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1. INTRODUCTION 

Finite elements; perhaps no other family of approximation 
methods has had a greater impact on the theory and practice 
of numerical methods during the twentieth century. Finite 
element methods have now been used in virtually every 
conceivable area of engineering that can make use of models 
of nature characterized by partial differential equations. 

Why have finite element methods been so popular in 
both the engineering and mathematical community? I feel that 
a principal reason for the success and popularity of these 
methods is that they are based on the weak, variational, 
formulation of boundary and initial value problems. This is a 
critial property, not only because it provides a proper setting 
for the existence of very irregular solutions to differential 
equations (e.g. distributions), but also because the solution 
appears in the integral of a quantity over a domain. The 
simple fact that the integral of a measurable function over an 
arbitrary domain can be broken up into the sum of integrals 
over an arbitrary collection of almost disjoint subdomains 
whose union is the original domain, is a vital property. 
Because of it, the analysis of a problem can literally be made 
locally, over a typical subdomain, and by making the 
subdomain sufficiently small one can argue that polynomial 
functions of various degrees are adequate for representing the 
local behavior of the solution. This summability of integrals 
is exploited in every finite element program. It allows the 
analysts to focus their attention on a typical finite element 
domain and to develop an approximation independent of the 
ultimate location of that element in the final mesh. 

The simple integral property also has important 
implications in physics and in most problems in continuum 
mechanics. Indeed, the classical balance laws of mechanics 
are global, in the sense that they are integral laws applying to 
a given mass of material, a fluid or solid. From the onset, 
only regularity of the primitive variables sufficient for these 
global conservation laws to make sense is needed. Moreover, 
since these laws are supposed to be fundamental axioms of 
physics, they must hold over every finite portion of the 
material: every finite element of the continuum. Thus once 
again, one is encouraged to think of approximate methods 
defined by integral formulations over typical pieces of a 
continuum to be studied. 

2. THE ORIGIN OF FINITE ELEMENTS 

When did finite elements begin? It is difficult to trace the 
origins of finite element methods because of a basic problem 
in defining precisely what constitutes a “finite element 
method”. To most mathematicians, it is a method of 
piecewise polynomial approximation and, therefore, its 
origins are frequently traced to the appendix of a paper by 
COURANT [ 19431 in which piecewise linear approximations 
of the Dirichlet problem over a network of triangles is 
discussed. Also, the “interpretation of finite differences” by 
POLYA [1952] is regarded as embodying piecewiese- 
poIynomial approximation aspects of finite elements. 

On the other hand, the approximation of variational 
problems on a mesh of triangles goes back much further: 92 
years. In 1851, SCHELLBACH [18Sl] proposed a 
finite-element-like solution to Plateau’s problem of 
determining the surface S of minimum area enclosed by a 
given closed curve. SCHELLBACH used an approximation 
St, of S by a mesh of triangles over which the surface was 
represented by piecewise linear functions, and he then 
obtained an approximation of the solution to Plateau’s 
problem by minimizing S, with respect to the coordinates of 
hexagons formed by six elements (see WILLIAMSON 
[1980]). Not quite the conventional finite element approach, 
!~;;;tii as much a finite element technique as that of 

Some’say that there is even an earlier work that uses 
some of the ideas underlying finite element methods: 
LEIBNIZ himself employed a piecewise linear approximation 
of the Brachistochrone problem proposed by BERNOULLI 
in 1696 (see the historical volume, LEIBNIZ [1962]). With 
the help of his newly developed calculus tools, LEIBNIZ 
derived the governing differential equation for the problem, 
the solution of which is a cycloid. However, most would 
agree that to credit this- work as a finite element 
annroximation is somewhat stretchine the noint. LEIBNIZ 
h’ah no intention of approximating a%ffe;ential equaiton; 
rather, his purpose was to derive one. Two and a half 
centuries later it was realized that useful approximations of 
differential equations could be determined by not necessarily 
taking infinitesimal elements as in the calculus, but by 
keeping the elements finite in size. This idea is, in fact, the 
basis of the term “finite elements”. 

