
Swiss Mathematician and physicist Leonhard Euler 
discovered the wave equation in three space dimensions.
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Leonhard Euler (1707 – 1783) was a 
pioneering Swiss mathematician and 
physicist. He made important 
discoveries in fields as diverse as 
infinitesimal calculus and graph theory. 
He is also renowned for his work in 
mechanics, fluid dynamics, optics, 
astronomy, and music theory

The wave equation is an important second-order linear 
partial differential equation for the description of waves –
as they occur in physics – such as sound waves, light 
waves and water waves. 

It arises in fields like acoustics, electromagnetics, and fluid 
dynamics.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

A solution of the wave 
equation in two dimensions 
with a zero-displacement 
boundary condition along the 
entire outer edge.
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Consider the motion of a rectangular membrane (in the 
absence of gravity) using the two-dimensional wave 
equation. Plots of the spatial part for modes are illustrated 
below.
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Consider the motion of a rectangular membrane (in the 
absence of gravity) using the two-dimensional wave 
equation. 
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The governing equations of motion that describe the pro-
pagation of waves in situations involving two independent 
variables appear typically as
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Where  is the interior domain, and 1 and 2 form the 
boundary of the domain.
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The physical constants are k and , and s is a linear mea-
sure of the position on the boundary. 
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The type of boundary condition specified on 2  results from 
a local balance between internal and external forces.
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This equation is similar in form to the parabolic initial-
boundary value problem presented in the previous section 
with the very important change in the time derivative term 
from a first to a second derivative, and with the addition of 
a second initial condition on the velocity. 

With these changes, the problem changes from a parabolic 
initial-boundary value problem to a hyperbolic initial
boundary value problem.
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The basic steps of discretization, interpolation, elemental 
formulation, assembly, constraints, solution, and 
computation of derived variables are presented in this 
section as they relate to the two-dimensional hyperbolic 
initial-boundary value problem. 

The Galerkin method, in connection with the corresponding 
weak formulation to be developed, will be used to generate 
the finite element model.

Discretization - Referred to the material in Chapter 3.
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The Galerkin Finite Element Method

Interpolation - The solution is assumed to be expressible in 
terms of the nodally based interpolation functions ni(x, y)
introduced and discussed in Section 3.2. 

In the present setting, these interpolation functions are used 
with the semidiscretization.
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The ni(x, y) are nodally based interpolation functions and 
can be linear, quadratic, or as otherwise desired. 
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The Galerkin Finite Element Method

Elemental Formulation - The starting point for the 
elemental formulation is the weak formulation of the initial-
boundary value problem. 

The first step in developing the weak formulation is to 
multiply the differential equation by an arbitrary test 
function v(x, y) vanishing on 1. 

The result is then integrated over the domain  to obtain
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The Galerkin Finite Element Method

Elemental Formulation - Using the two-dimensional form of 
the divergence theorem to integrate the first term by parts, 
the results after rearranging are:
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The Galerkin Finite Element Method

Elemental Formulation - Recalling that v vanishes on 1
and that  ku/x = kn u =  q - hu on 2, it follows that
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This equation is the required weak formulation for the two-
dimensional diffusion problem.
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The Galerkin Finite Element Method

Elemental Formulation - Substituting the approximation of  
u(x, y, t) into the weak formulation and taking v = nk, 
k = 1, 2, ... yields:
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The Galerkin Finite Element Method

Elemental Formulation – Where - and 2
- represent the 

elemental areas approximating , and the collection of the 
elemental edges approximating 2,respectively.
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The Galerkin Finite Element Method

Elemental Formulation – This N x N set of linear algebraic 
equations can be written as
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The Galerkin Finite Element Method

Elemental Formulation – Note that assembly is contained 
implicitly within the formulation.
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The Galerkin Finite Element Method

Elemental Formulation – In terms of the corresponding 
elementally based interpolations
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The Galerkin Finite Element Method

Elemental Formulation – In terms of the corresponding 
elementally based interpolations

The finite element model can be expressed as
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The Galerkin Finite Element Method

Elemental Formulation – The initial conditions for the 
system of first-order differential equations are obtained 
from the initial conditions prescribed for the original initial-
boundary value problem. 

