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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations

Swiss Mathematician and physicist Leonhard Euler
discovered the wave equation in three space dimensions.

Leonhard Euler (1707 — 1783) was a
pioneering Swiss mathematician and
physicist. He made important
discoveries in fields as diverse as
infinitesimal calculus and graph theory.
He is also renowned for his work in
mechanics, fluid dynamics, optics,
astronomy, and music theory

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations

The wave equation is an important second-order linear
partial differential equation for the description of waves —
as they occur in physics — such as sound waves, light
waves and water waves.

It arises in fields like acoustics, electromagnetics, and fluid
dynamics.

A solution of the wave
equation in two dimensions
with a zero-displacement
boundary condition along the
entire outer edge.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations

Consider the motion of a rectangular membrane (in the
absence of gravity) using the two-dimensional wave
equation. Plots of the spatial part for modes are illustrated
below. i o2 s
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Two-Dimensional Wave Equations

Consider the motion of a rectangular membrane (in the
absence of gravity) using the two-dimensional wave
equation.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

The governing equations of motion that describe the pro-
pagation of waves in situations involving two independent
variables appear typically as

V-(kVu(x,y,t))—p%H(x,y,t):O in O
u=g(st) onT,
ka—u+a(s,t)u =q(st) on T,
on
u(x,y,0)=c(xy) in Q
ou(x,y,0)

=d(x,y) in Q

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Where Q is the interior domain, and I', and I', form the
boundary of the domain.

/ kg—era(s,t)u =q(s;t)
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

The physical constants are k and p, and s is a linear mea-
sure of the position on the boundary.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations

The type of boundary condition specified on I', results from
a local balance between internal and external forces.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

This equation is similar in form to the parabolic initial-
boundary value problem presented in the previous section
with the very important change in the time derivative term
from a first to a second derivative, and with the addition of
a second initial condition on the velocity.

With these changes, the problem changes from a parabolic
initial-boundary value problem to a hyperbolic initial
boundary value problem.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

The basic steps of discretization, interpolation, elemental
formulation, assembly, constraints, solution, and
computation of derived variables are presented in this
section as they relate to the two-dimensional hyperbolic
initial-boundary value problem.

The Galerkin method, in connection with the corresponding
weak formulation to be developed, will be used to generate
the finite element model.

Discretization - Referred to the material in Chapter 3.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Interpolation - The solution is assumed to be expressible in
terms of the nodally based interpolation functions ny(x, y)
introduced and discussed in Section 3.2.

In the present setting, these interpolation functions are used
with the semidiscretization.

N+1

u(x,y,t) Zu(tn(xy)

The ny(x, y) are nodally based interpolation functions and
can be linear, quadratic, or as otherwise desired.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation - The starting point for the
elemental formulation is the weak formulation of the initial-
boundary value problem.

The first step in developing the weak formulation is to
multiply the differential equation by an arbitrary test
function v(x, y) vanishing on I',.

The result is then integrated over the domain Q to obtain

”v[ kVu pi—?#}dQ:O
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation - Using the two-dimensional form of
the divergence theorem to integrate the first term by parts,
the results after rearranging are:

62
ng -kVu d!2+gv,o%d.(2

=Ivn-kVudF+”vf do
r 0

whereI'=T", +T,

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation - Recalling that v vanishes on T',
and that kou/ox =kn -Vu = ¢ - huonT,, it follows that

62
gVV-kVudQ+ng%dQ
= [v(a—hu)dr +[[vfde
r Q0

This equation is the required weak formulation for the two-
dimensional diffusion problem.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation - Substituting the approximation of
u(x, y, t) into the weak formulation and taking v = n,,
k=1, 2, ...yields:

I G ez e
+”nkpzuinid[2+ InkhZuinidF

k=12 ..

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — Where (2 and I',” represent the
elemental areas approximating Q, and the collection of the
elemental edges approximating Fz,respectively.