There is also some difference in the process of laying a 
mesh of triangles over a domain on the one hand and 
generating the domain of approximation by piecing together 
triangles on the other. While these processes may look the 
same in some cases, they may differ dramatically in how the 
boundary conditions are imposed. Thus, neither 
SCHELLBACH nor COURANT, nor for that matter 
SYNGE who used triangular meshes many years later, were 
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particularly careful as to how boundary conditions were to be 
imposed or as to how the boundary of the domain was to be 
modeled by elements, issues that are now recognized as an 
important feature of finite element methodologies. If a finite 
element method is one in which a global approximation of a 
partial differential equation is built up from a sequence of 
local approximations over subdomains, then credit must go 
back to the early papers of HRENNIKOFF [1941], and 
perhaps beyond, who chose to solve plane elasticity 
problems by breaking up the domain of the displacements 
into little finite pieces, over which the stiffnesses were 
approximated using bars, beams, and spring elements. A 
similar “lattice analogy” was used by McHENRY [1943]. 
While these works are draped in the most primitive physical 
tetrns, it is nevertheless clear that the methods involve some 
sort of crude piecewise linear or piecewise cubic 
approximation over rectangular cells. Miraculously, the 
methods also seem to be convergent. 

To the average practitioner who uses them, finite 
elements are much more than a method of piecewise 
polynomial approximation. The whole process of partitioning 
of domain, assembling elements, applying loads and 
boundary conditions, and, of course, along with it, local 
polynomial approximation, are all components of the finite 
element method. 

If this is so, then one must acknowledge the early 
papers of GABRIEL KRON who developed his “tensor 
analysis of networks” in 1939 and applied his “method of 
tearing” and “network analysis” to the generation of global 
systems from large numbers of individual components in the 
1940’s and 1950’s (KRON [1939]; see also KRON [1953], 
[1955]). Of course, KRON never necessarily regarded his 
method as one of approximating partial differential equations; 
rather, the properties of each component were regarded as 
exactly specified, and the issue was an algebraic one of 
connecting them all appropriately together. 

In the early 1950’s, ARGYRIS [1954] began to put 
these ideas together into what some call a primitive finite 
element method: he extended and generalized the 
combinatoric method of KRON and other ideas that were 
being developed in the literature on system theory at the time, 
and added to it variational methods of approximation, a 
fundamental step toward true finite element methodology. 

Around the same time, SYNGE [1956] described his 
“method of the hypercircle” in which he also spoke of 
piecewise linear approximations on triangular meshes, but 
not in a rich variational setting and not in a way in which 
approximations were built by either partitioning a domain 
into triangles or assembling triangles to approximate a 
domain (indeed Synge’s treatment of boundary conditons 
was clearly not in the spirit of finite elements, even though he 
was keenly aware of the importance of convergence criteria 
and of the “angle condition” for triangles, later studied in 
some depth by others). 

It must be noted that during the mid-1950’s there was 
a number of independent studies underway which made use 
of “matrix methods” for the analysis of aircraft structures. A 
principal contributor to this methodology was LEVY [ 19531 
who introduced the “direct stiffness method” wherein he 
approximated the structural behavior of aircraft wings using 
assemblies of box beams, torsion boxes, rods and shear 
panels. These assuredly represent some sort of crude local 
polynomial approximation in the same spirit as the 
HRENNIKOFF and McHENRY approaches. The direct 
stiffness method of LEVY had a great impact on the 
structural analysis of aircraft, and aircraft companies 
throughout the United States began to adopt and apply some 
variant of this method or of the methods of ARGYRIS to 
complex aircraft structural analyses. During this same period, 
similar structural analysis methods were being developed and 

used in Europe, particulariy in England, and one must 
mention in this regard the work of TAIG [I9611 in which 
shear lag in aircraft wing panels was approximated using 
basically a bilinear finite element method of approximation. 
Similar element-like approximations were used in many 
aircraft industries as components in various matrix-methods 
of structural analyses. Thus the precedent was established for 
piecewise approximations of some kind by the mid-1950’s. 

To a large segment of the engineering community, the 
work representing the beginning of finite elements was that 
contained in the pioneering paper of TURNER, CLOUGH, 
MARTIN, and TOPP [ 19561 in which a genuine attempt was 
made at both a local approximation (of the partial differential 
equations of linear elasticity) and the use of assembly 
strategies essential to finite element methodology. It is 
interesting that in this paper local element properties were 
derived without the use of variational principles. It was not 
until 1960 that CLOUGH [1960] actually dubbed these 
techniques as “finite element methods” in a landmark paper 
on the analysis of linear plane elasticity problems. 

The 1960’s were the formative years of finite element 
methods. Once it was perceived by the engineering 
community that useful finite element methods could be 
derived from variational principles, variationally based 
methods significantly dominated all the literature for almost a 
decade. If an operator was unsymmetric, it was thought that 
the solution of the associated problem was beyond the scope 
of finite elements, since it did not lend itself to a traditional 
extremum variational approximation in the spirit of 
RAYLEIGH and RITZ. 

