CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion Equations

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion

The governing balance equations that describe diffusion
processes in situations involving two independent
variables appear typically as

V-(kVu(x,y,t))+pZ—l:+f(x,y,t)=0 in Q
u=g(st) onT,

ou
k%Jra(s,t)u =q(st) on T,

u(x,y,0)=c(xy) in Q

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion

Where Q is the interior domain, and I', and I', form the
boundary of the domain.

/ kg—era(s,t)u =q(s;t)

v ~(kVu (xy.t
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

The physical constants are k and p, and s is a linear mea-
sure of the position on the boundary.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion

The type of boundary condition specified on I', results from
a local balance between conduction in the interior and
convection into the exterior.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

In two dimensions, the influence of the boundary conditions
is shown. The left side of the simulation domain (x = 0) is
used as a constant source of diffusion particles, thereby
creating a steady flow into the area. All other boundaries
are modeled by a Neumann boundary condition.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion

This equation is similar in form to the elliptic boundary value
problem studied in Chapter 3, with the very important
addition of the time derivative term in the differential
equation and the corresponding initial condition.

With these additions, the problem changes from an elliptic
boundary value problem to a parabolic initial boundary
value problem.
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Two-Dimensional Diffusion

The basic steps of discretization, interpolation, elemental
formulation, assembly, constraints, solution, and
computation of derived variables are presented in this
section as they relate to the two-dimensional parabolic
initial-boundary value problem.

The Galerkin method, in connection with the corresponding
weak formulation to be developed, will be used to generate
the finite element model.

Discretization - For discretization, please refer to the
material in Chapter 3.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Interpolation - The solution is assumed to be expressible in
terms of the nodally based interpolation functions ny(x, y)
introduced and discussed in Section 3.2.

In the present setting, these interpolation functions are used
with the semidiscretization

N+1

U(X’y’t) = Zui(t)ni(x’y)

The ny(x, y) are nodally based interpolation functions and
can be linear, quadratic, or as otherwise desired.
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Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation - The starting point for the
elemental formulation is the weak formulation of the initial-
boundary value problem.

The first step in developing the weak formulation is to
multiply the differential equation by an arbitrary test
function v(x, y) vanishing on I',.

The result is then integrated over the domain Q to obtain

Hv( (kVu) +p%+f]d!) 0

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation - Using the two-dimensional form of
the divergence theorem to integrate the first term by parts,
there results after rearranging

¢ 0
_LVv-kVudQ+j Vpa—l:dQ

= jvn-kVu dF+va do
I 0

whereI'=T", +T,
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Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation - Recalling that v vanishes on T',
and that kou/ox =kn -Vu = (- huon T, it follows that

”VkaudQ+ng%%dQ

0

:Iv(q—hu)df+jjvfd0

This equation is the required weak formulation for the two-
dimensional diffusion problem.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation - Substituting the approximation of
u(x, y, t) into the weak formulation and takingv =n,, k =1,
2, ... yields

on, on, . on an.j
—E kY u—+—~k» u—-|de
}[-[( X 2 ox oy 2 oy
+”nkpzuinid[2+ j nh> undr-
Q I

k=12 ..
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Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation — Where (0 and I',” represent the
elemental areas approximating Q, and the collection of the
elemental edges approximating Fz,respectively.

I G ez e
+”nkpzuinid[2+ InkhZuinidF

k=12 ..

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation — This N x N set of linear algebraic
equations can be written as:

i(Aku +B, U, ) =F(t) k=12...,N
A= Pk s oy ar
B, Zﬂnkpni dQ

F _”‘nfdQ+J‘nkqu

I
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Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation — Note that assembly is contained
implicitly within the formulation.

i(Aku +BU, ) =F, () k=12..,N

on
”( axk ka—x M kEdeJrrJ'nkhni dr

B, = _U n.on, dQ
o

F =_[_[nkf dQ+ _f n.qdr
Q r;

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation — In terms of the corresponding
elementally based interpolations

u,(x,y)=N"u, =uN
The finite element model can be expressed as

Au+Bu=F
A=Dks+> ag B=>r,
F=>f+> qg
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The Galerkin Finite Element Method

Elemental Formulation — In terms of the corresponding
elementally based interpolations

u,(x,y)=N"u,=uN

The finite element model can be expressed as
T T
k. =] L L 7
w \ OX ox oy oy
r, = [[NoN" dA a, = [ NoN'" ds
A,

V2e

f, = [[Nf dA q. = [ Nads
A

V2e

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Elemental Formulation — The initial conditions for the
system of first-order differential equations are obtained
from the initial conditions prescribed for the original initial-
boundary value problem.

