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1.1 WHAT IS THE FINITE ELEMENT METHOD?

The finite element method is a numerical analysis technique for obtaining
approximate solutions to a wide variety of engineering problems. Although
originally developed to study stresses in complex airframe structures, it has
since been extended and applied to the broad field of continuum mechanics.
Because of its diversity and flexibility as an analysis tool, it is receiving much
attention in engineering schools and in industry.

Although this brief comment on the finite element method answers the
question posed by the section heading, it does not give us the operational
definition we need to apply the method to a particular problem. Such an
operational definition—along with a description of the fundamentals of the
method—requires considerably more than one paragraph to develop. Hence
Part I of this book is devoted to basic concepts and fundamental theory. Before
discussing more aspects of the finite element method, we should first consider
some of the circumstances leading to its inception, and we should briefly con-
trast it with other numerical schemes.

In more and more engineering situations today, we find that it is neces-
sary to obtain approximate numerical solutions to problems rather than exact



4 MEET THE FINITE ELEMENT METHOD

closed-form solutions. For example, we may want to find the load capacity of
a plate that has several stiffeners and odd-shaped holes, the concentration of
pollutants during nonuniform atmospheric conditions, or the rate of fluid flow
through a passage of arbitrary shape. Without too much effort, we can write
down the governing equations and boundary conditions for these problems, but
we see immediately that no simple analytical solution can be found. The diffi-
culty in these three examples lies in the fact that either the geometry or some
other feature of the problem is irregular or “arbitrary.” Analytical solutions to
problems of this type seldom exist; yet these are the kinds of problems that
engineers are called upon to solve.

The resourcefulness of the analyst usually comes to the rescue and provides
several alternatives to overcome this dilemma. One possibility is to make sim-
plifying assumptions—to ignore the difficulties and reduce the problem to one
that can be handled. Sometimes this procedure works; but, more often than
not, it leads to serious inaccuracies or wrong answers. Now that computers
are widely available, a more viable alternative is to retain the complexities of
the problem and find an approximate numerical solution.

Several approximate numerical analysis methods have evolved over the
years; a commonly used method is the finite difference [1]1 scheme. The famil-
iar finite difference model of a problem gives a pointwise approximation to the
governing equations. This model (formed by writing difference equations for
an array of grid points) is improved as more points are used. With finite differ-
ence techniques we can treat some fairly difficult problems; but, for example,
when we encounter irregular geometries or an unusual specification of bound-
ary conditions, we find that finite difference techniques become hard to use.

Unlike the finite difference method, which envisions the solution region as
an array of grid points, the finite element method envisions the solution region
as built up of many small, interconnected subregions or elements. A finite ele-
ment model of a problem gives a piecewise approximation to the governing
equations. The basic premise of the finite element method is that a solution
region can be analytically modeled or approximated by replacing it with an
assemblage of discrete elements. Since these elements can be put together in
a variety of ways, they can be used to represent exceedingly complex shapes.

As an example of how a finite difference model and a finite element model
might be used to represent a complex geometrical shape, consider the turbine
blade cross section in Figure 1.1. For this device we may want to find the dis-
tribution of displacements and stresses for a given force loading or the distri-
bution of temperature for a given thermal loading. The interior coolant passage
of the blade, along with its exterior shape, gives it a nonsimple geometry.

A uniform finite difference mesh would reasonably cover the blade (the
solution region), but the boundaries must be approximated by a series of hori-
zontal and vertical lines (or “stair steps”). On the other hand, the finite element

1Numbers in brackets denote references at the end of the chapter.
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Figure 1.1 (a) Finite difference and (b) finite element discretizations of a turbine
blade profile.

model (using the simplest two-dimensional element—the triangle) gives a bet-
ter approximation to the region. Also, a better approximation to the bound-
ary shape results because the curved boundary is represented by straight lines
of any inclination. This example is not intended to suggest that finite element
models are decidedly better than finite difference models for all problems. The
only purpose of the example is to demonstrate that the finite element method
is particularly well suited for problems with complex geometries.

Still another numerical analysis method is the boundary element method
(boundary integral equation method) [2–4]. This method uses Green’s theorem
to reduce the dimensionality of the problem; a volume problem is reduced to
a surface problem, a surface problem is reduced to a line problem. The turbine
blade cross section example of Figure 1.1 would have no interior mesh, but
rather a mesh of connected points along the exterior boundary and a mesh of
connected points along the interior boundary. This method is computationally
less efficient than finite elements and is not widely used in industry. It is pop-
ular for acoustic problems [5] and is sometimes used as a hybrid method in
conjunction with finite elements.

