
TIME-DEPENDENT PROBLEMS

The previous three chapters dealt exclusively with steady-
state problems, that is, problems where time did not enter 
explicitly into the formulation or solution of the problem. 

The types of problems considered in Chapters 2 and 3, 
respectively, were one- and two-dimensional elliptic 
boundary value problems. 

In this chapter, finite element models for parabolic and 
hyperbolic equations, such as the one-dimensional 
transient heat conduction and the one-dimensional scalar 
wave equation, respectively, will be developed. 

TIME-DEPENDENT PROBLEMS

The wave equation is an important second-order linear 
partial differential equation for the description of waves –
as they occur in physics – such as sound waves, light 
waves and water waves. 

It arises in fields like acoustics, electromagnetics, and fluid 
dynamics. 

Historically, the problem of a vibrating string such as that of 
a musical instrument was studied by Jean le Rond
d'Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-
Louis Lagrange.
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TIME-DEPENDENT PROBLEMS

Joseph-Louis Lagrange

Jean le Rond d'Alembert

Leonhard Euler

Daniel Bernoulli

TIME-DEPENDENT PROBLEMS

A pulse traveling through a string with fixed endpoints as 
modeled by the wave equation.

CIVL 7/8111 Time-Dependent Problems - 1-D Wave Equation 2/68
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Spherical waves coming from a point source.

TIME-DEPENDENT PROBLEMS

Cut-away of spherical wavefronts, with a wavelength of 10 
units, propagating from a point source.
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TIME-DEPENDENT PROBLEMS

A solution of the wave equation in two dimensions with a 
zero-displacement boundary condition along the entire 
outer edge.

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

( , )u x t

L

( )P t

An example of a physical problem whose behavior is 
described by the classical one-dimensional wave equation 
is the problem of the longitudinal or axial motion of a 
straight prismatic elastic bar as indicated below.

dx

( )P t ( )P t dP
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One-Dimensional Wave or Hyperbolic Equations

The basic physical principle governing the motion is 
Newton's second law which, when applied to a typical 
differential element as shown above, yields:

dx

( )P t ( )P t dP

 
2

2x

d u
F P P dP Adx

dt
     

with

P A
2

2

u u
AE A

x x t
        

AE
du

AE
dx



TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

The resulting equation: 

where A is the area, E is Young's modulus, and  is the 
mass density. 

This equation of motion is often referred to as the one-
dimensional wave equation in that it is an example of the 
standard hyperbolic equation that predicts wave 
propagation in a one-dimensional setting. 

2

2

u u
AE A

x x t
        
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One-Dimensional Wave or Hyperbolic Equations

When A and E are constants, the equation is often written 
as:

2 2
2

2 2

u u
c

x t

 


 
with Ec 

where c is the speed at which longitudinal waves 
propagate along the x -axis.

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

Appropriate boundary conditions are:

( , )
( ) (0, ) 0

u L t
AE P t u t

x


 



stating that the displacement is zero for all time at x = 0 
and that there is a force P(t) applied at x = L. 

( ,0)
( ) ( , 0) ( )

u x
g x u x f x

t


 



are also prescribed, where f(x) and g(x) represent the 
initial axial displacement and axial velocity, respectively. 

Two initial conditions of the form:
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One-Dimensional Wave or Hyperbolic Equations

Thus a typical initial-boundary value problem associated 
with the wave equation can be stated as:

2

2
0 , 0

u u
AE A x L t

x x t
           

Many other physical situations such as the transverse motions 
of strings and membranes, propagation of sound, and 
dynamic disturbances in fluids and solids are governed by 
the wave equation. 

(0, ) 0u t 

( , )
( )

u L t
AE P t

x






( , 0) ( )u x f x

( ,0)
( )

u x
g x

t






TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

As has been indicated numerous times in the preceding 
material, the first steps in developing a finite element 
model are discretization and interpolation. These are 
carried out exactly as before. 

One-Dimensional Wave or Hyperbolic Equations

( )u x

x

1x a 2x ꞏ ꞏ ꞏ

nodes

4x3x Nx 1Nx b 

elements
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The Galerkin Finite Element Method

Discretization. The first step in developing a finite element 
model is discretization. Nodes for the spatial domain 
a ≤ x ≤ b are chosen as indicated below, with a = x1

and b = xN+1. 