Many workers in the field feel that the famous Dayton 
conferences on finite elements (at the Air Force Flight 
Dynamics Laboratory in Dayton, Ohio, U.S.A.) represented 
landmarks in the development of the field (see 
PRZEMINIECKI et al. [1966]). Held in 1965, 1968, 1970, 
these meetings brought specialists from all over the world to 
discuss their latest triumphs and failures, and the pages of the 
proceedings, particularly the earlier volumes, were filled with 
remarkable and innovative accomplishments from a technical 
community just beginning to learn the richness and power of 
this new collection of ideas. In these volumes one can find 
many of the premier papers of now well-known methods. In 
the first volume alone one can find mixed finite element 
methods (HERRMANN [1966], Hermite approximations 
(PESTEL [1966]), Cl-cubic approximations (BOGNER, 
FOX, and SCHMIT [ 19661) hybrid methods (PIAN [ 19661) 
and other contributions. In later volumes, further assaults on 
nonlinear problems and special element formulations can be 
found. 

Near the end of the sixties and earlv seventies there 
finally emerged the realization that the method could be 
applied to unsymmetric operators without difficulty and thus 
problems in fluid mechanics were brought within the realm 
of application of finite element methods; in particular, finite 
element models of the full Navier-Stokes equations were first 
presented during this period (ODEN 119691, ODEN and 
SOMOGYI [1969-J, ODEN [1970]). 

The early textbook by ZIENKIEWICZ and CHANG 
[ 19671 did much to popularize the method with the practicing 
engineering community. However, the most important factor 
leading to the rise in popularity during the late 1960’s and 
early 1970’s was not purely the publication of special 
formulations and algorithms, but the fact that the method was 
being very successfully used to solve difficult engineering 
problems. Much of the techology used during this period 
was due to BRUCE IRONS, who with his colleagues and 
students developed a multitude of techniques for the 
successful implementation of finite elements. These included 
frontal solution technique (IRONS [1970]), the patch test 
(IRONS and RAZZAQUE [ 1972]), isoparametric elements 
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(ERGATOUDIS, IRONS and ZIENKIEWICZ [1966]), and 
numerical integration schemes (IRONS [ 19661) and many 
more. The scope of finite element applications in the 1970’s 
would have been significantly diminished without these 
contributions. 

3. THE MATHEMATICAL THEORY 

The mathematical theory of finite elements was slow to 
emerge from this caldron of activity. Many of the works on 
“variational finite difference methods” which appeared in the 
mid-to-late 1960’s actually captured the essence of 
convergence requirements of finite element methods. Thus, 
the 1965 work of FENG KANG [1965] on such methods, 
published in Chinese and unknown to the western world for 
over a decade, is regarded by many as containing the first 
proof of convergence of finite-element methods. The 
mathematical theory of finite elements, which addressed 
mathematical issues connected with purely finite element 
schemes, began around 1968 and several papers were 
published that year on the subject. One of the first papers in 
this period to address the problem of convergence of the 
finite method in a rigorous way and in which a-priori error 
estimates for bilinear approximations of a problem in a plane 
elasticity are obtained, is the often overlooked paper of 
JOHNSON and McCLAY [1968], which appeared in the 
Journal of Applied Mechanics. This paper correctly 
developed error estimates in energy norms, and even 
atempted to characterize the deterioration of convergence 
rates due to comer singularities. 

Also in 1968 thsre appeared the important 
mathematical paper of ZLAMAL [1968] in which a detailed 
analysis of interpolation properties of a class of triangular 
elements and their application to second-order and 
fourth-order linear elliptic boundary-value problems is 
discussed. This paper attracted the interest of a large segment 
of the numerical analysis community and several very good 
mathematicians began to work on finite element 
methodologies. In the same year, CIARLET [I9681 
published a rigorous proof of convergence of a finite element 
approximation of a class of linear two-point boundary-value 
problems in which piecewise linear shape functions were 
used. By using a discrete maximum principle he was able to 
prove L” estimates. We also mention the work of 
OLIVEIRA [1968] on convergence of finite element methods 
which established corrected rates-of-convergence of certain 
problems in appropriate energy norms, 

By 1972, finite element methods had emerged as an 
important new area of numerical analysis in applied 
mathematics. Mathematical conferences were held on the 
subject on a regular basis, and there began to emerge a rich 
volume of literature on mathematicai aspects of the method 
applied to elliptic problems, eigenvalue problems, and 
parabolic problems. A conference of special significance in 
this period was held at the University of Maryland in 1972 
and fe tured 
BABU 4 

a penetr ting 
KA (see BABU B 

series of lectures by IV0 
KA and AZIZ [1973]) and several 

important mathematical papers by leading specialists in the 
mathematics of finite elements, all collected in the volume 
edited by AZIZ [1972]. 