1.2 HOW THE FINITE ELEMENT METHOD WORKS

We have been alluding to the essence of the finite element method, but now we
shall discuss it in greater detail. In a continuum2 problem of any dimension the
field variable (whether it is pressure, temperature, displacement, stress, or some
other quantity) possesses infinitely many values because it is a function of each
generic point in the body or solution region. Consequently, the problem is one
with an infinite number of unknowns. The finite element discretization proce-
dures reduce the problem to one of a finite number of unknowns by dividing

2 We define a continuum to be a body of matter (solid, liquid, or gas) or simply a region of space
in which a particular phenomenon is occurring.
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the solution region into elements and by expressing the unknown field vari-
able in terms of assumed approximating functions within each element. The
approximating functions (sometimes called interpolation functions) are defined
in terms of the values of the field variables at specified points called nodes or
nodal points. Nodes usually lie on the element boundaries where adjacent ele-
ments are connected. In addition to boundary nodes, an element may also have
a few interior nodes. The nodal values of the field variable and the interpo-
lation functions for the elements completely define the behavior of the field
variable within the elements.

For the finite element representation of a problem the nodal values of the field
variable become the unknowns. Once these unknowns are found, the interpola-
tion functions define the field variable throughout the assemblage of elements.

Clearly, the nature of the solution and the degree of approximation depend
not only on the size and number of the elements used but also on the inter-
polation functions selected. As one would expect, we cannot choose functions
arbitrarily, because certain compatibility conditions should be satisfied. Often
functions are chosen so that the field variable or its derivatives are contin-
uous across adjoining element boundaries. The essential guidelines for choos-
ing interpolation functions are discussed in Chapters 3 and 5. These are applied
to the formulation of different kinds of elements.

Thus far we have briefly discussed the concept of modeling an arbitrarily
shaped solution region with an assemblage of discrete elements, and we have
pointed out that interpolation functions must be defined for each element. We
have not yet mentioned, however, an important feature of the finite element
method that sets it apart from other numerical methods. This feature is the abil-
ity to formulate solutions for individual elements before putting them together
to represent the entire problem. This means, for example, that if we are treating
a problem in stress analysis, we find the force–displacement or stiffness char-
acteristics of each individual element and then assemble the elements to find
the stiffness of the whole structure. In essence, a complex problem reduces to
considering a series of greatly simplified problems.

Another advantage of the finite element method is the variety of ways in
which one can formulate the properties of individual elements. There are basi-
cally three different approaches. The first approach to obtaining element prop-
erties is called the direct approach because its origin is traceable to the direct
stiffness method of structural analysis. Although the direct approach can be
used only for relatively simple problems, it is presented in Chapter 2 because
it is the easiest to understand when meeting the finite element method for the
first time. The direct approach suggests the need for matrix algebra (Appendix
A) in dealing with the finite element equations.

Element properties obtained by the direct approach can also be determined
by the variational approach. The variational approach relies on the calculus of
variations (Appendix B) and involves extremizing a functional. For problems
in solid mechanics the functional turns out to be the potential energy, the com-
plementary energy, or some variant of these, such as the Reissner variational
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principle. Knowledge of the variational approach (Chapter 3) is necessary to
work beyond the introductory level and to extend the finite element method
to a wide variety of engineering problems. Whereas the direct approach can
be used to formulate element properties for only the simplest element shapes,
the variational approach can be employed for both simple and sophisticated
element shapes.

A third and even more versatile approach to deriving element properties
has its basis in mathematics and is known as the weighted residuals approach
(Chapter 4). The weighted residuals approach begins with the governing equa-
tions of the problem and proceeds without relying on a variational statement.
This approach is advantageous because it thereby becomes possible to extend
the finite element method to problems where no functional is available. The
method of weighted residuals is widely used to derive element properties for
nonstructural applications such as heat transfer and fluid mechanics.

Regardless of the approach used to find the element properties, the solution
of a continuum problem by the finite element method always follows an orderly
step-by-step process. To summarize in general terms how the finite element
method works we will succinctly list these steps now; they will be developed
in detail later.