Generally u(0) is determined by evaluating the function
c(x, y) at the nodes to obtain

;
u0)=u,=(c, ¢, € .. Cy, Cy)

where ¢; = c(x;, y;) with (x;, y;) the coordinates of the it
node.
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Two-Dimensional Diffusion
The Galerkin Finite Element Method
Constraints - The constraints arise from the boundary
conditions specified on I',.

Generally the values of the constraints are determined from
the g function with the constrained value of u at a node on
I', being taken as the value of g at that point.

These constraints are then enforced on the assembled
equations, resulting in the final global constrained set of
linear first-order differential equations.

Mu+Ku=f u(0)=u,

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Solution - The system of equations is precisely the same in
form and character as the corresponding equations
developed for one-dimensional diffusion.

An analytical method as well as the numerical methods of
Euler and improved Euler or Crank-Nicolson can be used
for integrating the above set of equations.
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Two-Dimensional Diffusion
The Galerkin Finite Element Method

Solution - The Euler method will be conditionally stable with
the critical time step depending on the maximum
eigenvalue of the associated problem (K - AM)v = 0.

The improved Euler or Crank-Nicolson algorithm will be
unconditionally stable.

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion
The Galerkin Finite Element Method

Derived variables - The derived variables will be time
dependent, and depending on the particular problem being
considered, may need to be computed at each time step.

The computations would be per element and would be
carried out using the techniques described in Chapter 3.
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Two-Dimensional Diffusion - Example 1

Consider the Two-Dimensional Diffusion - Example 1
problem shown below.

-1,1) : P(x1t)=1 (1,1
V%j—%; 0
¢(—1yt)=1 ia‘t ¢(1yt):1
-----
$(xy,0)=0 x

1 L p(x-1t)=1 (D

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
Discretization. Due to symmetry, we will model the top

right-most quadrant of the membrane using eight equally-

sized 3-node triangles.

y
1 o
L Vip—p—-=
N PP
-------------- —————B-----> ¢(i1,y t) :1
F(x,£1t)=1
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Two-Dimensional Diffusion - Example 1

Elemental Formulation — This N x N set of linear algebraic
equations can be written as:

N

Z(Akl¢l +Bki¢|):0 k=12...,N

i=1

Ny o on, on,
A”:y{a_xkafay ayde

By = _U n.on, dQ
o

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

Elemental Formulation — In terms of the corresponding
elementally based interpolations

4. (x,y)=N'¢g, =¢/'N

The finite element model can be expressed as

T T
k. =] N N NN ga
n oX oX oy oy

r, = [[NoN" dA
A
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Two-Dimensional Diffusion - Example 1

Interpolation - In matrix notation, the distribution of the
function over the element is:

¢, (x,y)=¢,"N=N'g,

The linear triangular shape functions are illustrated below:

S

I

Kk

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
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Two-Dimensional Diffusion - Example 1

Interpolation - The derivatives of u over the element with
respect to both coordinates are:

o4, (x,y)  ¢oN _oNT o4, (x,y) T@_aNT
ox - ¢e & - Eﬁ; 8y ¢ ay ¢e
Calculating the derivatives of the shape functions gives:
@ — be @ _ ce
ox 2A, oy 2A
b’ = <bi b, bk> c,' = <ci C, ck>
bi:yj_yk Ci =X — X,

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

Elemental Formulation - The integrals defined in k, are the
elemental “stiffness” matrix.