One unfamiliar with aspects of the history of finite 
elements may be led to the erroneous conclusion that the 
method of finite elements emerged from the growing wealth 
of information on partial differential equations, weak 
solutions of boundary-value problems, Sobolev spaces, and 
the associated approximation theory for elliptic variational 
boundary-value problems. This is a natural mistake, because 
the seeds for the modern theory of partial differential 
equations were sown about the same time as those for the 

development of modern finite element methods, but in an 
entirely different garden. 

In the late 1940’s, LAURENT SCHWARTZ was 
putting together his theory of distributions around a decade 
after the notion of generalized functions and their use in 
partial differential equations appeared in the pioneering work 
of SOBOLEV. A long list of other names could be added to 
the list of contributors to the modern theory of partial 
differential equations, but that is not our purpose here. 
Rather, we must only note that the rich mathematical theory 
of martial differential eauations which began in the 1940’s 
and 50’s, blossomed inathe 1960’s, and isnow an integral 
part of the foundations of not only partial differential 
equations but also approximation theory, did not lead 
naturally to the variational methods of approximation such as 
finite elements, but grew independently and parallel to that 
development for almost two decades. It was a happy 
accident, or perhaps an unavoidable occurrence, that in the 
late 1960’s these two independent subjects, finite element 
methodology and the theory of approximation of partial 
differential equations via functional analysis methods, united 
in an inseparable way, so much so that it is difficult to 
appreciate the fact that they were ever separate. 

The 1970’s must mark the decade of the mathematics 
of finite elements. During this period, great strides were 
made in determining a-priori erro? estimates for a variety of 
finite element methods. for linear elliutic boundarv-value 
problems, for eigenvalie problems, aid certain cl&ses of 
linear and nonlinear parabolic problems; also, some 
preliminary work on finite element applications to hyperbolic 
equations was done. It is both inappropriate and perhaps 
impossible to provide an adequate survey of this large 
volume of literature, but it is possible to present an albeit 
biased reference to some of the major works along the way. 

An important component in the theory of finite 
elements is an interpolation theory: how well can a given 
finite eIement method approximate functions of a given class 
locally over a typical finite element? A great deal was known 
about this subject from the literature on approximation theory 
and spline analysis, but its particularization to finite elements 
involves technical difficulties. One can find results on finite 
element inteqolation in a number of early papers, including 
those of ZLA 

Y 
AL [1968], BRAMBLE and Z AMAL 

[1970], BABU KA [1970, 19711, and BABU 8 KA and 
AZIZ [ 19721. But the elegant work on Lagrange and Hermite 
interpoIations of finite elements by CIARLET and RAVIART 
[1972a] must stand as a very important contribution to this 
vital aspect of finite element theory. A landmark work on the 
mathematics of finite elements appeared in 1972 in the 
remarkably comprehensive and penetrating memoir of 
BABUSKA and AZIZ [1972] on the mathematical 
foundations of finite element methods. Here one can find 
interwoven with the theory of Sobolev spaces and elliptic 
problems, general results on approximation theory that have 
direct bearing on finite element methods. The fundamental 
work of NITSCHE [1975] on Lw estimates for general 
classes of linear elliptic problems must stand out as one of 
the most important contributions of the seventies. STRANG 
[1972], in an important communication, pointed out 
“variational crimes”, inherent in many finite element 
methods, such as improper numerical quadrature, the use of 
nonconforming elemqts, improper satisfaction of boundary 
conditions, etc., all common practices in applications, but all 
frequently leading to exceptable numerical schemes. In the 
same year, CIARLET and RAVIART [1972b,c] also 
contributed penetrating studies of these issues. Many of the 
advances of the 1970’s drew upon earlier results on 
variational methods of approximation based on the Ritz 
method and finite differences; for example the fundamental 
Aubin-Nitsche method for lifting the order of convergence to 
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lower Sobolev norms (see AUBIN [1967] and NITSCHE 
[ 19681) used such results. In 1974, the important paper of 
BREZZI [1974] used such earlier results on saddle-point 
problems and laid the groundwork for a multitude of papers 
on problems with constraints and on the stability of various 
finite element procedures. While convergence of special 
types of finite element strategies such as mixed methods and 
hybrid methods had been attemDted in the earlv 1970’s (e.g. 
dDENI1973]), the BREZZI iesults, and th: rnethodi~gf 
BABUSKA for constrained problems, provided a general 
framework for sudying virtually all mixed and hybrid finite 
elements (e.g. RAVIART r197.51, RAVIART and THOMAS 
[1977], BABUSKA, ODEN and LEE [1977]). 