1. Discretize the Continuum. The first step is to divide the continuum or
solution region into elements. In the example of Figure 1.1 the turbine blade
has been divided into triangular elements that might be used to find the tem-
perature distribution or stress distribution in the blade. A variety of element
shapes (such as those cataloged in Chapter 5) may be used, and different ele-
ment shapes may be employed in the same solution region. Indeed, when ana-
lyzing an elastic structure that has different types of components such as plates
and beams, it is not only desirable but also necessary to use different elements
in the same solution. Although the number and the type of elements in a given
problem are matters of engineering judgment, the analyst can rely on the expe-
rience of others for guidelines. The discussion of applications in Chapters 6–9
reveals many of these useful guidelines.

2. Select Interpolation Functions. The next step is to assign nodes to each
element and then choose the interpolation function to represent the variation of
the field variable over the element. The field variable may be a scalar, a vec-
tor, or a higher-order tensor. Often, polynomials are selected as interpolation
functions for the field variable because they are easy to integrate and differen-
tiate. The degree of the polynomial chosen depends on the number of nodes
assigned to the element, the nature and number of unknowns at each node,
and certain continuity requirements imposed at the nodes and along the ele-
ment boundaries. The magnitude of the field variable as well as the magnitude
of its derivatives may be the unknowns at the nodes.

3. Find the Element Properties. Once the finite element model has been
established (that is, once the elements and their interpolation functions have
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been selected), we are ready to determine the matrix equations expressing the
properties of the individual elements. For this task we may use one of the three
approaches just mentioned: the direct approach, the variational approach, or the
weighted residuals approach.

4. Assemble the Element Properties to Obtain the System Equations. To
find the properties of the overall system modeled by the network of elements
we must “assemble” all the element properties. In other words, we combine the
matrix equations expressing the behavior of the elements and form the matrix
equations expressing the behavior of the entire system. The matrix equations
for the system have the same form as the equations for an individual element
except that they contain many more terms because they include all nodes.

The basis for the assembly procedure stems from the fact that at a node,
where elements are interconnected, the value of the field variable is the same
for each element sharing that node. A unique feature of the finite element
method is that the system equations are generated by assembly of the individ-
ual element equations. In contrast, in the finite difference method the system
equations are generated by writing nodal equations. In Chapter 2 we demon-
strate how the assembly process leads to the system equations.

5. Impose the Boundary Conditions. Before the system equations are ready
for solution they must be modified to account for the boundary conditions of
the problem. At this stage we impose known nodal values of the dependent
variables or nodal loads. In Chapter 2 we will see examples of how nodal
boundary conditions are introduced.

6. Solve the System Equations. The assembly process gives a set of simulta-
neous equations that we solve to obtain the unknown nodal values of the problem.
If the problem describes steady or equilibrium behavior, then we must solve a set
of linear or nonlinear algebraic equations. In Chapter 10 we briefly discuss stan-
dard solution techniques for solving these equations. If the problem is unsteady,
the nodal unknowns are a function of time, and we must solve a set of linear
or nonlinear ordinary differential equations. We describe techniques for solving
time-dependent equations in Part II of the book in Chapters 6–9.

7. Make Additional Computations If Desired. Many times we use the solu-
tion of the system equations to calculate other important parameters. For exam-
ple, in a structural problem the nodal unknowns are displacement components.
From these displacements we calculate element strains and stresses. Similarly,
in a heat-conduction problem the nodal unknowns are temperatures, and from
these we calculate element heat fluxes.

1.3 A BRIEF HISTORY OF THE METHOD

Although the label finite element method first appeared in 1960, when it was
used by Clough [6] in a paper on plane elasticity problems, the ideas of finite
element analysis date back much further. In fact, the questions Who originated
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the finite element method? and When did it begin? have three different answers
depending on whether one asks an applied mathematician, a physicist, or an
engineer. All of these specialists have some justification for claiming the finite
element method as their own, because each developed the essential ideas inde-
pendently at different times and for different reasons. The applied mathemati-
cians were concerned with boundary value problems of continuum mechan-
ics; in particular, they wanted to find approximate upper and lower bounds for
eigenvalues. The physicists were also interested in solving continuum prob-
lems, but they sought means to obtain piecewise approximate functions to rep-
resent their continuous functions. Faced with increasingly complex problems
in aerospace structures, engineers were searching for a way in which to find
the stiffness influence coefficients of shell-type structures reinforced by ribs
and spars. The efforts of these three groups resulted in three sets of papers
with distinctly different viewpoints.

The first efforts to use piecewise continuous functions defined over triangular
domains appear in the applied mathematics literature with the work of Courant
[7] in 1943. Courant used an assemblage of triangular elements and the principle
of minimum potential energy to study the St. Venant torsion problem.