G e G G e
+”nkpzuinid[2+ InkhZuinidF

k=12..
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — This N x N set of linear algebraic
equations can be written as

i(Aku + By, ) =F, (t) k=12..,N

on
”( 8): ka—x M kE]dQJrrJ'nkhni dr

B, = _U n.on, dQ
o

F =_[_[nkf dQ+ _f n.qdr
Q r;

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — Note that assembly is contained
implicitly within the formulation.

i(Aku +B, ;) =F(t) k=12...,N
[T L
B, =J‘.!.nkpni dQ

F _”‘nfdQ+J‘nkqu

I
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — In terms of the corresponding
elementally based interpolations

u,(x,y)=N"u, =uN
The finite element model can be expressed as

Au+Bu=F
A=>ks+> ag B=>r,
F=>f+> qq

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — In terms of the corresponding
elementally based interpolations

u,(x,y)=N"u, =uN

The finite element model can be expressed as

k, _”(—k— ﬁkﬂjdA
oX oOx oy oy

r, = [[NoN" dA a, = [ NoN'" ds
A

f, = [[Nf dA q. = [ Nads
A

V2e
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — The initial conditions for the
system of first-order differential equations are obtained
from the initial conditions prescribed for the original initial-
boundary value problem.

Generally u(0) is determined by evaluating the function
c(x, y) at the nodes to obtain:

.
u(O):u0:<c1 C, G ... Gy CN>

where ¢; = c(x;, y;) with (x;, y;) the coordinates of the it
node.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Elemental Formulation — The initial conditions for the
system of first-order differential equations are obtained
from the initial conditions prescribed for the original initial-
boundary value problem.

Generally G(0) is determined by evaluating the function
d(x, y) at the nodes to obtain

u0)=u, =(d, d, d, .. dy, d)

where d; = d(x;, y;) with (x;, y;) the coordinates of the it
node.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Constraints - The constraints arise from the boundary
conditions specified on I',.

Generally the values of the constraints are determined from
the g function with the constrained value of u at a node on
I', being taken as the value of g at that point.

These constraints are then enforced on the assembled
equations, resulting in the final global constrained set of
linear first-order differential equations.

Mii+Ku=f u(0) =u, u(0) =u,

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Solution - The system of equations is precisely the same in
form and character as the corresponding equations
developed in Section 4.2.2 for the one-dimensional wave
problem.

The analytical method as well as the numerical methods
using the central difference and Newmark algorithms can
be used for integrating the above set of equations.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Solution - The central difference algorithm will be
conditionally stable with the critical time step depending on
the maximum eigenvalue of the associated problem
(K- @”M)v = 0.

The Newmark algorithm will be unconditionally stable for
6=0.5and «=0.25(5+ 0.5)%

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations
The Galerkin Finite Element Method

Derived variables - In a physical situation governed by a
wave equation, the derived variables are usually the
internal forces computed according to F, = k,u, per
element for each time step.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
Consider the two-dimensional wave problem shown below.

2
TV - pgt—? = p, COS (%Xj cos (%)

y
N

(-1,1) $(x1t)=0 (1.1

(-1-1)

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Discretization. Due to symmetry, we will model the top
right-most quadrant of the membrane using four equally-
sized 4-noded quadrilaterals.

y
B ¢ p X Yy
? Vg - vz :?"cos(?Jcos[?
"""""" >)’( ¢(+1’y’t)zo V/:$
$(x,£1t)=0
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Elemental Formulation — This N x N set of linear algebraic
equations can be written as:

i(Ak|¢| +l//Bki¢;):Fk(t) k=12...,N

i=1
« on ank on,
”( x ox oy EJdQ
B, =” nyn dQ

F=[[nfdo
2

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Elemental Formulation — In terms of the corresponding
elementally based interpolations

4. (x,y)=N'¢g, =¢'N

The finite element model can be expressed as

k_J'J' ﬁaNT @ﬂ dA
©oulox ox oy oy

=j NN’ dA
A

f, = [[Nf dA
A
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Interpolation - In matrix notation, the distribution of the
function over the element in local (s, t) coordinates is:

. (x.y)=¢,'/N=N"g,

11 1 ‘
1,1 )
. ) Ny (50) = (1+s)4(1—t)
S
v (0,0) NS (S,t) _ (1+Sl(1 +t)
1 2
(-1.-1 (-1 (1-5)(1+1)
N, (s.8) =)

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Rectangular Elements - The elemental interpolations for a
rectangular element are:




CIVL 7/8111 Time-Dependent Problems - 2-D Wave Equations 17/47

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Rectangular Elements - The shape functions are visually
deceiving. There is no curvature in directions parallel to any
side; however, there is a twist due to the xy term in the
element representation.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Interpolation - This integrals may be transformed into the
local coordinate space using as = x - X, and bt =y -y, for
a rectangular element 2a x 2b in size:

QF(X,Y)dXdy =j jF(xo +as,y, +bt)£’tn)dsdt

2 a(si)

where the Jacobian 0(¢&,77)/0(s, t) has a value of A_/4.

The resulting global system stiffness matrix k, is:

2 -2 1 1 2 1 -1 2
11bl-2 2 1 -1 a| 1 2 -2 1

ke = —| — + —
6jlaj-1 1 2 2| b1 -2 2 1

1 1 2 2 -2 -1 1 2
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Rectangular Elements - Evaluation of k,

If the element is square, then a = b, then k, becomes:

2

—1

-1
-2

-2

-1

11 2 1 -1 =2
2 1 ] a1 22
1 2 2| bl-1 -2 2 1
2 2 2 1 1 2
2 -1
-1 -2
4 -1
1 4

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The elemental m, matrices are:

m, = [[NN"dA =
Ae

o(&.m)
d(s.t)

dsdt

j ij(xO +as,y, +bt)

-1 -1

where the Jacobian o(&,7)/0(s, t) has a value of A /4.

The resulting global system stiffness matrix m is:

_A

4
2
m
¢ 361
2

- N &N

N RN o

AN -2 DN
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Transforming the integral into the non-dimensional
coordinates (s, t) yields:

f z(j; iNNT%dsdtJf

4f, + 2f, + 1, + 2f,
2f, + 4f, + 2f, +f1,
f, + 2f, + 4f, + 2f,
2f, +1, + 2f, + 41,

fzi
° 36

The resulting 4 x 1 elemental load vector contributes to the

global system equations at those locations corresponding to

the four nodes defining the element.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
0, 1) (2, 1)

(1,1

For element 1: ° ’ !
4 12 o SRR .
S e B B Al o @) -
6|2 -1 4 —1 4 1 (%0)2 5
1 2 1 4
421 2 f 2 0.05089
112 4 2 1|2 (_JF 142 _|0.02659 | [2]
e — = = — 1=
" 144|1 2 4 2 f, 2] 1 0.02659
2 12 4 f], J2 0.01389
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Time-Dependent Problems - 2-D Wave Equations

Two-Dimensional Wave Equations - Example 1

For element 2:

4 -1
11-1 4

K, =—
2 6|2 -1

-_—
N
- N BN

N AN -~

12|
_2
1[g]

413

2702l

(0, 1)

(%, 1)
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(1,1

9

(0, %)
<
4

1

®
«®

(1, %)

(1,0

- (0,0)
. 4 1
AR N
i _1]0

fy 210
fy], 1

TIME-DEPENDENT PROBLEMS

(%, 0) 2

2

Two-Dimensional Wave Equations - Example 1

For element 3:

4 -1
1 4
-

6|2 -1

1 -2

4 2

112 4
m,=——

1441 2

2 1

1

N AN -~

1[4l
_2
1|

41Jg]

2704l

(I IEr

(0, 1)

(%, 1)

5

0.04539
0.01329
0.02371([g]
0.00694

(1,1

9

(0, %)
<
4

1

(%, %)
L

(1, %)