The penetrating work of SCHATZ and WHALBIN 
[1976] on interior estimates and problems represented 
notable contributions to the growing mathematical theory of 
finite elements. The important work of DOUGLAS and 
DUPONT (e.g. [ 19701, [ 19731; DUPONT [ 19731) on finite 
element methods for parabolic problems and hyperbolic 
problems must be mentioned along with the idea of elliptic 
projections of WHEELER [ 19731 which provided a useful 
technique for deriving error bounds for time-dependent 
problems. 

The 1970’s also represented a decade in which the 
generality of finite element methods began to be appreciated 
over a large portion of the mathematics and scientific 
community and it was during this period that significant 
applications to highly nonlinear problems were made. The 
fact that very general nonlinear phenomena in continuum 
mechanics, including problems of finite deformation of 
solids and of flow of viscous fluids could be modeled by 
finite elements and solved on existing computers was 
demonstrated in the early seventies (e.g. ODEN [1972]), 
and, by the end of that decade, several “general purpose” 
finite element programs were in use by engineers to treat 
broad classes of nonlinar problems in solid mechanics and 
heat transfer. The mathematical theory for nonlinear 
problems also was advanced in this period, and the important 
work of FALK [ 19741 on finite element approximations of 
variational inequalities should be mentioned. 

It is not too inaccurate to say that by 1980, a solid 
foundation for the mathematical theory of finite elements for 
linear problems had been established and that significant 
advances in both theory and application into nonlinear 
problems existed. The open questions that remain are 
difficult ones and their solution will require a good 
understanding of the mathematical properties of the method. 

4. PERSONAL REFLECTIONS AND 
ACKNOWLEDGEMENTS 

I remember very well my own introduction to finite elements. 
I had read thoroughly the work of AGYRIS and others on 
“matrix methods in structural mechanics” and had developed 
notes on the subject while teaching graduate courses in solid 
mechanics in the early 1960’s, but none of the literature of 
the day had much impact on my university research at the 
time, if the research of anyone in the university community. 
The aircraft industry was actively developing the subject 
during this period and was far ahead of universities in 
studying and implementing these methods. 

Then, in 1963, I had the good fortune to enter the 
aerospace industry for a brief period of time and to meet and 
begin joint work with GILBERT BEST, who had been 
charged with the responsibility of developing a large 
general-purpose finite element code for use in aircraft 
structural analysis. Only the two of us worked on the project, 
but by fall 1963 we had produced some quite general results 
and one of the early working codes on finite elements. This 

code had features in it that were not fully duplicated for more 
than a decade. I still have copies of our elaborate report on 
that work (BEST and ODEN [ 19631). 

It was BEST who demonstrated to me the strength and 
versatility of the method. In our work, noted above, we 
developed mixed methods, assumed stress methods, hybrid 
methods, we explored algorithms for optimization problems, 
nonlinear problems, bifurcation and vibration problems, and 
did detailed tests on stability and convergence of various 
methods by numerical experimentation. We developed finite 
elements for beams, plates, shells, for composite materials, 
for three-dimensional problems in elasticity, for thermal 
analysis, and linear dynamic analysis. Some of our methods 
were failures; most were effective and useful. Since 
convergence properties and criteria were not to come on the 
scene for another decade, our only way to test many of the 
more complex algorithms was to code them and compute 
solutions for test problems. 

I went on to return to academia in 1964 and among my 
first chores was to develop a graduate course on finite 
element methods. At the same time, I taught mathematics and 
continuum mechanics, and it became clear to me that finite 
elements and electronic computing offered hope of 
transforming nonlinear continuum mechanics from a 
qualitative arid academic subject into something useful in 
modem scientific computing and engineering. Toward this 
end, I began work with graduate students in 1965 that led to 
successful numerical analyses of problems in finite-strain 
elasticity (1965, 1966), elastoplasticity (1967), 
thermoelasticity (1967), thermoviscoelasticity (1969), and 
incompressible and compressible viscous fluid flow (1968, 
1969). These works, many summarized in ODEN [1972], 
include early (perhaps the first) uses of Discrete-Kirchhoff 
elements, incremental elasto-plastic algorithms, 
conjugate-gradient methods for nonlinear finite element 
systems, continuation methods, dynamic relaxation schemes, 
Taylor-Gale&n algorithms (then called “finite-element based 
Lax-We&off schemes”), primitive-variable formulations in 
incompresible flow, curvilinear elements, and penalty 
formulations; all these subjects have been resurected in more 
recent times and have been studied in far more detail and 
better style and depth than was possible in the 1960’s. 