In 1959 Greenstadt [8], motivated by a discussion in the book by Morse
and Feshback [9], outlined a discretization approach involving “cells” instead
of points; that is, he imagined the solution domain to be divided into a set of
contiguous subdomains. In his theory he describes a procedure for representing
the unknown function by a series of functions, each associated with one cell.
After assigning approximating functions and evaluating the appropriate varia-
tional principle to each cell, he uses continuity requirements to tie together the
equations for all the cells. By this means he reduces a continuous problem to
a discrete one. Greenstadt’s theory allows for irregularly shaped cell meshes
and contains many of the essential and fundamental ideas that serve as the
mathematical basis for the finite element method as we know it today.

As the popularity of the finite element method began to grow in the engi-
neering and physics communities, more applied mathematicians became inter-
ested in giving the method for a firm mathematical foundation. As a result, a
number of studies were aimed at estimating discretization error, rates of con-
vergence, and stability for different types of finite element approximations.
These studies most often focused on the special case of linear elliptic boundary
value problems. Since the late 1960s the mathematical literature on the finite
element method has grown more than in any previous period. In this book we
shall not study the rigorous mathematical basis of the finite element method,
because such knowledge is unnecessary for most practical applications. Instead
we shall call upon pertinent results when they are needed.

While the mathematicians were developing and using finite element con-
cepts, the physicists were also busy with similar ideas. The work of Prager
and Synge [10] leading to the development of the hypercircle method is a key
example. As a concept in function space, the hypercircle method was originally
developed in connection with classical elasticity theory to give its minimum
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principles a geometric interpretation. Outgrowths of the hypercircle method
(such as the one suggested by Synge [11]) can be applied to the solution of
continuum problems in much the same way as finite element techniques can
be applied.

Physical intuition first brought finite element concepts to the engineering
community. In the 1930s when a structural engineer encountered a truss prob-
lem such as the one shown in Figure 1.2a, he immediately knew how to solve
for component stresses and deflections as well as the overall strength of the
unit. First, he would recognize that the truss was simply an assembly of rods
whose force–deflection characteristics he knew well. Then he would combine
these individual characteristics according to the laws of equilibrium and solve
the resulting system of equations for the unknown forces and deflections for
the overall system.

This procedure worked well whenever the structure in question had a finite
number of interconnection points, but then the following question arose: What
can we do when we encounter an elastic continuum structure such as a plate
that has an infinite number of interconnection points? For example, in Figure
1.2b, if a plate replaces the truss, the problem becomes considerably more diffi-
cult. Intuitively, Hrenikoff [12] reasoned that this difficulty could be overcome
by assuming the continuum structure to be divided into elements or structural
sections (beams) interconnected at only a finite number of node points. Under
this assumption the problem reduces to that of a conventional structure, which
could be handled by the old methods. Attempts to apply Hrenikoff’s “frame-
work method” were successful, and thus the seed to finite element techniques
began to germinate in the engineering community.

Shortly after Hrenikoff, McHenry [13] and Newmark [14] offered further
development of these discretization ideas, while Kron [15, 16] studied topologi-
cal properties of discrete systems. There followed a ten-year spell of inactivity,

Figure 1.2 Example of (a) a truss and (b) a similarly shaped plate supporting the
same load.
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which was broken in 1954 when Argyris and his collaborators [17–21] began to
publish a series of papers extensively covering linear structural analysis and effi-
cient solution techniques well suited to automatic digital computation.

The actual solution of plane stress problems by means of triangular elements
whose properties were determined from the equations of elasticity theory was
first given in the now classical 1956 paper of Turner, Clough, Martin, and Topp
[22]. These investigators were the first to introduce what is now known as the
direct stiffness method for determining finite element properties. Their studies,
along with the advent of the digital computer at that time, opened the way to
the solution of complex plane elasticity problems. After further treatment of the
plane elasticity problem by Clough [6] in 1960, engineers began to recognize
the efficacy of the finite element method. In a 1980 paper Clough [23] gives
his personal account of the origins of the method, describing the sequence of
events from the original efforts at Boeing that produced reference 18 to the
paper [6] in which he introduced the label of the finite element method.

In 1965 the finite element method received an even broader interpretation
when Zienkiewicz and Cheung [24] reported that it is applicable to all field
problems that can be cast into variational form. During the late 1960s and early
1970s (while mathematicians were working on establishing errors, bounds, and
convergence criteria for finite element approximations) engineers and other
practitioners of the finite element method were also studying similar concepts
for various problems in the area of solid mechanics.