Generally u(0) is determined by evaluating the function 
c(x, y) at the nodes to obtain:

T

0 1 2 3 1(0) ... N Nc c c c c u u

where ci = c(xi, yi) with (xi, yi) the coordinates of the ith

node.
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The Galerkin Finite Element Method

Elemental Formulation – The initial conditions for the 
system of first-order differential equations are obtained 
from the initial conditions prescribed for the original initial-
boundary value problem. 

Generally ů(0) is determined by evaluating the function 
d(x, y) at the nodes to obtain

T

0 1 2 3 1(0) ... N Nd d d d d u u 

where di = d(xi, yi) with (xi, yi) the coordinates of the ith

node.
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The Galerkin Finite Element Method

Constraints - The constraints arise from the boundary 
conditions specified on 1. 

Generally the values of the constraints are determined from 
the q function with the constrained value of u at a node on 
1 being taken as the value of q at that point. 

These constraints are then enforced on the assembled 
equations, resulting in the final global constrained set of 
linear first-order differential equations.

 Mu Ku f 0(0) u u 0(0) u u 
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The Galerkin Finite Element Method

Solution - The system of equations is precisely the same in 
form and character as the corresponding equations 
developed in Section 4.2.2 for the one-dimensional wave 
problem. 

The analytical method as well as the numerical methods 
using the central difference and Newmark algorithms can 
be used for integrating the above set of equations. 
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The Galerkin Finite Element Method

Solution - The central difference algorithm will be 
conditionally stable with the critical time step depending on 
the maximum eigenvalue of the associated problem 
(K - 2M)v = 0.

The Newmark algorithm will be unconditionally stable for 
 = 0.5 and  = 0.25( + 0.5)2. 
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The Galerkin Finite Element Method

Derived variables - In a physical situation governed by a 
wave equation, the derived variables are usually the 
internal forces computed according to Fe = keue per 
element for each time step.
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Consider the two-dimensional wave problem shown below.
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Discretization. Due to symmetry, we will model the top 
right-most quadrant of the membrane using four equally-
sized 4-noded quadrilaterals.
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Elemental Formulation – This N x N set of linear algebraic 
equations can be written as:

 
1

( ) 1,2,...,
N

ki i ki i k
i

A B F t k N  


   

k i k i
ki

n n n n
A d

x x y y

    
       


ki k iB n n d


 

k kF n f d


 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Elemental Formulation – In terms of the corresponding 
elementally based interpolations
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Interpolation - In matrix notation, the distribution of the 
function over the element in local (s, t) coordinates is:

 ,e x y   T T
e eN N
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Rectangular Elements - The elemental interpolations for a 
rectangular element are:

1N
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Rectangular Elements - The shape functions are visually 
deceiving. There is no curvature in directions parallel to any 
side; however, there is a twist due to the xy term in the 
element representation. 

Interpolation - This integrals may be transformed into the 
local coordinate space using as = x - x0 and bt = y - y0, for 
a rectangular element 2a x 2b in size: 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

 ,
eA

F x y dx dy

where the Jacobian (,)/(s, t) has a value of Ae/4.
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The resulting global system stiffness matrix ke is: 

2 2 1 1 2 1 1 2

2 2 1 1 1 2 2 11
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1 1 2 2 2 1 1 2

b a

a b

       
            
       
    

        

ek

CIVL 7/8111 Time-Dependent Problems - 2-D Wave Equations 17/47



TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Rectangular Elements - Evaluation of ke

If the element is square, then a = b, then ke becomes:

4 1 2 1

1 4 1 21

2 1 4 16

1 2 1 4
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The elemental me matrices are:

eA

dA  T
em NN

where the Jacobian (,)/(s, t) has a value of Ae/4.
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The resulting global system stiffness matrix me is: 