While my later work, work in the ‘70’s and ‘SO’s, was 
influenced by the competent mathematicians (and friends) 
who developed the subject during the period (BABUSKA, 
CIARLET, STRANG, DOUGLAS, NITSCHE, and many 
others), the work and guidance of G. BEST was basic to 
may interest in this subject, and I dedicate this note to him. 

I should also add that portions of this paper are 
excerpts from an article to appear in the Handbook of 
Numerical Analysis, edited by J.L. LIONS and P.G. 
CIARLET, North Holland Publishing Co., Amsterdam. I am 
grateful to North Holland for granting permission to use this 
material in the present volume. 

SELECTED BIBLIOGRAPHY 

ARGYRIS, J.H. [1954]: “Energy Theorems and Structural 
Analysis”, Aircraft Engineering, Vol. 26, pp. 
347-356 (Oct.), 383-387, 394 (Nov.) 

ARGYRIS, J.H. [1955]: “Energy Theorems and Structural 
Analysis”, Aircraft Engineering, Vol. 27, pp. 
42-58 (Feb.), 80-94 (March), 125-134 (April), 
145-158 fMav1 

ARGYRIS, J.H. (19881: “Continua and Discontinua”, 
Proceedinas, Conference on Matrix Methods in 
Structural”Mecha&, Preziemiencki et al. (Eds.), 
AFFDL-TR-66-80, (Oct. 26-28, 1965), 
Wright-Patterson AFB, Ohio, pp. 1 l-190. 

128 



AUBIN, J.P. [1967]: “Behavior of the Error of the 
Approximate Solutions of Boundary-Value 
Problems for Linear Elliptic Operators by 
Gale&in’s Method and Finite Differences”, Annali 
della Scuola Normale di Pisa, Series 3, Vol. 21, 
pp. 599-637. 

AZIZ, A.K. [1972]: Editor of The Mathematical 
Foundations of the Finite Element Method 
with Applications to Partial Differential 

g Equations, Academic Press, NY. 
BABUSKA, I, J.T. ODEN, and J.K. LEE [1977]: 

“Mixed-Hybrid Finite Element Approximations of 
Second-Order Elliptic Boundary-Value Problems”, 
Computer Methods in Applied Mechanics and 
Engineering, Vol. 11, pp. 175-206. 

BABUgKA, I. [1976]: “Finite Element Methods for 
Domains with Corners”, Computing, Vol. 6, pp. 

. . 264-273. 
BABUSKA, I., and A.K. AZIZ [1972]: “Survey Lectures 

on the Mathematical Foundation of the Finite 
Element Method”, Aziz, A.K. Ed., The 
Mathematical Foundation of the Finite 
Element Method with Applications to 
Partial Differential Equations, Academic 
Press, N.Y., pp. 5-359. 

BABUgKA, I. [1971]: “Error Bounds for the Finite Element 
Method”, 
322-333. 

Numerische Math., Vol. 16, pp. 

BEST, G., and J.T. ODEN [1963]: “Stiffness Matrices for 
Shell-Type Structures”, Engineering Research 
Report No. 233, General Dynamics, Ft. Worth, 
Texas. 

BRAMBLE, J.H., and M.ZLAMAL [1970]: “Triangular 
Elements in the Finite Element Method”, 
Mathematics of Computation, Vol. 24, No. 112, 
pp. 809-820. 

BREZZI, F. [1974]: “On the Existence, Uniqueness, and 
Approximation of Saddle-Point Problems Arising 
from Lagrange Multipliers”, Revue Francaise 
d’Automhtique, Info;matique et Rechkche 
Ooerationelle. 8-R2. DD. 129-151. 

BOGNER,sF.K., R.L.’ FOX:‘and L.A. SCHMIT, Jr. 
[ 19661: “The Generation of Interelement, 
Compatible Stiffness and Mass Matrices bv the 
Use of Interpolation Formulas”, Proceed&s, 
Conference on Matrix Methods in Structural 
y9$t;Jics, Przemieniecki et al. (Eds.), pp. 

CIARLET, P.G.’ [ 19681: “An O(h2) Method for a 
Non-Smooth Boundary-Value Problem, 
Aequationes Math., Vol. 2, pp. 39-49. 

CIARLET, P.G., and P.A. RAVIART [1972a]: “General 
Lagrange and Hermite Interpolation in IR” with 
Applications to the Finite Element Method”, 
Archive for Rational Mechanics and Analysis, 
Vol. 46, pp. 177-199. 

CIARLET, P.G., and P.A. RAVIART [1972b]: 
“Interpolation Theory over Curved Elements with 
Applications to Finite Element Methods”, 
Computer Methods in Applied Mechanics and 
Engineering, pp. 217-249. 