In the years since 1960 the finite element method has received widespread
acceptance in engineering. Thousands of papers, hundreds of conferences, and
many books appeared on the subject. The number of books published over
this period illustrates the exponential growth. The first edition of this book in
1974 lists fewer than ten finite element books. In the second edition in 1982
we list fewer than 40 finite element books. When we wrote the third edition
in the early 1990s, finite element books were so numerous that we were no
longer able to list them. A 1991 bibliography [25] lists nearly 400 finite element
books in English and other languages. The bibliography also identifies over
200 international finite element symposia, conferences, and short courses that
took place between 1964 and 1991. A recent web search on the phrase “finite
element*” using the AltaVista search engine yielded almost 200,000 pages of
results. Clearly, these trends show the amazingly rapid worldwide growth of
the method. Table 1.1 shows a time line of developments in computer hardware
and software compared with developments in finite elements.

1.4 RANGE OF APPLICATIONS

Applications of the finite element method divide into three categories, depend-
ing on the nature of the problem to be solved. In the first category are the
problems known as equilibrium problems or time-independent problems. The
majority of applications of the finite element method fall into this category.
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TABLE 1.1 Time Line of Important Developments

Computer Technology Year Analysis Technology

1941 Framework Method.
1942
1943 Courant studies St. Venant torsion.
1944 Equivalent Circuits of Electric

Field.
1945

ENIAC 1 at University of Illinois. 1946
Transistor invented. 1947 Hypercircle Method.

1948
1949
1950
1951
1952

IBM’s first general purpose 1953
computer.

FORTRAN created. 1954 Argyris publishes efficient solution
techniques.

1955
1956 Classic paper solving plane

stress.
1957
1958
1959 Greenstadt’s discretization approach.
1960 Phrase finite element is coined.

First commercial integrated 1961
circuit.

1962
Mouse is patented. 1963
CDC introduces CDC6600 with 1964 First commercial offering of finite

60-bit words. element software.
BASIC created. First graphics

tablet.

For the solution of equilibrium problems in the solid mechanics area, we need
to find the displacement distribution and the stress distribution for a given
mechanical or thermal loading. Similarly, for the solution of equilibrium prob-
lems in fluid mechanics, we need to find pressure, velocity, temperature, and
density distributions under steady-state conditions.

In the second category are the so-called eigenvalue problems of solid and
fluid mechanics. These are steady-state problems whose solution often requires
the determination of natural frequencies and modes of vibration of solids
and fluids. Examples of eigenvalue problems involving both solid and fluid
mechanics appear in civil engineering when the interaction of lakes and dams
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is considered and in aerospace engineerng when the sloshing of liquid fuels in
flexible tanks is involved. Another class of eigenvalue problems includes the
stability of structures and the stability of laminar flows.

In the third category is the multitude of time-dependent or propagation prob-
lems of continuum mechanics. This category is composed of the problems that
result when the time dimension is added to the problems of the first two cate-
gories.

Just about every branch of engineering is a potential user of the finite ele-
ment method. But the mere fact that this method can be used to solve a par-
ticular problem does not mean that it is the most practical solution technique.
Often several attractive techniques are available to solve a given problem. Each
technique has its relative merits, and no technique enjoys the lofty distinction
of being “the best” for all problems.

The range of possible applications of the finite element method extends to all
engineering disciplines, but civil, mechanical, and aerospace engineers are the
most frequent users of the method. In addition to structural analysis other areas
of applications include heat transfer, fluid mechanics, electromagnetism, biome-
chanics, geomechanics, and acoustics. The method finds acceptance in multidis-
ciplinary problems where there is a coupling between two or more of the dis-
ciplines. Examples include thermal structures where there is a natural coupling
between heat transfer and displacements, as well as aeroelasticity where there is
a strong coupling between external flow and the distortion of the wing.

1.5 COMMERCIAL FINITE ELEMENT SOFTWARE

The first commercial finite element software made its appearance in 1964. The
Control Data Corporation sold it in a time-sharing environment. No preproces-
sors (mesh generators) were available, so engineers had to prepare data element
by element and node by node. A keypunched IBM (Hollerith) card represented
each element and each node. Batch-mode line plots were used to check geom-
etry and to postprocess results. Turnaround occurred in days for simple prob-
lems. Only linear problems could be addressed. Nevertheless it represented a
breakthrough in the complexity of the problem that could be handled in a prac-
tical time frame. Later, finite element software could be purchased or leased to
run on corporate computers. Typically the corporate computer had been pur-
chased to process financial data, so that computer availability to the engineer
was restricted, perhaps to nights and weekends. The introduction of worksta-
tions circa 1980 brought several breakthrough advantages. Interactive graph-
ics were practical and availability of computer power to solve problems on a
dedicated basis was achieved. Finally, the introduction of personal computers
(PCs) powerful enough to run finite element software provides extremely cost
effective problem solving.