One-Dimensional Wave or Hyperbolic Equations

( )u x

x

1x a 2x ꞏ ꞏ ꞏ

nodes

4x3x Nx 1Nx b 

elements

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Interpolation. Interpolation would again be semidiscrete, of 
the form:

1

1

( , ) ( ) ( )
N

i iu x t u t n x


 

where the ni(x) are nodally based interpolation functions 
and can be linear, quadratic, or higher-order if desired. 

The elements indicated above are specifically for linear 
interpolation.

One-Dimensional Wave or Hyperbolic Equations
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The Galerkin Finite Element Method

Elemental formulation. Consider again the initial-boundary 
value problem developed in the previous section:

One-Dimensional Wave or Hyperbolic Equations

(0, ) 0u t  ( , 0) ( )u x f x

( , )
( )

u L t
AE P t

x





( ,0)

( )
u x

g x
t






2

2
0 , 0

u u
AE A x L t

x x t
           

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. The elemental formulation for the 
wave equation is based on a corresponding weak 
statement. 

The weak form is developed by multiplying the differential 
equation by a test function v(x) satisfying any essential 
boundary conditions, with the result then integrated over 
the spatial region according to:

One-Dimensional Wave or Hyperbolic Equations

2

2
0

b

a

u u
v AE A dx

x x t


            

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The Galerkin Finite Element Method

Integrating by parts and eliminating the derivative terms 
from the boundary conditions yields:

   
2

2
0

b

a

u u
v AE Av dx v L P t

x t


           


Elemental formulation. The elemental formulation for the 
wave equation is based on a corresponding weak 
statement. 

One-Dimensional Wave or Hyperbolic Equations

which is the required weak statement for the initial-boundary 
value problem associated with the one-dimensional wave 
equation. 

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. The finite element model is obtained 
by substituting the approximate solution and v = nk, k = 1, 2, 
..., N + 1, successively, into the above expression to obtain:

 1

1
1

( )
bN

k i k i kN

a

n AEn n An u dx P t 



     

One-Dimensional Wave or Hyperbolic Equations
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The Galerkin Finite Element Method

Elemental formulation. Which can be written as:

 
1

1

( ) ( ) ( ) 1,2,..., 1
N

ki i ki i kA u t B u t F t k N


    

 
b

ki k i
a

A n AEn dx  

 
b

ki k i
a

B n An dx 

1 ( )k kNF P t 

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. In matrix notation, the above 
expression can be written as:

 Au Bu F

e e

 G GA k B = m

 T
j

i

x

x

AE dx  ek N N

One-Dimensional Wave or Hyperbolic Equations

0 0 0 .... 0 PF =

 T
j

i

x

x

A dx em N N
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The Galerkin Finite Element Method

Elemental formulation. The original initial-boundary value 
problem has been converted into the initial value problem:

0 0with (0) (0)   Au Bu F u u u u  

The vector u0 and ů0, representing the discretized version of 
the initial conditions f and g, are usually taken to be 
respectively the vectors consisting of the values of f(x) and 
g(x) at the nodes, that is:

T

0 2 3(0) (0) ( ) ( ) ... ( ) ( )Nf f x f x f x f L u u

One-Dimensional Wave or Hyperbolic Equations

T

0 2 3(0) (0) ( ) ( ) ... ( ) ( )Ng g x g x g x g L u u 

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. Note that the assembly process 
has taken place implicitly, while carrying out the details of 
obtaining the governing equations, using the Galerkin 
method in connection with the weak formulation.

Enforcement of constraints is necessary if either of the 
boundary conditions is essential, that is, if the dependent 
variable is prescribed at either boundary point. 

One-Dimensional Wave or Hyperbolic Equations
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The Galerkin Finite Element Method

Elemental formulation. The system of equations must be 
altered to reflect these constraints. 