For the linear triangular element we have discussed the
stiffness matrix reduces to: b, b
+C.C,
K, = J]| 2L e o
A

Since the integrand of k, is a constant, the elemental
stiffness matrix becomes: T T
bb, +c.c,

k, =
aA,

The resulting is a 3x3 elemental stiffness matrix.
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Two-Dimensional Diffusion - Example 1

The elemental k, matrix using 3-noded triangular elements

IS:
l(_bQJ+c§J
e 4Ae
yj_yk Xk—XJ
be: Y =Y, Ce =X — X
y|_yj Xj_xl

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

9 8 7

For element 1:
node 1= (0, 0); node 3 = (2, 72); and x| 4% D)

node 4 = (0, %). (@) ¢
(0, 0) (1,0)
1 (%0)2 5
1 ° | 1
b,=—1 1 c,=—40 A =—
2 2 8
1 1
[0
k=2 0 1 ~11[3]

-1 -1 2
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Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

For element 2: ° : !
node 1 =(0, 0); node 2 =(’2, 0); and ©w| % (1, %)
node 3 = (%, 2). 4 e

(0,0) @ (1,0)
1 (%0)2 5
-1 0
b, = L 1 c, = L 1 A = L
2 7~ 2 75 “a
2 2 8
0 1
11 0
kK,=—|-1 2 -1
o -1 1

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

9 8 7

For element 3:
node 2 = (’%, 0); node 5= (1, 0);and  ©w % (4, %)
node 3 = (1%, ¥%). ¢ °

(0,0) A lao

1 (%0)2 5

1
0 A3=§

2 1 12
k3:%—1 1 0|3
-1 0 1
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Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

For element 4: ° : !
node 5 =(1,0); node 6 = (1, ’2);and  ©w, % D)
node 3 = (%, 2). 4 O

(0, 0) (1,0)
1 (%0)2 5
0 -1
b4=% 1 c4—% 1 A4=%
-1 0
11 0
k,=—|-1 2 -1
o -1 1

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

9 8 7

For element 5:
node 4 = (0, %2); node 3 = (2, /2); and o '/z)‘@(vz. ) D)

node 9 = (0, 1). 4 6
(0, 0) (1,0)
1 (%0)2 5
1| | 1
b,=—1{ 1 c,=—1 0 A =—
2 2 8
0 1
2 -1
kg=o|-1 10

-1 0 1@
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Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

For element 6: 6 !
node 3 = ('2, /2); node 8 = (/2, 1); and ©w| % (1, %)
node 9 = (0, 1). o

(0, 0) (1,0)
1 (%0)2 5
0 -1

b ] 1 c _] 1 A _]

6~ o 6~ o “a
2 2

-1 0 8
11 0
ke==|-1 2 -1
o -1 1 EI

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

9 8 7

For element 7:
node 3 = (%%, ’2);node 7 = (1, 1); and e 4% (4, %)
node 8 = (4, 1). 4

(0, 0) (1,0)
1 (%2, 0) 2 5

1
8

1 0 -1]3
k7:%0 1 1|7
-1 -1 2]f]
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Two-Dimensional Diffusion - Example 1
0, 1) (2, 1) (1,1)

9 8 7

For element 8:
node 3 = (%2, ¥2); node 6 = (1, %2); and ©.w) i Ol0n»

4 6

node 7 = (1, 1).
(0, 0) (1,0)
1 (%0)2 5
1] | 1
b,=—70 Co=—1 1 A =—
2 2 8
1 0
2 -1
ky=—|-1 1 0|[g]
1 0 1

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion - Example 1

The elemental m, matrices are:

N
m, = [[NN" dA = N; (N, N, N,)dA
A AN,
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Two-Dimensional Diffusion - Example 1

The assembled K; and Mg matrices are:

2 10 100 00 0]4
0 0 0]4¢

028 2020 2 0|4¢
0
0

410 2 4 0 0 0 -1| ¢4
KG:%O-1002-1 0l ¢
00 20 -14-10 0]4¢
00 000 -12 -10|4¢
00 2000 -14 -14g
000 -100 0 -12]4g

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The assembled K; and Mg matrices are:

2
%,
?,
?,
2
Ps

> NN

23
23

Qg

[

|
OO0 00O AN = M
OO OO0 O ND
-~ O 00O A~ANO -
OO0 O abhON-2 O
OO 2 h a0 NOO
©O -~ N aooOoNOO
-~ N a0 ONOO
A A OO O NOO

N NDDNDNDNDNDN



CIVL 7/8111

Time-Dependent Problems - 2-D Diffusion Equations

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

Applying nonhomogeneous boundary conditions that

{#s, ..., do} ={1,1, 1,1, 1}; the constrained Ky is:
Kep+Mggp =0
(2 10 10 0 0 0 0](¢ 41 2 1000 0 0]f4
-14-2o¢2 14 2 0 1 o>
0 2 8 20 20 -2 O0\N|g 2 21 2 2 2 2 2||4
10240000 g 1 2 40000 1|4
50 10 0210 0 Offf+5s(0 1 204100 04=
00 -20-14 -0 0ff 00 2 01410 0|4
00000 12 -10]/|1 002001410
00-2000 -14 -1 00 2 00014 14
00 0 10 0 0 -1 2| 00 2 1000 1 4[4
{us"'ue}z
TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion - Example 1
Applying nonhomogeneous boundary conditions that
{#s, ..., do} ={1,1, 1,1, 1}; the constrained Ky is:
Kep+Mgp=0
(2 10 10 0 0 0 0](¢ 41 2 1000 0 0]f4
14 2010 0 0 oflg 14 2 01000 0f|g
028 20[20[2olls 2 216 2 2 2>
10240 0\0 o0 4| |10 240000 1/l
0 -1 0 0 2 -1 0 [}+=</04+"2 04 100 0{g=
2 =8 96
00 20 14 - 1N_OJff|—700 2 01410 0|4
00000 -12 -1 0[] 002001410
00-200 0 -1 4 -1|[1] 00 2 00014 14
00 0 10 0 0 -1 2| 000 2 1000 1 4[4

—~
c.
N

.
©
©_

Il

o © O ©O O © O O [ple
)

(6]
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Time-Dependent Problems - 2-D Diffusion Equations

Applying nonhomogeneous boundary conditions that

{#s, ..., do} ={1,1, 1,1, 1}; the constrained Ky is:

K +Mgp =0

N| =~
cooocoo’Nodhln
Ooocoo Lo~
oOh OO ™ o
L ooocoos»HOLM

coLasLoReoo

o LN LN oo oo o

TIME-DEPENDENT PROBLEMS

!OOOI

L ©o oo

r 1
O\©O © © O -~ N =~ H»

Two-Dimensional Diffusion - Example 1

O O —~ A\ o NN O o

- h A O O\O N O O

I-h—\OOO—\l\)OOI

{Ug,---,Ug} =0

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations

are:
Ksd+Mgp=0

2 -1 0 1[4
11-1 4 -2 0|l

2l 0 2 8 -2||4
1 0 -2 4|4

1
96

1
2

O N b =

16

AN O -~

¢1
4,
4,
4,

N =
oA b~ L O
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Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K)g, +h[6of ., +(1-0)f, ]

0=0 Euler method

It is easily seen that:
y {6 =% Crank-Nicolson method

The value #= 1 corresponds to what is referred to as the
modified Euler method and corresponds to using a
backward difference scheme obtained by evaluating the
differential equation at t,,, and taking: . 4.~

n+ n

¢n+1 = h

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

For the @algorithm, recall the largest eigenvalue of the
K — AM help define the time step:

he 2

max

The eigenvalue problem is:

(Kg + Mg )¢ =0

2 -1 0 -1 4 1 2 1
11-1 4 -2 0 2|1 4 2 0 5=0
210 2 8 -2 9%|2 2 16 2

-1 0 -2 4 1 0 2 4
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Two-Dimensional Diffusion - Example 1

The eigenvalues can be found using a variety of available
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(M; 1K) gives eigenvalues D:

1,=56265 A,=32 A, =48 4, =102.3735

The eigenvectors V are:

-0.69829 0.89443 0.00000 -0.44393
v, _ 044187 _ | 0.00000 _J-0.70711 _] 061386
' 1-0.34914 * |-0.44721| * | 0.00000( * ]-0.22197

-0.44187 0.00000 0.70711 0.61386

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion - Example 1

For the example the largest eigenvalue is 102.3735, the
critical time step is:

2 - 2
A 102.3735

max

h < <0.0195sec.
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Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K) g, +h[6of ., +(1-0)f, ]

n+1

In this example, let’s assume h = 0.001 sec. and 0= "%,

therefore:
4 1 2 1 2 1 0 -1
1 4 2 0 111 4 2 o
_ 1 0.001) [ 1
(M +hoK) 2 2 16 2| )2(2] 02 8 -2
10 2 4 4 0 2 4

[0.04217 0.01017 0.02083 0.01017
0.01017 0.04267 0.02033 0.00000
0.02083 0.02033 0.16867 0.02033
10.01017 0.00000 0.02033 0.04267

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:
(M+hoK) g, =(M=-h(1-0)K)g, +h[6of ., +(1-0)f, ]

In this example, let's assume h = 0.001 sec. and 0= "%,
therefore:

27.40488 -5.55522 -2.04559 -5.55522
-1 | -5.56522 26.08491 -2.77761 2.64741

M+ hoK) =
( ) —2.04559 -2.77761 6.85122 -2.77761
-5.65522 2.64741 -2.77761 26.08491
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Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K)g, +h[of ., +(1-0)f, ]

n+1

In this example, let’s assume h = 0.001 sec. and 0= "%,

therefore:
4 1 2 1 2 -1 0 -1
1. 4 2 0 11\ -1 4 =2 0
—(0.001)=| =
(M th) %2 2 16 2 ( )2[2] 0 2 8 -2
1. 0 2 4 -1 0 -2 4
0.04117 0.01067 0.02083 0.01067
10.01067 0.04067 0.02133 0.00000
~10.02083 0.02133 0.16467 0.02133
0.01067 0.00000 0.02133 0.04067

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

=(M-h(1-0)K)¢, +h| 6f , +(1-0)f |

In this example, let's assume h = 0.001 sec. and 0= "%,

(M + h¢9K)¢>n+1
therefore:
0
] 1 hl of
" 214 = |:9 n+1 +
1

(1-0)1,]-

0.001)

0 0.00000
1 0.00050
2 4 0.00200
1 0.00050
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Two-Dimensional Diffusion - Example 1
The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K)g, +h[6of ., +(1-0)f, ]

n+1

In this example, let’s assume h = 0.001 sec. and 9= "%,
therefore:

= (M+hoK) ' [(M=h(1-0)K)u, +h[ 6F,, +(1-6)f, ]

& 0.96704 0.02277 -0.00293 0.02277 || ¢, -0.00965
¢, | 0.01992 0.94227 0.03984 -0.01085 |4, . 0.00881
¢, |-0.00073 0.01138 0.96704 0.01138 || ¢, 0.01092

&), 0.01992 -0.01085 0.03984  0.94227 | |4, ] 0.00881

+1

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1
The @ algorithm for the time integration is:
(M+hoK) g, =(M=-h(1-0)K)g, +h[of ., +(1-0)f, ]

Forn =1, with u(x, y, 0) = 0, then:

¢, 0.96704 0.02277 -0.00293 0.022771(0 ~0.00965
4| _| 0.01992 094227 0.03984 -0.01085|]0( | 0.00881
¢, -0.00073 0.01138 0.96704 0.01138]0 0.01092
¢,), | 0.01992 -0.01085 0.03984 0.94227 |(0 0.00881
¢ ~0.00965 -9.64640
¢, | 0.00881 . P —¢y | 881004
¢, | 0.01092 & = h  |10.92483
), 0.00881 8.81094
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K)g, +h[6of ., +(1-0)f, ]

For n =2, with u(x, y, 0) = 0, then:

¢, 0.96704 0.02277 -0.00293 0.022771(-0.00965] (-0.00965
4| _| 001992 094227 003984 -0.01085|| 0.00881| | 0.00881
¢, -0.00073 0.01138 0.96704 0.01138 || 0.01092 0.01092
¢, | 0.01992 -0.01085 0.03984 0.94227 || 0.00881), | 0.00881
¢, -0.01861 -8.95924
4| _| 001726 _ b~ | 8adosa
¢, | 0.02170 ¢, = h  |10.77241
¢, |0.01726 8.44984