Today we have hundreds of commercial software packages to choose from.
A small number of these dominate the market. It is difficult to make compar-
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TABLE 1.2 Leading Commercial Finite Element Software Companies

Company Name Product Name Web Site

Hibbitt, Karlsson & Sorensen ABAQUS www.hks.com
Ansys, Incorporated ANSYS www.ansys.com
Structural Data Research Corp. SDRC-Ideas www.sdrc.com
Parametric Technology, Inc. RASNA www.ptc.com
MSC Software Corp. MSC/ NASTRAN www.mscsoftware.com

isons purely on a finite element basis, because the software houses are often
diversified. Data from Daratech suggest that the companies listed in Table
1.2 are dominant providers of general-purpose finite element software. Choice
among these, or other providers, involves a complex set of criteria, usually
including: analysis versatility, ease of use, efficiency, cost, technical support,
training, and even the labor pool locally available to use particular software.

In contrast to the early days, we can now use computer-aided design (CAD)
software or solid modelers to generate complex geometries, at either the com-
ponent or assembly level. We can (with some restrictions) automatically gener-
ate elements and nodes, by merely indicating the desired nodal density. Soft-
ware is available that works in conjunction with finite elements to generate
structures of optimum topology, shape, or size. Nonlinear analyses includ-
ing contact, large deflection, and nonlinear material behavior are routinely
addressed.

1.6 THE FUTURE OF THE FINITE ELEMENT METHOD

Our brief look at the history of the finite element method shows us that its
early development was sporadic. The applied mathematicians, physicists, and
engineers all dabbled with finite element concepts, but they did not recognize
at first the diversity and the multitude of potential applications. After 1960
this situation changed and the tempo of development increased markedly. By
1972 the finite element method had become the most active field of interest in
the numerical solution of continuum problems. It remains the dominant method
today. Part of its strength is that it can be used in conjunction with other meth-
ods. Software components such as solvers can be used in a modular fashion,
so that improvements in diverse areas can be rapidly assimilated. Having said
that, we can still remark that major innovations in technology, for example, p-
adaptive finite elements (Chapter 10), often take as long as a decade to move
from academia to commercial practice. Therefore, academic publications are
the best leading indicator of what’s to come in commercial finite elements.
Certainly, improved iterative solvers, meshless formulations, better error indi-
cators, and special-purpose elements are on the list of things to come.

Although the finite element method can be used to solve a very large num-
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ber of complex problems, there are still some practical engineering problems
that are difficult to address because we lack an adequate theory of failure, or
because we lack appropriate material data. This is not a finite element problem
per se, but is of serious concern to any engineer who wants to supplant testing
with analysis. (The use of analysis usually permits faster design turnaround,
the exploration of widely varying environments, and the use of optimization
tools. Furthermore, analysis is usually significantly cheaper than building pro-
totypes and testing them.) The mechanical and thermal properties of many
nonmetallic materials are difficult to acquire, especially over a range of tem-
peratures. Fatigue data is often lacking. Fatigue failure theory often lags our
ability to calculate changing complex stress states. Data on friction is often dif-
ficult to obtain. Calculations based on the assumption of Coulomb friction are
often unrealistic. There is a general paucity of thermal data, especially regard-
ing absorptivity and emissivity needed for radiation calculations. The World
Wide Web should offer a means of placing material properties into accessible
databases.

From a practitioner’s viewpoint, the finite element method, like any other
numerical analysis technique, can always be made more efficient and easier to
use. As the method is applied to larger and more complex problems, it becomes
increasingly important that the solution process remain economical. The rapid
growth in engineering usage of computer technology will undoubtedly continue
to have a significant effect on the advancement of the finite element method.
Improved efficiency achieved by computer technology advancements such as
parallel processing will surely occur. Since the mid 1970s interactive finite
element programs on small but powerful personal computers and workstations
have played a major role in the remarkable growth of computer-aided design.
With continuing economic pressures to improve engineering productivity, this
decade will see an accelerated role of the finite element method in the design
process. This methodology is still exciting and an important part of an engi-
neer’s tool kit.
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