4 2 1 2
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2 1 2 4
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Transforming the integral into the non-dimensional 
coordinates (s, t) yields:

1 1

1 1 4
eA

ds dt
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The resulting 4 x 1 elemental load vector contributes to the 
global system equations at those locations corresponding to 
the four nodes defining the element. 
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For element 1: 
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For element 2: 
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For element 3: 
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For element 4: 
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The assembled KG, MG, and F matrices are:

1

2

3

4

5

6

7

8

9

4 -1 -2 -1 0 0 0 0 0

-1 8 -2 -2 -1 -2 0 0 0

-2 -2 16 -2 -2 -2 -2 -2 -2

-1 -2 -2 8 0 0 0 -2 -1
1

0 -1 -2 0 4 -1 0 0 0
6

0 -2 -2 0 -1 8 -1 -2 0

0 0 -2 0 0 -1 4 -1 0

0 0 -2 -2 0 -2 -1 8 -1

0 0 -2 -1 0 0 0 -1 4
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1

2

3

4

5

6

7

8

9

4 2 1 2 0 0 0 0 0

2 8 4 1 2 1 0 0 0

1 4 16 4 1 4 1 4 1

2 1 4 8 0 0 0 1 2
1

0 2 1 0 4 2 0 0 0
144

0 1 4 0 2 8 2 1 0

0 0 1 0 0 2 4 2 0

0 0 4 1 0 1 2 8 2

0 0 1 2 0 0 0 2 4











 
 
 
 
 
 
 
 
 
 
 
 
 
 

GM

0.05089

0.07197

0.10178

0.07197

0.01329

0.01880

0.00347

0.01880

0.01329

 
 
 
 
 
    
 
 
 
 
 
  

F

The assembled KG, MG, and F matrices are:
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   G GK M F

Applying nonhomogeneous boundary conditions that 
{5, … , 9} = {0, 0, 0, 0, 0}; the constrained equations are:

 5 9, , 0   

1

2

3

4

5

6

7

8

9

4 -1 -2 -1 0 0 0 0 0

-1 8 -2 -2 -1 -2 0 0 0

-2 -2 16 -2 -2 -2 -2 -2 -2

-1 -2 -2 8 0 0 0 -2 -1
1

0 -1 -2 0 4 -1 0 0 0
6

0 -2 -2 0 -1 8 -1 -2 0

0 0 -2 0 0 -1 4 -1 0

0 0 -2 -2 0 -2 -1 8 -1

0 0 -2 -1 0 0 0 -1 4
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4 2 1 2 0 0 0 0 0

2 8 4 1 2 1 0 0 0

1 4 16 4 1 4 1 4 1

2 1 4 8 0 0 0 1 2

0 2 1 0 4 2 0 0 0
144

0 1 4 0 2 8 2 1 0

0 0 1 0 0 2 4 2 0

0 0 4 1 0 1 2
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8 2
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1 1

2 2

3 3

4 4

4 -1 -2 -1 4 2 1 2

-1 8 -2 -2 2 8 4 11

-2 -2 16 -2 1 4 16 46 144

-1 -2 -2 8 2 1 4 8

0.05089

0.07197

0.10178

0.07197
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   G GK M F

Assembly. With both the boundary conditions essential, 
BT=0 and bt=0. It follows that the assembled equations 
are:

Let assume the  = 1 for this example. 
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For the Newmark algorithm, the critical time step is associated 
with the largest eigenvalue of the (K – 2M) = 0 system.

max

2
crh




The eigenvalue problem is:

2

4 -1 -2 -1 4 2 1 2

-1 8 -2 -2 2 8 4 11
0

-2 -2 16 -2 1 4 16 46 144

-1 -2 -2 8 2 1 4 8

 

    
    
         
         

 2 0  G GK M
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The eigenvalues can be found using a variety of available 
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(MG\KG) gives eigenvalues D:

2 2 2 2
1 2 3 45.19332 34.28571 34.28571 63.37811      

The eigenvectors V are:

1 2 3 4

0.66667 0.89443 0.09022 0.66667

0.47140 0.00000 0.70350 0.47140

0.33333 0.44721 0.04511 0.33333

0.47140 0.00000 0.70350 0.47140

V V V V

       
       
                 
       
       




 

      





TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

max

2
crh
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For the example the largest eigenvalue is 63.37811, the 
critical time step is:

63.37811

2
 0.2512sec.
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Newmark's Method– The equations to be solved at the first 
step can be written as:

   2 2 2
1 0 0 1 0 1h h c h h         M K M F 

 1 0 0

1 0 2 0

h
c h

h

   
  



 
  


  

1 0 0 1 0
1 2

h c

h

   



 

 
 

1

1

2
c  

2 1
2

c
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Newmark's Method– Evaluating the differential equation at 
t = 0 yields

0 0  M F K  1
0 0   M F K

0

47.02041 11.75510 2.93878 11.75510 0.05089

11.75510 23.51020 5.87755 2.93878 0.07197

2.93878 5.87755 11.75510 5.87755 0.10178

11.75510 2.93878 5.87755 23.51020 0.07197





 
 

 

   
   

             



1.00000

0.70711

0.50000

0.70711

 
 
   
 
  

 0 0 0 

TIME-DEPENDENT PROBLEMS
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Newmark's Method– Taking  = 0.25,  = 0.5, and 
h = 0.01 seconds yields:

 2

0.02779 0.01388 0.00694 0.01388

0.01388 0.05559 0.02777 0.00694

0.00694 0.02777 0.11118 0.02777

0.01388 0.00694 0.02777 0.05559

h

 
 
  
 
 
 

M K 2 5

0.12723

0.17993

0.25446
0

0.1 3

1

799

h 

 
 
   
 
  

F

At step 1:

 2 5
1 0

0.02779 0.01388 0.00694 0.01388 0.12723

0.01388 0.05559 0.02777 0.00694 0.17993

0.00694 0.02777 0.11118 0.02777 0.25446

0.01388 0.00694 0.02777 0.05559 0

0.25

9

10

.179 3

h  

   
   

              

M 

 0 0 0   0 0 0 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

   2 2 2
1 0 0 1 0 1h h c h h         M K M F 

 1 0 0

1 0 2 0

h
c h

h

   
  



 
  


  

Newmark's Method– The solution for 1 is

 0 0 0 

 0 0 0 
Now solve for the velocity at t = h 

5
1 4.9994 3.5351 2.4997 3.535110

T 

0.01000 0.00707 0.005 0.00707
T



 0 0 0 

5
2

4.99935 1.00000

3.53507 0.70711

2.49968 0.50000

3.53507 0.70711

10 c h
h






   
   
       
   
      

TIME-DEPENDENT PROBLEMS
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1
1 2 0c h

h
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1 0 0 1 0
1 2

h c

h

   



 

 
 

Newmark's Method– The equation for acceleration at 
t = 0 is

 0 0 0 

 0 0 0 

Now solve for the acceleration at t = h

1 01
2

c

h




 


1 0.99974 0.70692 0.49987 0.70692
T 

5
1 2

1
1

4.99935 1.00000

3.53507 0.7071

2.49968 0.50000

3.53507 0.70711

0 c h
h






   
   
       
   
      



TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Newmark's Method – For n = 2:

4
2 1.99948 1.41385 0.99974 1.4138510

T 

2 0.01999 0.01414 0.01000 0.01414
T 

2 0.99896 0.70637 0.49948 0.70637
T 

For n = 3:
4

3 4.49786 3.18047 2.24893 3.1804710
T 

3 0.02998 0.02120 0.01499 0.02120
T 

3 0.99766 0.70546 0.49883 0.70546
T 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The values of 1, 2, and 3 for 0 < t < 10 sec. are show below: 

1

2

3

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The velocity values of 1, 2, and 3 for 0 < t < 10 sec. are: 

1

2

3
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The acceleration values of 1, 2, and 3 for 0 < t < 10 sec. are: 

1

2

3

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

 , ,x y t

t




( , , )x y t
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

 2

2

, ,x y t

t




( , , )x y t

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

Consider the two-dimensional wave problem shown below.