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:
(M+hoK) g, =(M=-h(1-0)K)g, +h[of ., +(1-0)f, ]

For n = 3, with u(x, y, 0) = 0, then:

4 0.96704 0.02277 -0.00293 0.02277](-0.01861)  (-0.00965
4| _| 001992 094227 003984 -0.01085|| 0.01726| | 0.00881
¢, [-0.00073 0.01138 0.96704 0.01138 || 0.02170 0.01092
4, | 001992 -0.01085 0.03984 0.94227]| 0.01726), | 0.00881
4| [-0.02692 -8.31072
4| | 002538 G | 812111
4| | 0.03231 by = h  |10.61629
¢ 0.02538 8.12111
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K)g, +h[6of ., +(1-0)f, ]

n+1

For n =100, with u(x, y, 0) = 0, then:

é, 0.96704 0.02277 -0.00293 0.022777(0.14298 -0.00965
4| | 0.01992 0.94227 0.03984 -0.01085 ||0.44394 0.00881
¢, |-0.00073 0.01138 0.96704 0.01138||0.54977 0.01092
4),, | 0.01992 -0.01085 0.03984 0.94227 |(0.44394), | 0.00881
¢, 0.14722 4.24609
4| |o.44706 oo ~ P |3.11999
¢,  ]0.55257 Proo = h "] 2.80721
$ .0, 10.44706 3.11999

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The values of ¢, and ¢,for 0 <t <1 sec. are show below:

08 [
0.6 -

0.4 y C

! ! I I I
0.4 0.5 0.6 0.7 0.8 0.9 1
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The derivative values of ¢, and ¢,for 0 <t <1 sec. are:

=)

& & A M o N » 0 ®
T T T T —

=)

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

Time: 0.001 Time: 0.002
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 1

Time: 0.001

Time: 0.002

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion - Example 2

Consider the two-dimensional diffusion problem shown
below.

y

A

“11) : #(x11)=0 (1,1
o¢
V2¢ -—=0
u(-1y.t)= cos(%j ot u(1y.t) :cos[%)

(-1,-1) g(x,-1t)=0 (1)
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Discretization. Due to symmetry, we will model the top
right-most quadrant of the membrane using eight equally-
sized 3-node triangles.

y
B 0@
P Vip—p—=0
- ¢ P
-------------- ¢ o 3> #(+1y,t) =cos (—yj
#(x,£1t)=0
#(x,y,0)=0

TIME-DEPENDENT PROBLEMS
Two-Dimensional Diffusion - Example 2

Applying homogeneous boundary conditions that u,, ug, and
Ug = 0; then the assembled K; and M matrices are:

2 1 0 -1 0 0] 4
1 4 2 0 -1 0|4
110 2 8 2 0 -2|4¢
2/l-1 0 -2 4 0 0|4
0 -1 0 0 2 -1|¢
0 0 2 0 -1 4|4

33/45
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Applying homogeneous boundary conditions that u,, ug, and
Ug = 0; then the assembled K; and M matrices are:

4 1 2 1 0 0] 4
1 4 2 0 1 04
wo_ 112 216 2 2 2/
© 961 0 2 4 0 0|4,
0 1 2 0 4 1|4
(0 0 2 0 1 4|4

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations
are:

Ku+Mou=0 u; =1 and u, =0.7071

YN
[
-—
o
|
N
N
o
o o o ofo]o




CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion Equations 35/45

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations

are:
Ku+Mou=0 us=1 and u, =0.7071
2 14 0 1 0 0] 0
1 4 2 of1]o 0.5
10-2 8 -2 012 >(0.7071
2/-1 0 2 4 0/ 0 “lo
0 1 0 0 2\ 1 0
0 0 2 0 -1 4 0
U, =
i =0

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Assembly. With both the boundary conditions essential,
BT=0 and bt=0. It follows that the assembled equations

are:

Kep+Mgp=0
2 1 0 1|4 4 1 2 114 0
11-1 4 -2 0fjg,| 1|1 4 2 0|4 1] 1
2l 0 2 8 2||g| 962 2 16 2||4| 2|42
-1 0 -2 4|4 1 0 2 4]l 0