CIARLET, P.G., and P.A. RAVIART [1972c]: “The 
Combined Effect of Curved Boundaries and 
Nuermical Integration in Isoparametric Finite 
Element Methods”, in The Mathematical 
Foundations of the Finite Element Method 
with Applications to Partial Differential 
Equations, Ed. A.K. Aziz, Academic Press, 
N.Y., pp. 409-474. 

CLOUGH, R.W. [1960]: “The Finite Element Method in 

Plane Stress Analysis”, Proceedings 2nd ASCE 
Conference on Electronic Computation. 

COURANT, R. [1943]: “Variational Methods for the 
Solution of Problems of Equilibrium and 
Vibration”, Bull. Am. Math. Sot., Vol. 49, l-23. 

DOUGLAS, J. and T. DUPONT [ 19731: “Superconvergence 
for Galerkin Methods for the Two- Point 
Boundary Problem via Local Projections”, 
Numerische Math., Vol. 21, pp. 220-228. 

DOUGLAS, J. and T. DUPONT [1970]: “Galerkin Methods 
for Parabolic Problems”, SIAM J. Numerical 
Analysis, Vol. 7, No. 4, pp. 575-626. 

DUPONT. T. [1973]: “L2-Estimates for Galerkin Methods 
for Second-Order Hyperbolic Equations, SIAM J. 
Numerical Analysis, Vol. 10, pp. 880-889. 

ERGATOUDIS, I, B.M. IRONS, and O.C. ZIENKIEWICZ 
[1966]: “Curved Isoparametric Quadrilateral Finite 
Elements”, Int. J. Solids and Structures, Vol. 4, 
pp. 31-42. 

FALK, S.R. [1974]: “Error Estimates for the Approximation 
of a Class of Variational Inequalities”, 
~6cxh;~atics of Computation, Vol. 28, pp. 

FENG KANG [19&l: “A Difference Formulation Based on 
the Variational Principle” (in Chinese), Appl. 
Mathematics and Comp. Mathematics, Vol. 2, No. 
4, pp. 238-262. 

HERRMANN, L.R. 119661: “A Bending Analysis for 
Plates” Proceedings, Conference on Matrix 
Methods in Structural Mechanics, Przemieniecki et 
al. (Ed%), DP. 577. 

HRENNIKOFF, H. [1941]: “Solutions of Problems in 
Elasticity by the Framework Method”, J. Appl. 
Mech., A 169-175. 

. . 

IRONS, B., and A. RAZZAQUE [1972]: “Experience with 
the Patch Test for Convergence of Finite 
Elements”. in The Mathematical Foundations 
of the ‘Finite Element Method with 
Applications to Partial Differential 
Equations, Ed. A.K. Aziz, Academic Press, 
N.k., pp. 557-587. 

IRONS, B. [1970]: “A Frontal Solution Program for Finite 
Element Analysis”, Int. J. Num. Meth’s. Eng., 
vol. 2. No. 1. DD. 5-32. 

IRONS, B. [196&l: “En&.ering Applications of Numerical 
Integration in Stiffness Methods”, AIAA Journal, 
Vol. 4, No. II, pp. 2035-3037. 

JOHNSON, M.W., Jr., and McLay, R.W. [1968]: 
“Convergence of the Finite Element Method in the 
Theory of Elasticity”, J. Appl. Mech., Series E, 
Vol. 3, 5, No. 2, pp. 274-278. 

KRON, G. [19.53]: “A Set of Principles to Interconnect the 
Solutions of Physical Systems”, J. Appf. Phys., 
24, 965980. - - 

._ - 

KRON. G. 119391: Tensor Analvsis of Networks. 
Johh Wiley and Sons, New ?ork. 

LEIBNIZ, G. [1962]: G.W. Leibniz Mathematische 
Schriften, Ed. C. Gerhardt, pp. 290-293, G. 
Olms Verlagsbuchhandlung. 

LEVY, S. [1953]: “Structural Analysis and Influence 
Coefficients for Delta Wings”, J. Aeronautical 
SC., Vol. 20. 

McHENRY, D. [ 19431: “A Lattice Analogy for the Solution 
of Plane Stress Problems, J. Inst. Civ. Eng., 21, 
59-82. 

NITSCHE, J.A. [1970]: “Lineare Spline-Funktionen und die t 
Methoden von Ritz fiir Elliptische 
Randwertprobleme”, Archive for Rational 
Mechanics and Analysis, Vol. 36, pp. 348-355. 