Consider for example, the case where the boundary 
condition at x = 0 is u(0, t) = u0(t). The first scalar equation 
of the set of equations would be replaced by the constraint 
so that there would result:

1 0

21 1 22 2 23 3 21 1 22 2 23 3

31 1 32 2 33 3 31 1 32 2 33 3

( )

0

0

u u t

a u a u a u b u b u b u

a u a u a u b u b u b u


       
       

   
   



One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. The u1 and  terms in the remaining 
equations are transferred to the right-hand side to yield:

1 0

22 2 23 3 22 2 23 3 21 0 21 0

32 2 33 3 32 2 33 3 31 0 31 0

( )u u t

a u a u b u b u a u b u

a u a u b u b u a u b u


       
       

   
   



One-Dimensional Wave or Hyperbolic Equations

For a linearly interpolated model the half bandwidth is two, 
and only the u1 and ü1 in terms in the second equation 
need be transferred to the right-hand side. 
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The Galerkin Finite Element Method

Elemental formulation. The u1 and  terms in the remaining 
equations are transferred to the right-hand side to yield:

1 0

22 2 23 3 22 2 23 3 21 0 21 0

32 2 33 3 32 2 33 3 31 0 31 0

( )u u t

a u a u b u b u a u b u

a u a u b u b u a u b u


       
       

   
   



One-Dimensional Wave or Hyperbolic Equations

For a quadratically interpolated model the half bandwidth is 
three, and terms from the second and third equations need 
to be transferred. If the constraint is at the right end, the 
Nth, (N - 1)st, . . . equations would be similarly altered.

TIME-DEPENDENT PROBLEMS

The Galerkin Finite Element Method

Elemental formulation. The constrained set of equations 
may be written as:

 Mu Ku F 0(0) u u

One-Dimensional Wave or Hyperbolic Equations

0(0) u u 

Note that if there were distributed inputs resulting in a more 
general nodal distribution of forces:

T

1 2 3 1( ) ( ) ( ) ( )NF t F t F t F tF = 
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The Galerkin Finite Element Method

Elemental formulation. The final set of equations would 
appear as:

One-Dimensional Wave or Hyperbolic Equations

 
 

1 0

22 2 23 3 22 2 23 3 2 21 0 21 0

32 2 33 3 32 2 33 3 3 31 0 31 0

( )u u t

a u a u b u b u F t a u b u

a u a u b u b u F t a u b u


       
       

   
   



In any case, algorithms for integrating these equations (the 
solution step) are studied in the following sections. The 
derived variables, which are now functions of time, are 
computed per element in exactly the same fashion as 
outlined for the one-dimensional problems in Chapter 2.

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave Example

Consider again the problem outlined below: 

One-Dimensional Wave or Hyperbolic Equations

2

2
0 , 0

u u
AE A x L t

x x t
           

(0, ) 0u t  ( , 0) ( )u x f x

( , )
( )

u L t
AE P t

x





( ,0)

( )
u x

g x
t






corresponding to a uniform bar initially at rest and 
undeformed, acted on suddenly by a constant force P0 at 
the unsupported end.
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Discretization. A mesh for three equal-length, linearly inter-
polated elements is indicated below:

Interpolation. Linear interpolation will be used for the three 
elements.

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

1 0x  2x 4x L

u

x

3x

3e
Ll 

TIME-DEPENDENT PROBLEMS

Elemental Formulation. The elemental matrices are: 

 T
j

i

x

x

AE dx  ek N N

 T
j

i

x

x

A dx em N N

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

 
1

T

0

eAE l d   N N 

 
1

T

0
eA l d  N N 
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Elemental Formulation. The linear interpolation functions 
written in local space  are:

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

0  1 

1iN  1

iN

0  1 

1iN  1

1iN 

TIME-DEPENDENT PROBLEMS

Elemental Formulation. The derivative shape functions 
are:

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

1iN  

0  1 

1

0  1 

1
1 1iN  
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Elemental Formulation. The ke elemental matrix is: 

 T
j

i

x

x

AE dx  ek N N

 

1

2
0

11
1 1

1 e

e

AE l d
l

 
  

 
 

1

0

1 1

1 1e

AE
d

l

 
   

 
1 1

1 1e

AE

l

 
   

1 13

1 1

AE

L

 
   

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

 
1

T

0

eAE l d   N N 

Elemental Formulation. The me elemental matrix is: 
1i

i

x

x

A dx


  T
em N N

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

1i

i

x

x

A dx


  T
e1m N N

   
 

21

2
0

1 1

1
eA l d

   
  

     
  



1

0

1
1 eA l d


   


 

  
 


2 1

1 218

AL  
  

 


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Elemental Formulation. The elemental matrices are: 

 
1

T

0

1 13

1 1e

AE
AE l dx

L

      
ek N N

 
1

T

0

2 1

1 218e

AL
A l dx

 
   

 
em N N



One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

0

02 1 0 0 1 1 0 0

01 4 1 0 1 2 1 03
00 1 4 1 0 1 2 118

0 0 1 2 0 0 1 1

AL AE

L

P

     
                             

u u

TIME-DEPENDENT PROBLEMS

Assembly. It follows that the assembled equations are:

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

Dividing by 3AE/L gives:

2

0

0
2 1 0 0 1 1 0 0

0
1 4 1 0 1 2 1 0

0
0 1 4 1 0 1 2 154

0 0 1 2 0 0 1 1
3

L

E
P L

AE

      
                               

u u
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Assembly. The unconstrained equations are:

2

54

L

E

  0P L

AE
 

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

1 0u 

02 1 0 0 1 1 0 0
01 4 1 0 1 2 1 0
00 1 4 1 0 1 2 1

0 0 1 2 0 0 1 1 3



    
                             

u u

TIME-DEPENDENT PROBLEMS

Constraints. The constraints follow from the boundary 
conditions as:

   1 0 and 0, 0u t u t 

The constrained equations become:

4 1 0 2 1 0 0

1 4 1 1 2 1 0

0 1 2 0 1 2
3

                   
           

u u

Subject to the initial condition: 0(0) 0u u

0(0) 0u u 

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

CIVL 7/8111 Time-Dependent Problems - 1-D Wave Equation 20/68



TIME-DEPENDENT PROBLEMS

The comments made regarding the different approaches 
available for handling the mass matrices in connection with 
one-dimensional diffusion equations are equally applicable 
for the wave equation. The forms of the mass matrices are 
identical, so that:

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations
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TIME-DEPENDENT PROBLEMS

Analytical Integration Techniques

Generally, for a one-dimensional wave equation the 
constrained system of ordinary differential equations 
resulting from the application of the finite element method 
is of the form:

 t Ku Mu F

that is, a coupled system of linear second-order ordinary 
differential equations. 

This system of differential equations will be treated 
analytically by decomposing the general solution u into a 
homogeneous solution uh and a particular solution up

according to:

One-Dimensional Wave or Hyperbolic Equations

+ h pu u u
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TIME-DEPENDENT PROBLEMS

Analytical Integration Techniques

The homogeneous equations are satisfied by uh

0 h hKu Mu

and up is any particular solution satisfying:

 t p pKu Mu F

One-Dimensional Wave or Hyperbolic Equations

This procedure is essentially the well-known superposition 
principle, valid for linear systems.

TIME-DEPENDENT PROBLEMS

Analytical Integration Techniques

Homogenous Solution. For a system of second-order 
ordinary differential equations representing an undamped 
physical model, the homogeneous solution is taken to be 
of the form:

a solution that is harmonic or periodic in time.

Substituting into the governing equation yields:

One-Dimensional Wave or Hyperbolic Equations

( ) i tt e hu v

 2 0 K M v
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Analytical Integration Techniques

This equation is the generalized linear algebraic eigenvalue 
problem discussed several times in previous sections. 

When K and M are symmetric and positive definite, as is the 
case for the one-dimensional problems currently being 
considered, all the eigenvalues 2

j are positive and real 
with the eigenvectors vj also real and M-orthogonal. 

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

Analytical Integration Techniques

The corresponding homogeneous solution is written as:

One-Dimensional Wave or Hyperbolic Equations

  ji t

jt c e  h ju v

where the cj are complex constants. Expressed in real 
form:

     cos sinj j j jt a t b t    h ju v
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Analytical Integration Techniques

Particular solution. The particular solution is any solution 
of:

One-Dimensional Wave or Hyperbolic Equations

and, depending on the specific form of F, can be determined 
by using:

 t p pKu Mu F

1. Undetermined coefficients (intelligent guessing)

2. Variation of parameters

3. Laplace transform methods

TIME-DEPENDENT PROBLEMS

Analytical Integration Techniques

After determining the particular solution using one of these 
approaches, the general solution of can be written as:

One-Dimensional Wave or Hyperbolic Equations

       cos sinj j j jt a t b t t      j pu v u

The initial conditions are used to determine the 2N constants 
aj and bj, j = 1,2, ... , N, according to:

(0) (0)ja  0 j pu u v u (0) 0 pVa u u

where V is the N x N matrix consisting of the eigenvectors 
as columns and a is a vector of containing the aj values. 
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Analytical Integration Techniques

After determining the particular solution using one of these 
approaches, the general solution of can be written as:

One-Dimensional Wave or Hyperbolic Equations

       cos sinj j j jt a t b t t      j pu v u

Similarly

(0) (0)j jb  0 j pu u v u   (0) 0 pVωb u u 

T

1 1 2 2 3 3 N Nb b b b   ωb 

TIME-DEPENDENT PROBLEMS

A unique solution to each of the sets of equations is guaranteed 
on the basis of the linearly independent character of the vj for 
the case where M and K are symmetric and positive definite.

