MESHGEN – FEM mesh generator

Program MESHGEN is an automatic mesh generator which uses quadrilaterals with parabolic sides.

These quadrilaterals may be joined together in any specified manner.

MESHGEN – FEM mesh generator

The first figure on the left shows a complete finite element mesh composed of 3-noded triangular elements.

The middle figure shows an exploded view illustrating the four loops used in this discretization.

The right on the right defines the loop numbers and their side numbers used by MESHGEN.
MESHGEN – FEM mesh generator

The loop numbering is arbitrary as is the numbering of each side of a loop provided it is done counterclockwise.

Also shown on the right are the eight points describing the sides of each loop.

The three points along any side are used to define the parabolic curve in the x-y plane used for the side.

MESHGEN – FEM mesh generator

Hence, even though the seven points along sides 1, 2, and 3 of loop 1 all lie in a circle, the actual boundary is made up of three parabolas joined at the corner points (dark circles).
MESHGEN – FEM mesh generator
Hence, even though the seven points along sides 1, 2, and 3 of loop 1 all lie in a circle, the actual boundary is made up of three parabolas joined at the corner points (dark circles).
MESHGEN – FEM mesh generator

Although three of the 4 sides of loops 2, 3, and 4 are straight lines, the side coordinate points (open circles) do not necessarily fall at the center of these sides. Notice that they have been moved toward loop 1 and as a consequence the elements shown in the figure on the left have likewise been moved toward loop 1.

MESHGEN – FEM mesh generator

As you gain experience in using MESHGEN you will find that it has the versatility needed to generate a wide variety of meshes.
MESHGEN – FEM mesh generator

When it cannot be made to produce exactly a desired configuration (for example, nodal points on the boundary of loop 1 not lying in a prefect circle), the user may use MESHGEN to obtain a mesh very close to that which is desired, and then manually adjust whatever data are necessary to achieve the geometry required.

![Diagram](image1)

MESHGEN – FEM mesh generator

It should be noted that when two loops are joined, the common sides must have the same number of divisions (hence nodal points).

As shown in figure on the right, side 1 of loop 3 is joined to side 2 of loop 2 in the previous example.

![Diagram](image2)
MESHGEN – FEM mesh generator

The numbering of the elements and nodal points begins in the first loop and continues through the last loop. For any given loop the node numbering represents the addition to the last nodal point number and element number assigned by the previous loop.

MESHGEN – FEM mesh generator

The diagonal defines the element in each square is chosen to be the shortest of the two distances after mapping to the x-y plane.

In the case where a series of rectangular elements are created with equal diagonals, MESHGEN will alternate the direction of the diagonal from one element to the next.
MESHGEN – FEM mesh generator

One final note before the input file to MESHGEN is described.

The order in which the nodal points are numbered is critical since it determines the band width of the "stiffness" matrix.

Program MESHGEN can produce a very undesirable node numbering scheme.

When this happens, a new numbering can be developed through the subroutine ORDER.

Use of this subroutine will be described in the next section.
MESHGEN – FEM mesh generator

```plaintext
FINITE ELEMENT MESH GENERATOR

This program generates finite element meshes for either
3-node or 6-node triangular elements

NNPE = NUMBER OF NODES PER ELEMENT (MUST BE 3 OR 6)
NUMLPS = NUMBER OF LOOPS: BE USED for CURRENT MESH
NDIV(I,J) = NUMBER OF DIVISIONS ON SIDE J OF LOOP I
JOIN(I,J,K) = CURRENT LOOP (LOOP I) SIDE K IS JOINED:
               SIDE JOIN(I,J,2) OF LOOP (I,J,1)
XCOR(I,J) = THE 8 X-COORDINATES OF LOOP I
YCOR(I,J) = THE 8 Y-COORDINATES OF LOOP I

DIMENSIONS OF THE ARRAYS USED IN THIS PROGRAM

MXEE = NUMBER OF ELEMENTS
MXLL = NUMBER OF LOOPS
MXNN = NUMBER OF NODAL POINTS
MXSS = MAXIMUM NUMBER OF NODES ALONG ANY LOOP SIDE
        MXSS MUST BE EQUAL OR GREATER THAN:
        NDIV + 1    for NNPE = 3
                2*NDIV +1     for NNPE = 6

MESHGEN – FEM mesh generator

mxee = 2000;
mxnn = 2200;
mxss = 99;
mxll = 10;

xcor(1:mxll,1:8) = 0;
ycor(1:mxll,1:8) = 0;
xord(1:mxnn) = 0;
yord(1:mxnn) = 0;
rn(1:8) = 0;
nnp(1:mxnn) = 0;
np(1:mxee,1:6) = 0;
ndiv(1:mxll,1:4) = 0;
jjoin(1:mxll,1:4,1:2) = 0;
lpn(1:6,1:4,1:mxss) = 0;
lpn(1:6,1:4,1:mxss) = 0;
```

Maximum number of elements
Maximum number of node points
Maximum number of nodes along any side
Maximum number of loops

Dimension arrays
MESHGEN – FEM mesh generator

The remaining portion of the code does not require you to make any corrections or adjustments.

