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QUADRATURE RULES FOR BRICK BASED FINITE ELEMENTS

BRUCE M. IRONS

University of Wales, Swansea

Already isoparametric hexahedral (brick) finite elements with 20 or 32 nodes! are highly com-
petitive in practice,® despite the observation that 50 per cent of the total computation is often
absorbed in numerically integrating the coefficients of the equations.? This cost is approximately
halved®> by a method based, essentially, on using a 9x9 [D] matrix which operates on
culox, Culdy, uliz, Cvfcx, ... dw/dz—a technique which, moreover, is more general than the
classical ¥ BT DB x constant algorithm.*

The purpose of this note is to demonstrate how one may further halve the cost by using simpler
integration formulae having the same order of truncation error. We compare certain Gaussian-
type rules, some of them new and all of them designed to integrate complete polynomials, with the
corresponding product-Gauss rules which are normally used.” The former integrate correctly
3 Cypxtyizh i+ j+k<n, while the latter integrate correctly a much larger number of terms,
those with 7,/, k <n. All these rules have been checked by computer. They are now presented in
the form:

fl fl Jl fx,p,z)dxdydz = A £(0,0,0) (1 term)
s +Bs{ /(= 5,0,0)+/(b,0,0)+/(0, —b,0) +... 6 terms}
+CAf(—c, —c, —0)+f(c, —c, —¢)+... 8 terms)
+ Dyl f(—d, —d,0)+... +/(d,0, — d)+... 12 terms}

The rules are listed below, labelled according to the number of points they use.

Rule & (i.e. a 6-pointrule). B = 8/6, b6 = 1. That is, we take the mean of the six mid-face values.
This rule is accurate to the complete cubic in x,y, z, i.e. 20 terms. A multiplying constant and
x, Y, z are freely chosen at 6 points, i.e. 24 constants are chosen. The efficiency is defined as 20/24
so that the rule is nearly Gaussian.

This is an excellent rule. Since the mid-face values are so representative, we should evidently
calculate stresses at mid-face in brick elements, rather than at corners—which are the worst
possible positions!

Rule 8G (i.e. the 2 x 2 x 2 product—Gauss rule). Included for comparison with Rule 6.

Rule 14 with Bg = 0-886426593, b = 0-795822426, Cgz = 0-335180055 and ¢ = 0-758786911.
Accurate to the complete quintic, like Rule 27G below. Another excellent rule, with precisely
Gaussian efficiency (56/56), small multiplying constants, and moderately small sextic errors.
(The good efficiency is surprising when the term A, is absent.)

Rule 15a with A, =1-564444444, Bg = 0-355555556, b =1,
Cy = 0-537777778 and ¢ = 0-674199862.

A slightly less effective rule, whose surplus constant is chosen to make it modular with Rules 1 and
6 above, allowing a flexible strategy.
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Rule 15b with A, = 0-712137436, B, = 0-686227234, b = 0-848418011, C; = 0-396312395 and
¢ = 0-727662441. Another rule with surplus constant, now modular with Rule 27a below.

Rule 19 with - A, = 2-074074074, By = —0-24691358, D, = 0-617283951

and
b =d = 0-774596669.

A rule previously recommended® but apparently much less efficient (56/76).

Rule 27a with A, = 0-788073483, By = 0-499369002, b = 0-848418011, C;= 0-478508449,
¢ = 0652816472, Dy, = 0-032303742 and d = 1-106412899. A super-efficient rule (120/108)
correct to complete heptic like Rule 64G below. (This is unusual among Gaussian rules in that it
has sampling points outside the domain.)

Rule 27G (i.e. the 3 x 3 x 3 product—Gauss rule). Included for comparison with Rule 14 etc.

Rule 64G (i.e. the 4 x 4 x 4 product—Gauss rule). Included for comparison with Rule 27a.

Table I. Errors of rules

Quartic terms Sixth degree terms Eighth degree terms

Rule
NO. x4 x2 y2 XG X4 y2 . x‘.! y’l 22 xS XG y2 x4 y4 x4 y2 ZQ

6 i1 -0-89

8G ~-071 0 -85 ~024 0

14 0 0 —-018 ~0-02 0-22

15a 0 o —-003 ~013 011

15b 0 0 —-016 —006 017

19 0 0 —-0-18 0 -0-30 -031 —006 0 —~0-18
27a 0 0 0 0 0 0-09 004 010 —-0-05
27G 0 0 —-0-18 0 0 -031 —006 0 0
64G 0 0 0 0 0 ~0-05 ¢ 0 ¢
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