For the particular example developed here:

One-Dimensional Wave Example

One-Dimensional Wave or Hyperbolic Equations

4 1 0 2 1 0 0

1 4 1 1 2 1 0

0 1 2 0 1 2
3
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                   
           
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The eigenvalues and eigenvectors are determined from:

 
   

 
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       
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example
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TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The roots of the corresponding characteristic equation:

     2 2
1 2 4 1 2 3 1 0        

are:

1 2 30.0467 0.5000 1.6456    

2 2

54

L

E

  



2

54E

L




2

54
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L

Ec 
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

From which: 

1 2 3

1.5887 5.1962 9.4266
c c c

L L L
              

     

Ec 

where c is the speed of waves propagating along the bar

The corresponding exact values are:

1 2 3

1.5708 4.7124 7.8540
c c c

L L L
            
     

  

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The corresponding eigenvectors are:

T
0.5000 0.8660 1.00001v

T
1.0000 0.0000 1.0000 2v

T

3 0.5000 0.8660 1.0000 v

The homogeneous solution is:

   
 

1 1 1 1 1 2 2 2 2 2

3 3 3 3 3

( ) cos( ) sin( ) cos( ) sin( )

cos( ) sin( )

t a t b t a t b t

a t b t

   

 

   

 
hu v v

v
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Note that there are six arbitrary constants to be determined 
from the six scalar equations represented by:

0(0) u u 0(0) u u 

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Observe that in:
T

0 0 3
 p pKu Mu

a particular solution is easily obtained by taking up = d, a 
constant, resulting in

T

0 0 3
Kd

2 1 0 0

1 2 1 0

0 1 1 3

  
  
   

T
1 2 33

 d
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Applying the initial condition u(0) = 0 yields:

1 1 2 2 3 3(0) 0 a a a    u v v v d

1

2

3

30.5000 1.0000 0.5000
20.8660 0.0000 0.8660 3

1.0000 1.0000 1.0000 3
3

a

a

a

 
     

           
           

T T

1 2 3a a a -0.8294 0.1111 0.0595     a

1v 2v 3v

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

1

2

3

0.5000 1.0000 0.5000 0

0.8660 0.0000 0.8660 0

1.0000 1.0000 1.0000 0

b

b

b

     
         
         

With ů(0) = ů0 = up(0) = 0, it follows that:

1 1 2 2 3 3(0) 0 b b b   u v v v

T

1 2 3 0b b b b

1v 2v 3v
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The solution can then be written as:

 
 
 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

( ) cos( ) sin( )

cos( ) sin( )

cos( ) sin( )

t a t b t

a t b t

a t b t

 

 

   p

u v

v

v υ

 

 

 

1 1 2 20.8294 cos( ) 0.1111 cos( )t t   

u

v v

T

3 3
10.0595 cos( ) 1 2 33t v

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Recall the corresponding eigenvectors are:

T
0.5000 0.8660 1.00001v

T
1.0000 0.0000 1.0000 2v

T

3 0.5000 0.8660 1.0000 v

1 1 2 20.8294 cos( ) 0.1111 cos( )t t   

u

v v

T

3 3
10.0595 cos( ) 1 2 33t v
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Substituting the eigenvectors gives:

 
   
               

1 2

0.5000 1.0000

0.8294 0.8660 cos( ) 0.1111 0.0000 cos( )

1.0000 1.0000

t t
u


   
        
   
   

3

0.5000 1
10.0595 0.8660 cos( ) 23

1.0000 3

t

1 2 3

1.5887 5.1962 9.4266
c c c

L L L
              

     

1v
2v

3v

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

In an expanded form:

2
1 2 30.3333 0.4147cos( ) 0.1111cos( ) 0.0298cos( )

u
t t t     



3
1 30.6667 0.7183cos( ) 0.0516cos( )

u
t t   



4
1 2 31.0000 0.8294cos( ) 0.1111cos( ) 0.0595cos( )

u
t t t     



The constant term represents, in a sense, the steady-state 
or static solution
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

In an expanded form:

2
1 2 30.3333 0.4147cos( ) 0.1111cos( ) 0.0298cos( )

u
t t t     



3
1 30.6667 0.7183cos( ) 0.0516cos( )

u
t t   



4
1 2 31.0000 0.8294cos( ) 0.1111cos( ) 0.0595cos( )

u
t t t     



If damping were included in the physical model, the terms in 
the homogeneous solution corresponding to the present 
cosine terms would eventually damp out.

