frac{a}{b} = 2$

Consider the a cross-section shown in the diagram below:

 $T=\sin(3\theta)$ on the outer boundary $\alpha=\frac{1}{2}$ and $\frac{1}{4}$ T=0 on the inner boundary

Use **POIS36** to the model this problem for the various cases indicated by the ratio a/b and k_1/k_2 . From these results plot the temperature over the doamin.