CIVL 7/8111 Time-Dependent Problems - 2-D Diffusion Equations 36/45

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

(M+hoK) g, =(M=h(1-0)K)g, +h[of ., +(1-0)f, ]

0=0 Euler method

It is easily seen that:
y { =% ¢ Crank-Nicolson method

The value #= 1 corresponds to what is referred to as the
modified Euler method and corresponds to using a
backward difference scheme obtained by evaluating the
differential equation at t,,, and taking: . 4.~

n+ n

¢n+1 = h

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:
(M+hoK) g, =(M=-h(1-0)K) g, +h[of ., +(1-0)f, ]

In this example, let's assume h = 0.002 sec. and 9= "%,

therefore:
(4 1 2 A1 2 -1 0 -1
111 4 2 0 171 -1 4 =2 0
- 0.002)—=| =
(M+h‘9K) 9|2 2 16 2 + )2[2j 0 2 8 -2
1. 0 2 4 -1 0 -2 4

[0.04267 0.00992 0.02083 0.00992
0.00992 0.04367 0.01983 0.00000
0.02083 0.01983 0.17067 0.01983

10.00992 0.00000 0.01983 0.04367
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2
The @ algorithm for the time integration is:

(M+hoK) g, =(M=h(1-0)K)g, +h[of ., +(1-0)f, ]

n+1

In this example, let’s assume h = 0.002 sec. and 0= "%,
therefore:

26.84816 -5.15256 -2.07980 -5.15256
-1 | -5.16256 25.24105 -2.57628 2.34028

M+ hoK) =
( ) -2.07980 -2.57628 6.71204 -2.57628
-5.15256 2.34028 -2.57628 25.24105

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2
The @ algorithm for the time integration is:

(M+hoK) g, =(M=-h(1-0)K) g, +h[of ., +(1-0)f, ]

In this example, let's assume h = 0.002 sec. and 9= "%,

therefore:
(4 1 2 1 2 -1 0 -1
1 4 2 0 171 -1 4 =2 0
— =— —(0.002)=| =
(M th) 2 2 16 2 ( )2(2j 0 2 8 -2
1 0 2 4 1 0 -2 4

[0.04067 0.01092 0.02083 0.01092
0.01092 0.03967 0.02183 0.00000
0.02083 0.02183 0.16267 0.02183
10.01092 0.00000 0.02183 0.03967
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

(M+hoK) g, =(M=h(1-0)K)g, +h[6of ., +(1-0)f, ]

n+1

In this example, let’s assume h = 0.002 sec. and 0= "%,

therefore:

0 0 0.00000
BRI ~(0.002) | 1| ]0.00100
21z = h[@fn+1 +(1-0)f, }——2 J2[" ] 0.00141

0 0 0.00000

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:
(M+hoK) g, =(M=h(1-0)K)g, +h[6of ., +(1-0)f, ]

In this example, let’s assume h = 0.002 sec. and 0= "%,
therefore:

— (M+hoK) [ (M=h(1-0)K)u, + h[ 6F,, +(1-0)f, ]|

n+1

& 0.93600 0.04330 -0.00397 0.04330 || ¢, -0.00809
¢, | 0.03789 0.88873 0.07577 -0.01967 | 4, . 0.02160
¢, |-0.00099 0.02165 0.93600 0.02165 || ¢, 0.00692

4,). . | 003789 -0.01967 0.07577 0.88873]|¢,) [-0.00130
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

(M+hoK) g, =(M=h(1-0)K)g, +h[6of ., +(1-0)f, ]

n+1

Forn =1, with u(x, y, 0) = 0, then:

2
?,
¢,
&

¢
%,
¢,
2

0.93600
0.03789
—0.00099
0.03789

-0.00809
0.02160
0.00692

-0.00130

0.04330 -0.00397 0.04330 (0 -0.00809
0.88873 0.07577 -0.01967 ||0 N 0.02160
0.02165 0.93600 0.02165 |0 0.00692
0

-0.01967  0.07577  0.88873 ~0.00130
~4.04692
b= ¢ — ¢ |1079882
T n | 345799
~0.65156

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

(M+hoK) g, =(M=h(1-0)K)g, +h[6of ., +(1-0)f, ]
For n =2, with u(x, y, 0) = 0, then:

é 0.93600 0.04330 -0.00397 0.043307(-0.00809] (-0.00809
é, 0.03789 088873 0.07577 -0.01967 || 0.02160| | 0.02160
¢, |-0.00099 0.02165 0.93600 0.02165|| 0.00692 0.00692
¢), | 0.03789 -0.01967 0.07577 0.88873|(-0.00130), (-0.00130
) -0.01482 -3.36228

é, 0.04104 j, = ¢ —¢ | 971875

¢, 0.01384 2" R | 346037

é, -0.00267 -0.68274

2
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

(M+hoK)g,., =(M-h(1-0)K)4, +h[6

n+1

For n = 3, with u(x, y, 0) = 0, then:

2
?,
¢,
&

2
#,
¢,
2

0.93600
0.03789
—0.00099
0.03789

—0.02036
0.05861
0.02071

—-0.00399

0.04330 -0.00397 0.04330 |(-0.01482
0.07577 -0.01967 || 0.04104
0.93600 0.02165|| 0.01384

0.88873
0.02165
-0.01967

0.07577  0.88873(-0.00267],

¢3:

2

—¢, | 878560

—2.76958

h | 343787
~0.66308

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The @ algorithm for the time integration is:

—0.00397 0.04330|{0.21938
0.07577 -0.01967 ||0.42032

0.93600 0.02165 ||0.28613

0.07577  0.88873]0.17034]

¢1 00 —

1.15193
_ Pioo — P |0.73592

h 0.58629

(M + h¢9K) [/

For n =100, with u(x, y, 0) = 0, then:
¢ 0.93600  0.04330

¢, | 0.03789 0.88873

¢, -0.00099 0.02165

#),, L 0.03789 -0.01967

¢ 0.22168

$|  ]0.42179

¢, 0.28730

¢, 0.17181

100

0.73499

f..+(1-0)f, |

-0.00809
0.02160
0.00692

—-0.00130

=(M-h(1-0)K)¢, +h| 6f , +(1-0)f |

—-0.00809
0.02160
0.00692

-0.00130
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The values of ¢, and ¢,for 0 <t < 2 sec. are show below:

0.6

05

¢2 e S
0.4 .
/ ~
0.3 /
/
//
02 / ¢
[/ 1
0.1 T /
|/
of
\/
0.1 :
0 0.2 04 06 0.8 1

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

The derivative values of ¢, and ¢,for 0 <t < 2 sec. are:

41/45
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Time: 0.002 Time: 0.004

3.0 a9y

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion - Example 2

Time: 0.002 Time: 0.004

3.0 a9y
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

Time-dependent problems are inherently more difficult
and expensive to solve than their corresponding steady-
state counterparts.

The expense of generating the global matrices is higher
for the time-dependent problems because of the
necessity of computing the mass matrices.

The main extra expense, however, is in solving the
resulting time-dependent global equations.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

For an analytical approach to the solution, additional
expense is incurred in terms of having to determine
eigenvalues and eigenvectors.

The actual amount of expense depends on the specific
form of the stiffness and mass matrices and the al-
gorithm used, but in any case it is significantly in excess
of the expense of solving the single set of linear
algebraic equations associated with the steady-state
problem.
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TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

For a time domain integration technique, the additional
expense is clearly related to the number of time steps
necessary to trace out the desired time history.

In addition to several matrix multiplications and additions,
each step can involve the solution of a set of linear
algebraic equations.

In some instances this expense can be minimized by
using a decomposition that can be reused for the
computation of the solution at each new time.

TIME-DEPENDENT PROBLEMS

Two-Dimensional Diffusion

In this regard recall that the Euler and central difference
algorithms require that the size of the time step not
exceed a value proportional to the inverse of the largest
eigenvalue.

For large systems this critical step size can be very small

resulting in many applications of the algorithm to trace
out the time history.

The unconditionally stable Crank-Nicolson and Newmark
algorithms, can be used with arbitrary step size that has
been chosen so as to accurately integrate the lower
modes, with significant improvement in the expense
relative to the conditionally stable algorithms.

44145
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End of
Chapter 4c