NITSCHE, J.A. [1963]: “Ein Kriterium fiir die 
Quasi-Optimalitgt des Ritzschen Verfahrens”, 

129 



Numerische Math., Vol. 11, pp. 34b-345. 
ODEN, J.T. [1976]: Finite Elements of Nonlinear 

Continua, McGraw Hill Book Co., New York 
ODEN, J;T. [1972]: “Some Contibutions to the Mathematical 

Theory of Mixed Finite Element Approximations”, 
in Theory and Practice in Finite Element 
Structural Analysis, Yamada, Y, et al. Eds., 
Univ. of Tokyo Press, Tokyo, pp. 3-23. 

ODEN, J.T. [1970]: “A Finite Element Analogue of the 
Navier-Stokes Equations”, J. Eng. Mech. Div., 
ASCE, Vol. 96, No. EM 4. 

ODEN, J.T. [1969]: “A General Theory of Finite Elements; 
II. Applications”, Int. J. Num. Meth’s. Eng., Vol. 
1, No. 3, pp. 247-259. 

ODEN, J.T., and SOMOGYI, D. 119681: “Finite Element 
Applications in Fluid Dynamics”, J. Eng. Mech. 
Div., ASCE, Vol. 95, No. EM 4, pp. 821826. 

OLIVEIRA, Arantes E. [ 19691: “Theoretical Foundation of 
the Finite Element Method”, Int. J. Solids and 
Structures”, Vol. 4, pp. 926-952. 

PESTEL, E. [1966]: “Dynamic Stiffness Matrix Formulation 
by Means of Hermitian Polynomials”, 
Proceedings, Conference on Matrix Methods in 
Structural Mechanics, Przemieniecki et al. (Eds.), 
pp. 479-502. 

PIAN, T.H.H. [ 19661: “Element Stiffness Matrices for 
Boundary Compatibility and for Prescribed 
Stresses. Proceedings. Conference on Matrix 
Methads’in Structurariechanics, Przemieniecki et 
al. (Eds.), pp. 455-478. 

P0LYA.G. [1952]: ” Sur une Interpretation de la Methode 
des Differences Finies qui Peut Fournir des 
Bornes Superieures ou Inferieures”, Compt. 
Rend., 235; 995. 

PRZEMIENIECKI, J.S., R.M. BADER, W.F., BOZICH, 
J.R. JOHNSON. and W.J. MYKYTOW (Eds.) 
[ 19661: Proceedings, Conference on iatrix 
Methods in Structural Mechanics, 
AFFDL-TR-66-80, (Oct. 26-28, 1965), 
Wright-Patterson AFB, Ohio. 

RAVIART, P.A., and THOMAS, J.M. [1977]: “A Mixed 

Finite Element Method for 2nd-Order Elliptic 
Problems”, Proceedings, Symposium on the 
Mathematical Aspects of the Finite Element 
Methaak. - - 

RAVIART, P.A. [1975]: “Hybrid Methods for Solving 
2nd-Order Elliptic Problems”, in Topics in 
Numerical Analvsis. Miller. J.H.H. (Ed.). 
Academic Press, N.?., pp. 141-155. ’ ” 

SCHATZ, A.H., and L.B. WAHLBIN [1978]: “Maximum 
Norm Estimates in the Finite Element Method on 
Polygonal Domains, Part I”, Math. Comput., Vol. 
32, No. 114, pp. 73-109. 

SCHELLBACH, K. [1851]: “Probleme der 
Variationsrechnung”, J. Reine Angew. Math., 41, 
293-363. 

SYNGE, J.L. [1957]: The Hypercircle Method in 
Mathematical Physics, Cambridge Univ. 
Press, Cambridge. 

STRANG, G. [1972]: “Variational Crimes in the Finite 
Element Method”, in The Mathematical 
Foundations of the Finite Element Method 
with Applications to Partial Differential 
Equations, Ed. A.K. Aziz, Academic Press, 
N.Y. 

TAIG, I.C. [1961]: “Structural Analysis by the Matrix 
Displacement Method”, English Electrical Aviation 
Ltd: Report, S-O-17. - 

TURNER, M.J., CLOUGH, R.W., MARTIN, H.C., 
TOPP, L.J. [1956]: “Stiffness and Deflection 
Analysis of Complex Structures”, J. Aer. Sci., 
80.5. 

WHEELER, M.F. [1973]: “A-Priori L2-Error Estimates for 
Galerkin Approximations to Parabolic Partial 
Differential Equations”, SIAM J. Num. Analysis, 
Vol. II, No. 4, pp. 723-759. 

WILLIAMSON, F. [1980]: “A Historical Note on the Finite 
Element Method”, Int. J. Num. Meth’s. Eng., 15, 
930-934. 

ZLAMAL, M. [196&l: “On the Finite Element Method”, 
Numerische Math., Vol. 12, pp. 394-409. 

130 