 1, , 0u y t 

y

x

(1,1)

(1,-1)(-1,-1)

(-1,1)

2 ( )f t
t

 
  



 , ,0 0x y 

 ,1, 0x t 

 , 1, 0x t  

 1, , 0u y t 

t

(0,0, )f t

4

0.1
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

Discretization. Due to symmetry, we will model the top 
right-most quadrant of the membrane using four equally-
sized 4-noded quadrilaterals.

y

x

2
2

2
( )f t

t

 
  



 1, , 0y t  

 , ,0 0x y 

 , 1, 0x t  

 , ,0
0

x y

t






TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

Rectangular Elements - Evaluation of ke

As in Example 1, all the ke are:

1

1

2

3

4

4 1 2 1

1 4 1 21

2 1 4 16

1 2 1 4

   
    
   
 
   

k 2

2

5

6

3

4 1 2 1

1 4 1 21

2 1 4 16

1 2 1 4

   
    
   
 
   

k

3

3

6

7

8

4 1 2 1

1 4 1 21

2 1 4 16

1 2 1 4

   
    
   
 
   

k 4

3

8

9

4

4 1 2 1

1 4 1 21

2 1 4 16

1 2 1 4

   
    
   
 
   

k
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The elemental me matrices are:

eA

dA  T
em NN

where the Jacobian (,)/(s, t) has a value of Ae/4.

   
 

F x as y bt ds dt
s t

1 1

0 0
1 1

,
,

,

 

 


  

 

The resulting global system stiffness matrix me is: 

4 2 1 2

2 4 2 1

1 2 4 236

2 1 2 4

eA

 
 
 
 
 
 

em

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

Rectangular Elements - Evaluation of me

As in Example 1, all the me are:

1

1

2

3

4

4 2 1 2

2 4 2 11

1 2 4 2144

2 1 2 4

 
 
 
 
 
 

m 2

2

5

6

3

4 2 1 2

2 4 2 11

1 2 4 2144

2 1 2 4

 
 
 
 
 
 

m

3

3

6

7

8

4 2 1 2

2 4 2 11

1 2 4 2144

2 1 2 4

 
 
 
 
 
 

m 4

3

8

9

4

4 2 1 2

2 4 2 11

1 2 4 2144

2 1 2 4

 
 
 
 
 
 

m
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Transforming the integral into the non-dimensional 
coordinates (s, t) yields:

1 1

1 1 4
eA

ds dt
 

 
  
 
  T

ef NN f

e

f f f f

f f f fA
f f f f

f f f f

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

4 2 2

2 4 2

2 4 236

2 2 4

   
         
    

ef

The resulting 4 x 1 elemental load vector contributes to the 
global system equations at those locations corresponding to 
the four nodes defining the element. 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

For element 1: 

(1, 1)

(1, ½)

(1, 0)

(0, 1)

(0, ½)

(0, 0)

(½, 1)

(½, ½)

(½, 0)1

3

2

4

5

6

789

1

1

0.1

1

2

3

4

0.02778

0.01389

0.00694

0.01389
t

 
 
   
 
  

f

1

2

3

4 0.11

1

0

0

0
t

f

f

f

f


   
   
       
   
     

f

0.1

1

2

3

4

0

0

0

0
t

 
 
   
 
  

0.1

0

0

0

0
t
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Two-Dimensional Wave Equations - Example 2

For elements 2 to 4: 

(1, 1)

(1, ½)

(1, 0)

(0, 1)

(0, ½)

(0, 0)