(1,0

- (0,0)
A 4 1

f, V2

f, B 1 1

fy 2|0

fy 0

3

(%, 0) 2

3 =

0.04048
0.01185|[g]

0.01185
0.00347
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
0, 1) (2, 1) (1,1)

For element 4: 9 89 7
4 1 2 1 (0,‘/2)‘ (Vz.'/z:. 4'(1,'/2)
- - 4 3 6
k =1 - 4 -1 2 E' A zl (0,0) (1,0)
Y2 -1 4 1 t 4 1 (%0)2 5
-1 -2 -1 4
4212 f, 1 0.04539
102 4 2 1] ¢_Jk[ _1]0 4:0.02371
4714411 2 4 2 f, 210 0.01329 E]
2 1 2 4 fy . 0 0.00694

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
The assembled K, Mg, and F matrices are:

4 1 2 1000 0 0]4
18 22120 0 04
2 216 2 2 2 2 2 2|4
412 2 8 0 0 0 -2 1|4

KG:%O-1-204-1000¢5
02 20 18 -1-2 0|4
00 20 0 -1 4 10|34
00 2 20 2 -1 8 -1|4
00 2 10 0 0 -1 4]4
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

The assembled K, Mg, and F matrices are:

4 2 1 20000 0f¢ 0.05089
28 412100 0|¢ 0.07197
1416 4 1 4 1 4 1| ¢, 0.10178
21 4 8000 1 2|4, 0.07197
M, :ﬁ 02 1 04200 0f¢g F=:0.01329
01 4 023821 0|4 0.01880
00 1 00242 0]|¢ 0.00347
00 4 1012 8 2|4¢ 0.01880
0 01 2000 2 44 0.01329

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Applying nonhomogeneous boundary conditions that
{#s, ..., 4o} = {0, 0, O, O, 0}; the constrained equations are:

Ked +wMgo =F

4 12 40 0 0 0 04 42 1 2000 0 0|4 [0.05089
48 224200 0|4 28 412100 0|4 007197
2 216 2 2 2 2 2 2|4 1416 4 141 4 1|[g| [010178
4228000 2 |4 214 80001 2|4 007197
%o-1-zo4-1ooog+%oz1042000":0.01329
0220 18 -1-2 0| 014028210 0.01880
00 200 14 - 0|l 001002420 0.00347
00220218 - 00 4 101282 0.01880
002100 0 -1 4|0 0012000 2 4 0.01329

{fe i} =0
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations

are:
Ked +wMggp =F
4 1 -2 1||4 4 2 1 2 ¢1 0.05089
111 8 2 2|/a| y |28 4 1||4| Joorier
6|-2 -2 16 -2||d, 14411 4 16 4 ¢'3 ~10.10178
-1 -2 -2 8]|4, 2 1 4 8 &4 0.07197

Let assume the y = 1 for this example.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

For the Newmark algorithm, the critical time step is associated
with the largest eigenvalue of the (K — «?M)¢ = 0 system.

h <2

a)max

The eigenvalue problem is:

(Ks + ™™g )¢ =0

4 1 2 - 42 1 2
1-18-2-2_a)_22841¢_0
6|2 -2 16 2| 144|1 4 16 4

4 2 2 8 2 1 4 8
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The eigenvalues can be found using a variety of available
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(M;\K;) gives eigenvalues D:

o’ =5.19332 ©,” =34.28571 w,° =34.28571 o,” =63.37811

The eigenvectors V are:

0.66667 0.89443 0.09022 ~0.66667
_]0.47140 _ | 0.00000 _]-0.70350 ] 0.47140
' 1033333 ° |-0.44721 * ]-0.04511 ¢ ]-0.33333

0.47140 0.00000 0.70350 0.47140

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

For the example the largest eigenvalue is 63.37811, the
critical time step is:

2

2
h. < <
o .. ~63.37811

<0.2512sec.
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Newmark's Method- The equations to be solved at the first
step can be written as:

(M+h’K) ¢, =M(g, +hdy +ch’g; ) + ah’F,

+c,hg,

.. 0 1—0—h'0
P RIUE i
ah

¢1_¢o_h¢o _01&0 2

ah?® a 1.9

é =

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Newmark's Method- Evaluating the differential equation at
t =0 yields

Mg =F-Kg, = ¢ =M"(F-Kg,

47.02041 -11.75510 2.93878 -11.75510|(0.05089
-11.75510 23.51020 -5.87755 2.93878 ||0.07197

b= 293878 -5.87755 11.75510 -5.87755||0.10178
~11.75510  2.93878 -5.87755 23.51020 ||0.07197
1.00000

_]0.70711

~10.50000

0.70711
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Newmark's Method- Taking « = 0.25, 6= 0.5, and
h = 0.01 seconds yields:

0.02779 0.01388 0.00694 0.01388 0.12723
(M + ahK) - 0.01388 0.05559 0.02777 0.00694 O =
0.00694 0.02777 0.11118 0.02777 0.25446
0.01388 0.00694 0.02777 0.05559 0.17993
At step 1: %(0)=0  ¢,(0)=0
) _ . 5 )
(M+0¢h\K)¢51 —M(z+h ) +C,h ¢0)+ahLF1
0.02779 0.01388 0.00694 0.01388 0.12723
0.01388 0.05559 0.02777 0.00694 .1 ]0.17993
¢,=M(0.25h°4; ) 10°
0.00694 0.02777 0.11118 0.02777 0.25446
0.01388 0.00694 0.02777 0.05559 0.17993

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Newmark's Method- The solution for ¢, is

4,=10°(4.9994 35351 24997  3.5351)

Now solve for the velocity att = h

4,(0)=0 ) #,(0)=0
. 5(¢, - —hmz .
4 7{1 + (44 +¢,hd,

ah
®0=0" 4 99935 1.00000
. Of, 5 |3.53507 0.70711
=—+C,hgy) =— 10° +c,h
Z ah 2 Z ah |2.49968 ?"10.50000
3.53507 0.70711

= <0.01000 0.00707 0.005 0.00707>T

047993

26/47
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1
Newmark's Method- The equation for acceleration at
t=0is 4,(0)=0

-_ﬁ—;?—h%_c@ﬁo _ 4 ch

¢ -
1 ‘an? ¢ a ah® «a
@ (0)=0

Now solve for the acceleration att=h
4.99935 1.00000
" 3.53507 0.70711

é, _ 2 10° —c,h
ah [2.49968 0.50000
3.53507 0.70711

¢ = <0.99974 0.70692 0.49987 0.70692>T

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

Newmark's Method — For n = 2;
¢4,=107(1.99948  1.41385  0.99974  1.41385)'

4,=(0.01999  0.01414  0.01000  0.01414)"

#4,=(0.99896  0.70637  0.49948  0.70637)'

Forn=3:
4,=10"(4.49786  3.18047  2.24893  3.18047)

4, =(0.02998  0.02120  0.01499  0.02120)'

¢, = <O.99766 0.70546 0.49883 O.70546>T
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are show below:

04
0.35 - / \/¢1
03 /
025
02
0.15

01t |

005 |

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The velocity values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are:

28/47
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The acceleration values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are:

0.8 o ¢1 .
#
06~

0.4
02

02

b,

-06 -

08 /
1 L 1 1 I | | L I

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Time: 1.51 Time: 10.01
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Time: 1.51 Time: 0.11

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
Consider the two-dimensional wave problem shown below.

y
(1.1) L o(x1)=0 (11) f(0,0,t)
.  —
vig- 2 _fqt)
u(-1y,t)=0 3': u(1y,t)=0
......................... I N o :
i X
¢(x,y§0) =0

(1.1 p(x-1t)=0 (1)
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

Discretization. Due to symmetry, we will model the top
right-most quadrant of the membrane using four equally-
sized 4-noded quadrilaterals.