The following is an example of nodal and element numbers designated by MESHGEN for a typical loop. If this is not the first loop then these numbers will start where the previous nodal point and element numbers left off. Subroutine ORDER will change the nodal point numbers if IRDER = 1, but will keep the same element numbers. The printed output will designate the numbering scheme above as the old node point number and those assigned by ORDER as the new node point numbers.

MESHGEN – FEM mesh generator

MESHGEN Input

The following is the format of the input file read by MESHGEN

Variables:

\[\text{NNPE, NUMLPS} \]

\[
\begin{align*}
\text{NDIV(I,1),NDIV(I,2)} \\
\text{((JOIN(I,J,K),K+1,2),J=1,8)} \\
\text{(XCOR(I,J),YCOR(I,J),J=1,8)}
\end{align*}
\]

Note: One set of data is required for each loop
MESHGEN – *FEM mesh generator*

MESHGEN Input

NNPE = number of nodes per element (must be either 3 or 6)

NUMLPS = number of loops

NNPE, NUMLPS

\[
\begin{align*}
 & (N\text{DIV}(I,1), N\text{DIV}(I,2)) \\
 & ((\text{JOIN}(I,J,K), K+1, 2), J=1, 8) \\
 & (X\text{COR}(I,J), Y\text{COR}(I,J), J=1, 8)
\end{align*}
\]

Note: One set of data is required for each loop
MESHGEN – FEM mesh generator

MESHGEN Input
JOIN(I, J, K) = loop I, side J is joined to loop
JOIN(I, J, 1) side JOIN(I, J, 2)

NNPE, NUMLPS

\{
 \text{NDIV}(I, 1), \text{NDIV}(I, 2)

 ((\text{JOIN}(I, J, K), K+1, 2), J=1, 8)

 (\text{XCOR}(I, J), \text{YCOR}(I, J), J=1, 8)
\}

Note: One set of data is required for each loop

MESHGEN – FEM mesh generator

MESHGEN Input
XCOR(I, J), YCOR(I, J) = the x and y coordinates of loop I’s control point

NNPE, NUMLPS

\{
 \text{NDIV}(I, 1), \text{NDIV}(I, 2)

 ((\text{JOIN}(I, J, K), K+1, 2), J=1, 8)

 (\text{XCOR}(I, J), \text{YCOR}(I, J), J=1, 8)
\}

Note: One set of data is required for each loop
MESHGEN – FEM mesh generator

MESHGEN Input

The following is the input file read by MESHGEN for the example problem shown in figure below.

```plaintext
NNPE
NUMPLS
NDIV(1,1), NDIV(1,2)
JOIN(I,J,K)

XCOR(I,J), YCOR(I,J)

For the 8 points defining the loop 1:

0.000   -0.500
0.200   -0.458
0.400   -0.300
0.500    0.000
0.400    0.300
0.200    0.458
0.000    0.500
0.000    0.000
```

MESHGEN – FEM mesh generator

MESHGEN Input

The following is the input file read by MESHGEN for the example problem shown in figure below.

```plaintext
NDIV(2,1), NDIV(2,2)
JOIN(I,J,K)

XCOR(I,J), YCOR(I,J)

For the 8 points defining the loop 2:

0.000   -2.500
1.200   -2.500
3.000   -2.500
1.180   -0.960
0.400   -0.300
0.200   -0.458
0.000    0.300
0.000    -1.200
```
The following is the input file read by MESHGEN for the example problem shown in figure below.

MESHGEN – FEM mesh generator

MESHGEN Input

The following is the input file read by MESHGEN for the example problem shown in figure below.

MESHGEN – FEM mesh generator

MESHGEN Input

The following is the input file read by MESHGEN for the example problem shown in figure below.
MESHGEN – FEM mesh generator

MESHGEN Input

These data are fairly self-explanatory with the possible exception of the JOIN array.

Notice that the input data for this array has four groups of two integers each.

These four groups correspond to the four sides of the loop under consideration.
MESHGEN – FEM mesh generator

MESHGEN Input

Thus, for loop 3 the two members of the first group indicate that side 1 is joined to loop 2 side 2.

The next two groups being zeros indicate that sides 2 and 3 are not joined to an earlier defined loop.

The last group indicates side 4 of this loop is joined to loop 1, side 2.

MESHGEN – FEM mesh generator

Enter filename containing MESHGEN input data (must have ".min" filename extension)

Echo NNPE and NUMLPS

Bandwidth computed from MESHGEN input data
MESHGEN – FEM mesh generator

You can zoom in and out of the graphics window to visualize the node and element numbers.
MESHGEN – FEM mesh generator

The original MESHGEN output is file *demo.mout* defines a mesh with:

- 241 nodes
- 400 elements
- 156 bandwidth

End of MESHGEN Program