(½, 1)

(½, ½)

(½, 0)1

3

2

4

5

6

789

2
2

2

5

6

3

0

0

0

0

 
 
   
 
  

f

2

5

6

3 2

0

0

0

0

f

f

f

f

   
   
       
   
     

f

34

3

3

6

7

8

0

0

0

0

 
 
   
 
  

f

3

6

7

8 3

0

0

0

0

f

f

f

f

   
   
       
   
     

f 4

3

8

9

4

0

0

0

0

 
 
   
 
  

f

3

8

9

4 4

0

0

0

0

f

f

f

f

   
   
       
   
     

f

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

The assembled KG, MG, and F matrices are:

1

2

3

4

5

6

7

8

9

4 -1 -2 -1 0 0 0 0 0

-1 8 -2 -2 -1 -2 0 0 0

-2 -2 16 -2 -2 -2 -2 -2 -2

-1 -2 -2 8 0 0 0 -2 -1
1

0 -1 -2 0 4 -1 0 0 0
6

0 -2 -2 0 -1 8 -1 -2 0

0 0 -2 0 0 -1 4 -1 0

0 0 -2 -2 0 -2 -1 8 -1

0 0 -2 -1 0 0 0 -1 4











 
 
 
 
 
 
 
 
 
 
 
 
 
 

GK
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1

2

3

4

5

6

7

8

9

4 2 1 2 0 0 0 0 0

2 8 4 1 2 1 0 0 0

1 4 16 4 1 4 1 4 1

2 1 4 8 0 0 0 1 2
1

0 2 1 0 4 2 0 0 0
144

0 1 4 0 2 8 2 1 0

0 0 1 0 0 2 4 2 0

0 0 4 1 0 1 2 8 2

0 0 1 2 0 0 0 2 4











 
 
 
 
 
 
 
 
 
 
 
 
 
 

GM

The assembled KG, MG, and F matrices are:

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

1

2

3

4

5

6

7

8

0 9.1

0.02778

0.01389

0.00694

0.01389

0.00000

0.00000

0.00000

0.00000

0.00000
t













 
 
 
 
 
    
 
 
 
 
 
  

F

The assembled KG, MG, and F matrices are:

1

2

3

4

5

6

7

8

90.1

0

0

0

0

0

0

0

0

0
t













 
 
 
 
 
    
 
 
 
 
 
  

F
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  G GK M F

Applying nonhomogeneous boundary conditions that 
{5, … , 9} = {0, 0, 0, 0, 0}; the constrained equations are:

 5 9, , 0   

1

2

3

4

5

6

7

8

9

4 -1 -2 -1 0 0 0 0 0

-1 8 -2 -2 -1 -2 0 0 0

-2 -2 16 -2 -2 -2 -2 -2 -2

-1 -2 -2 8 0 0 0 -2 -1
1

0 -1 -2 0 4 -1 0 0 0
6

0 -2 -2 0 -1 8 -1 -2 0

0 0 -2 0 0 -1 4 -1 0

0 0 -2 -2 0 -2 -1 8 -1

0 0 -2 -1 0 0 0 -1 4











  
  
  
  
  
                            

1

2

3

4

5

6

7

8

9

4 2 1 2 0 0 0 0 0

2 8 4 1 2 1 0 0 0

1 4 16 4 1 4 1 4 1

2 1 4 8 0 0 0 1 2
1

0 2 1 0 4 2 0 0 0
144

0 1 4 0 2 8 2 1 0

0 0 1 0 0 2 4 2 0

0 0 4 1 0 1 2 8 2

0 0 1 2 0 0

0

0

0.02778

0.0138

2

9

0.