Y 2

i o0°¢

i Vi — L =f(t

$-—z =1
____________ § #(x1y,t)=0  4(x,£1t)=0

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Rectangular Elements - Evaluation of k,
As in Example 1, all the k, are:

4 -1 -2 -1l f4 1 —2 12

11-1 4 -1 =2|]2] 11-1 4 -1 2|
Ki=%l 2 1 4 1 =5l 2 1 4 1

[e]

-1 2 14y -1 -2 14

4 1 -2 -1 T4 -1 -2 1|

11-1 4 -1 -2|[¢ 11-1 4 -1 -2|g
=52 1 4 1|7 Ki=5| 2 _ -

6|2 -1 4 1]

-1 -2 1 4 -1 2 -1 4]
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2
The elemental m, matrices are:

dsdt

m, :HNNT dA :j _1fF(xO +as,Y, +bt)8(§’n)
A

s d(s,t)
where the Jacobian o(&,7)/0(s, t) has a value of A /4.

The resulting global system stiffness matrix m is:

4 2 1 2
m=i2421
¢ 36|11 2 4 2
21 2 4

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Rectangular Elements - Evaluation of m,
As in Example 1, all the m, are:

4 2 1 21l 4 2 1 2]
o242l 1024 2 1
1_1441242 2_1441242@

2 1 2 4] 2 1 2 4]

4 2 1 2\ 4 2 1 20
o242l 124 2 1)
3_1441242 4_1441242@

2 1 2 4] 2 1 2 4]
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

Transforming the integral into the non-dimensional
coordinates (s, t) yields:

f z“ iNNT%dsdtjf

4f, + 2f, + 1, + 2f,
2f, + 4f, + 2f, +f1,
f, + 2f, + 4f, + 2f,
2f, +1, + 2f;, + 41,

fzi
° 36

The resulting 4 x 1 elemental load vector contributes to the

global system equations at those locations corresponding to

the four nodes defining the element.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2
0, 1) (2, 1)

(1,1

(1, %)

(1,0

For element 1: ’ ¢
(0, %2) (2, )
f1 1 O 41’7 ® = J
Rl _Jol o 0o | ©
B f, “lo o 1 (%0)2
f4 1 0 t<0.1 0 t>0.1
0.02778 0
. _ /001389 0
' 10.00694 o
0

0.01389) ;. []

t>0.1
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Two-Dimensional Wave Equations - Example 2

For elements 2 to 4:

f
f
f
f

-~
Il
[} (4] N

w

—  —h
s IhM oM S

0

o O O

o O O O

o O O O
[o]

o O O O
=1

(0, 1)

(%, 1)

Time-Dependent Problems - 2-D Wave Equations

(1,1

9

O
(0, %) (%2, ¥2) (1, %)
41’7 13 4"6
O
(0, 0) (1,0)
1 (%02 5
£ [0 0
f, 0 0
f= f,
[ "o 0/[g]
f,], lo 0

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The assembled K, Mg, and F matrices are:

0 0 0 0 0]

-1 -2 0 0 O
2 -2 -2 -2 -2
0O 0 0 -2 41
4 10 0 O
18 1 -2 0
0O 1 4 10
0o -2 -1 8 1
0O 0 0 -1 4

¢
?,
?5
%4
&5
Ps
¢
%
23
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The assembled K, Mg, and F matrices are:

42 12000 0 0]¢
28 4 12100 0]¢
1416 4 14 1 4 1|4
21 4 8000 12|4g

M6=ﬁ021042000¢5
01402382 10|4
00 1002 420|4
00 4 10128 2|4
00 1 2000 2 44

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The assembled K, Mg, and F matrices are:

0.02778) 4 0] ¢
0.01389| ¢, o| ¢
0.00694| ¢, o ¢
0.01389| ¢, o 4

F=.0.00000; ¢, F={0} 4
0.00000| ¢, o ¢
0.00000| ¢ o ¢
0.00000| ¢, o 4
0.00000 t<0.1 ¢9 0 t>0.1 ¢9
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Applying nonhomogeneous boundary conditions that
{#s, ..., 4o} = {0, 0, O, O, 0}; the constrained equations are:

Ked+Mgo =F
4 4 -2 10 0 0 0 0][4 42 1 2000 0 0] 0.02778
48 22120 0 0|4 28 4 121000 0.01389
2 216 2 2 2 2 2 2|4 1416 414 14 1 0.00694
422800 0 2 -1|[4 214 800012 0.01389
%o-1-2o4-10003+%021042000':o.ooooo
0220 -8 -1-2 0|l 014028210 0.00000
00200 -14 - 0f|fo 001002420 0.00000
00220 -2-8 -||o 004 1012382 0.00000
00 210 0 0 -1 4]|9 00 1 2000 2 4 0.00000] _,
(b} =0

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations

are:
Keod+Mgop =F
(4 1 -2 1[4 4 2 1 2](g) (0.027778
111 8 2 2||g,| 1(2 8 4 1||4| |0.013889
6/-2 2 16 -2||4 144[1 4 16 4||4| |0.006944
1 2 2 8|4 2 1 4 8]|4] [0.013889) _,
(4 1 -2 1[4 4 2 1 2](4) (o
1-1 8 -2 2)]¢( 1|28 4 1]4]_Jo
6/-2 2 16 -2||4 144[1 4 16 4||g[ o
-1 2 2 8|4 2 1 4 8|4 (0],
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

For the Newmark algorithm, the critical time step is associated
with the largest eigenvalue of the (K — «?M)¢ = 0 system.

h <2

a)max

The eigenvalue problem is the same as Example 1:

(Ks +@™Mg )¢ =0

4 1 -2 -1 4 2 1 2
1118 -2 -2 1]28 4 1 5=0
6|-2 -2 16 -2| 144|1 4 16 4

-1 -2 -2 8 21 4 8

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The eigenvalues can be found using a variety of available
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(M;\K;) gives eigenvalues D:

o’ =5.19332 " =34.28571 w,°=34.28571 o,” =63.37811

The eigenvectors V are:

0.66667 0.89443 0.09022 ~0.66667
_|o.47140| | 0.00000| , |-0.70350| | 0.47140

' 1033333 2 |-044721 * |-0.04511 ¢ |-0.33333
0.47140 0.00000 0.70350 0.47140

37147
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

For the example the largest eigenvalue is 63.37811, the
critical time step is:

2 2

h. <
o ... ~63.37811

<0.2512sec.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — The equations to be solved at the
first step can be written as:

(M+h’K) ¢, =M(g, +hdy +ch’d; ) + ah’F,

¢1 :¢0 +5(¢1_¢0 _h¢0)+czh¢.0
ah
9’51 _¢o _h¢o _C1¢.o 2

ah? a S

¢ =
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — Evaluating the differential equation at
t =0 yields

4,(0)=0
M;}50=F—K¢O = ¢'50:M1(F—K%)

47.02041 -11.75510 2.93878 -11.75510[0.027778
-11.75510 23.51020 -5.87755 2.93878 ||0.013889
2.93878 -5.87755 11.75510 -5.87755||0.006944
-11.75510 2.93878 -5.87755 23.51020(0.013889

1.00000
0.00000
0.00000
0.00000

&0 =

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — Taking « = 0.25, 6= 0.5, and
h = 0.01 seconds yields:

0.02779 0.01388 0.00694 0.01388 6.94444
(W i) | 001388 0.05559  0.02777 000654 347222
0.00694 0.02777 011118 0.02777 173611
0.01388 0.00694 0.02777 0.05559 3.47222
At step 1: %(0)=0  4,(0)=0

(M+ah’K) g, = M(z+ hd +c,h’d, ) + ah’F,

\

0.02779 0.01388 0.00694 0.01388 6.94444

0.01388 0.05559 0.02777 0.00694 .\ |3.47222
¢,=M(0.25n°4; ) 107

0.00694 0.02777 0.11118 0.02777 1.73611

0.01388 0.00694 0.02777 0.05559 3.47222
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — The solution for ¢, is