4

0











  
  
  
  
  
                            











0.1

694

0.01389

0.00000

0.00000

0.00000

0.00000

0.00000
t

 
 
 
 
 
  
 
 
 
 
 
 
  

0

0

0

0

0

1 1

2 2

3 3

4 4 0.1

4 -1 -2 -1 4 2 1 2

-1 8 -2 -2 2 8 4 11 1

-2 -2 16 -2 1

2

4 16 46 144

-1 -2 -2 8 2 1

0.0 7778

0.013889

0.006944

0.013884 98
t

 
 
 
  

       
       

                                      






TIME-DEPENDENT PROBLEMS
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  G GK M F

Assembly. With both the boundary conditions essential, 
BT=0 and bt=0. It follows that the assembled equations 
are:

1 1

2 2

3 3

4 4 0.1

4 -1 -2 -1 4 2 1 2

-1 8 -2 -2 2 8 4 11 1

-2 -2 16 -2 1 4 16 46 144

-1 -2 -2 8 2

0

0

0

01 4 8
t
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

For the Newmark algorithm, the critical time step is associated 
with the largest eigenvalue of the (K – 2M) = 0 system.

max

2
crh




The eigenvalue problem is the same as Example 1:

4 -1 -2 -1 4 2 1 2

-1 8 -2 -2 2 8 4 11 1
0

-2 -2 16 -2 1 4 16 46 144

-1 -2 -2 8 2 1 4 8



    
    
         
         

 2 0  G GK M

The eigenvalues can be found using a variety of available 
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(MG\KG) gives eigenvalues D:

The eigenvectors V are:

1 2 3 4

0.66667 0.89443 0.09022 0.66667

0.47140 0.00000 0.70350 0.47140

0.33333 0.44721 0.04511 0.33333

0.47140 0.00000 0.70350 0.47140

V V V V

       
       
                 
       
       




 

      





TIME-DEPENDENT PROBLEMS
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2 2 2 2
1 2 3 45.19332 34.28571 34.28571 63.37811      
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crh




TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

For the example the largest eigenvalue is 63.37811, the 
critical time step is:

63.37811

2
 0.2512sec.

Newmark's Method – The equations to be solved at the 
first step can be written as:

   2 2 2
1 0 0 1 0 1h h c h h         M K M F 

 1 0 0

1 0 2 0

h
c h

h

   
  



 
  


  

1 0 0 1 0
1 2

h c

h

   



 

 
 

1

1

2
c  

2 1
2

c
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Newmark's Method – Evaluating the differential equation at 
t = 0 yields

0 0  M F K  1
0 0   M F K

0

47.02041 11.75510 2.93878 11.75510 0.027778

11.75510 23.51020 5.87755 2.93878 0.013889

2.93878 5.87755 11.75510 5.87755 0.006944

11.75510 2.93878 5.87755 23.51020 0.013889



   
   

          



 

 


 
   



1.00000

0.00000

0.00000

0.00000

 
 
   
 
  

 0 0 0 

TIME-DEPENDENT PROBLEMS
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Newmark's Method – Taking  = 0.25,  = 0.5, and 
h = 0.01 seconds yields:

 2

0.02779 0.01388 0.00694 0.01388

0.01388 0.05559 0.02777 0.00694

0.00694 0.02777 0.11118 0.02777

0.01388 0.00694 0.02777 0.05559

h

 
 
  
 
 
 

M K 2 7

6.94444

3.47222

1.73611
0

3.4 2

1

722

h 

 
 
   
 
  

F

At step 1:

 2 7
1 0

0.02779 0.01388 0.00694 0.01388 6.94444

0.01388 0.05559 0.02777 0.00694 3.47222

0.00694 0.02777 0.11118 0.02777 1.73611

0.01388 0.00694 0.02777 0.05559 3

0.25

2

10

.472 2

h  

   
   

              

M 

 0 0 0   0 0 0 
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   2 2 2
1 0 0 1 0 1h h c h h         M K M F 
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 1 0 0

1 0 2 0

h
c h

h

   
  



 
  


  

Newmark's Method – The solution for 1 is

 0 0 0 

 0 0 0 
Now solve for the velocity at t = h 

9.9914E-03 2.5670E-06 1.3191E-09 2.5670E-06
T



 0 0 0 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

1 4.996E-05 1.284E-08 6.595E-12 1.284E-08
T 

1 0 0 1 0
1 2

h c

h

   



 

 
 

Newmark's Method – The equation for acceleration at 
t = 0 is

 0 0 0 

 0 0 0 

Now solve for the acceleration at t = h

1 01
2

c

h




 


1 5.1341E-04 2.6381E-07 5.1341E0.99829 -04
T 

TIME-DEPENDENT PROBLEMS
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Newmark's Method – For n = 2:

2 1.9966E-04 1.0259E-07 7.9076E-11 1.0259E-07
T 

2 0.01995 1.5385E-05 1.3177E-08 1.5385E-05
T 

2 0.99316 2.0501E-03 2.1078E-06 2.0501E-03
T 

For n = 3:

3 4.4859E-04 4.2268E-07 4.8051E-10 4.2268E-07
T 

3 0.02984 4.8633E-05 6.7109E-08 4.8633E-05
T 

3 0.98464 4.5996E-03 8.6787E-06 4.5996E-03
T 

TIME-DEPENDENT PROBLEMS
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 2

0

1

2

3

4.1

0.027778

0.013889

0.006944

0.013889
t








 
 
   
 
  

F

0

1

2

4.1

3

0

0

0

0
t








 
 
   
 
  

F

Newmark's Method – For n = 11, t > 0.1 sec.

3
11 5.81661 0.06193 0.00055 0.0619310

T 

3
11 97.58691 2.19325 0.02862 2.1932510

T 

11 0.19688 0.05772 0.00126 0.05772
T 
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The values of 1, 2, and 3 for 0 < t < 10 sec. are show below: 

1

2

3

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

The velocity values of 1, 2, and 3 for 0 < t < 10 sec. are: 

1

2
3
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Two-Dimensional Wave Equations - Example 1

The acceleration values of 1, 2, and 3 for 0 < t < 10 sec. are: 

1

2

3

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations - Example 1

 , ,x y t

t




( , , )x y t
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Two-Dimensional Wave Equations - Example 1

 2

2

, ,x y t

t




( , , )x y t

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - Time-dependent problems are inherently more 
difficult and expensive to solve than their corresponding 
steady-state counterparts. 

The expense of generating the global matrices is higher for 
the time-dependent problems because of the necessity of 
computing the mass matrices. 

The main extra expense, however, is in solving the resulting 
time-dependent global equations.
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Two-Dimensional Wave Equations

Closure - For an analytical approach to the solution, 
additional expense is incurred in terms of having to 
determine eigenvalues and eigenvectors. 

The actual amount of expense depends on the specific form 
of the stiffness and mass matrices and the algorithm used, 
but in any case it is significantly in excess of the expense 
of solving the single set of linear algebraic equations 
associated with the steady-state problem.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - For a time domain integration technique, the 
additional expense is clearly related to the number of time 
steps necessary to trace out the desired time history. 

In addition to several matrix multiplications and additions, 
each step can involve the solution of a set of linear 
algebraic equations. 

In some instances this expense can be minimized by using 
a decomposition that can be reused for the computation of 
the solution at each new time.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - In this regard recall that the Euler and central 
difference algorithms require that the size of the time step 
not exceed a value proportional to the inverse of the 
largest eigenvalue. 

For large systems this critical step size can be very small 
resulting in many applications of the algorithm to trace out 
the time history. 

TIME-DEPENDENT PROBLEMS

Two-Dimensional Wave Equations

Closure - The unconditionally stable Crank-Nicolson and 
Newmark algorithms, on the other hand, can be used with 
arbitrary step size that has been chosen so as to 
accurately integrate the lower modes, with significant 
improvement in the expense relative to the conditionally 
stable Euler and central difference algorithms. 

There are of course other algorithms available that are 
specifically tailored to address other numerical issues.
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End of 

Chapter 4d
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