¢,=(4.996E-05 1.284E-08 6.595E-12 1.284E-08)'

Now solve for the velocity att = h
¢0(0)=0( . ¢O(O)=0
. 5(¢, - —hmz .
¢ _ﬁ‘l' 1 %:,] h¢o

& (0):0

:<9.9914E-03 2.5670E-06 1.3191E-09 2.5670E-06>T

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — The equation for acceleration at
t=0is 4,(0)=0

ﬁzﬁ_fof_h%_cﬁb'o — ¢1 _C1¢.0
1 ‘an? ¢ a ah® «
¢0(0)=0

Now solve for the acceleration att=h

4,=(0.99829 5.1341E-04 2.6381E-07 5.1341E-04)"
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — For n = 2;
@, = <1 9966E-04 1.0259E-07 7.9076E-11 1.0259E-07>T
¢,=(0.01995 1.5385E-05 1.3177E-08 1.5385E-05)'

¢, =(0.99316 2.0501E-03 2.1078E-06 2.0501E-03)'

Forn=3:
¢, =(4.4859E-04 4.2268E-07 4.8051E-10 4.2268E-07)'

¢, =(0.02984 4.8633E-05 6.7109E-08 4.8633E-05)'

é3=<0.98464 4.5996E-03 8.6787E-06 4.5996E-03>T

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 2

Newmark's Method — Forn =11, t> 0.1 sec.

0.027778 ¢, 0
0.013889| 4, o ¢
F= ‘ F=
0.006944| 4, of ¢
0.013889],_,, 4, 0
4,=10°(5.81661  0.06193  0.00055  0.06193)'
4,=10"(97.58691  2.19325  0.02862  2.19325)'

¢,=(-0.19688  0.05772  0.00126  0.05772)
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TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

The values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are show below:

TIME-DEPENDENT PROBLEMS
Two-Dimensional Wave Equations - Example 1

The velocity values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are:

0.1 rr‘

T T T
\ ; N M\
0.08 “\‘/ ¢ [ [
‘ |

I . N
0061t | I\

[ #,
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The acceleration values of ¢,, ¢,, and ¢;for 0 <t < 10 sec. are:

O.B-A/;Z‘I

0.6

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Time: 0.61 Time: 0.41
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Time: 0.61 Time: 1.11

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - Time-dependent problems are inherently more
difficult and expensive to solve than their corresponding
steady-state counterparts.

The expense of generating the global matrices is higher for
the time-dependent problems because of the necessity of
computing the mass matrices.

The main extra expense, however, is in solving the resulting
time-dependent global equations.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - For an analytical approach to the solution,
additional expense is incurred in terms of having to
determine eigenvalues and eigenvectors.

The actual amount of expense depends on the specific form
of the stiffness and mass matrices and the algorithm used,
but in any case it is significantly in excess of the expense
of solving the single set of linear algebraic equations
associated with the steady-state problem.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - For a time domain integration technique, the
additional expense is clearly related to the number of time
steps necessary to trace out the desired time history.

In addition to several matrix multiplications and additions,
each step can involve the solution of a set of linear
algebraic equations.

In some instances this expense can be minimized by using
a decomposition that can be reused for the computation of
the solution at each new time.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - In this regard recall that the Euler and central
difference algorithms require that the size of the time step
not exceed a value proportional to the inverse of the
largest eigenvalue.

For large systems this critical step size can be very small
resulting in many applications of the algorithm to trace out
the time history.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - The unconditionally stable Crank-Nicolson and
Newmark algorithms, on the other hand, can be used with
arbitrary step size that has been chosen so as to
accurately integrate the lower modes, with significant
improvement in the expense relative to the conditionally
stable Euler and central difference algorithms.

There are of course other algorithms available that are
specifically tailored to address other numerical issues.
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End of
Chapter 4d