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The corresponding exact solution can be represented in 
terms of the infinite series:

   
 2

1 cos( )( , )
2

n n n

n

n nL x ctu x t

L

    



  
 

 2 1

2
n

n
L





 ( ) sin( )nn x x 
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

Retaining the first three terms of the series solution 
at x = L/3, 2L/3, and L yields:

 
1 2 3

/ 3,
0.3314 0.4053cos( ) 0.0901cos( ) 0.0162cos( )

u L t
t t t     



 
1 2 3

2 / 3,
0.7639 0.7020cos( ) 0.0901cos( ) 0.0281cos( )

u L t
t t t     



 
1 2 3

,
0.9330 0.8106cos( ) 0.0901cos( ) 0.0324cos( )

u L t
t t t     



where n = nc. Note the general similarity between the 
three-term expansion of the exact solution and the 
approximate solution from the three-element finite element 
model.

TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The approximate lowest frequency 1 is quite close to the 
exact lowest frequency 1, with:

The other two ratios:

1

1

1.0114





32

2 3

1.1027 1.2002


 
 

are not quite as accurate. 

Recall, the general rule stating that approximately 2N 
unconstrained degrees of freedom are necessary in order 
that the first N frequencies be determined accurately. In 
this instance, the first frequency should be quite accurate, 
which is certainly the case.
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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The exact solutions u(L, t) and u4(t) are indicated for the 
first few oscillations below: 

 4u t



TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

The results are for E = 3 X 107 psi,  = 7.5 X 10-4 Ibf-s2/in4, 
and L = 20 in. 

 4u t


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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example
The agreement is quite reasonable with the approximate 

solution beginning to peak early due to the fact that all the 
approximate frequencies exceed the exact values.

 4u t



TIME-DEPENDENT PROBLEMS

One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

A finer mesh would result in better agreement.

 4u t


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One-Dimensional Wave or Hyperbolic Equations

One-Dimensional Wave Example

 u t



TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

As was the case for the systems of first-order equations, 
there may be situations where M and K are time-
dependent or where F(t) is such that an analytical 
approach is not an intelligent way to proceed. 

Numerical integration techniques, which are appropriate in 
such situations, are presented and discussed in the next 
sections.

One-Dimensional Wave or Hyperbolic Equations
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The Central Difference Method - The system of second-
order linear ordinary differential equations in question is 
restated as:

A discretization of the time variable with tn - tn-1 = tn+1 - tn = h, 
the time step.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 Mu Ku F 0(0) u u 0(0) u u 

1nt  1nt 

u

t

nt

h h

TIME-DEPENDENT PROBLEMS

The differential equation is evaluated at t = tn to yield:

where un = u(tn) = u(nh), and Fn = F(tn) = F(nh). 

Central difference representations are used for the velocity 
and acceleration vectors, namely,

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

n n n Mu Ku F

1 1

2
n n

n h
 


u u

u 1 1
2

2n n n
n h

  


u u u
u
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Each term is accurate to order h2. Substituting the 
acceleration approximation into the original equation and 
multiplying through by h2 and gives:

This gives a three-term recurrence relation to be used for 
stepping ahead in time. 

A special starting procedure is necessary in that two 
successive u's are required in order to accomplish the 
solution.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 2 2
1 12n n n nh h    Mu M K u Mu F

TIME-DEPENDENT PROBLEMS

The procedure used is as follows: the vector function u is 
expanded in a Taylor's series about t = 0 according to

with ü(0) computed from the differential equation evaluated 
at t = 0,

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

       2 0
0 0

2

h
h h    

u
u u u


 

     10 0 0    u M F Ku
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Usually M-1 is not computed; rather, the system of equations

is solved for u(0) using an LU decomposition. 

The special starting value u(-h) is then given formally by

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

     
   2 1 0 0

0 0
2

h
h h

       
M F Ku

u u u

     0 0 0 Mu F Ku

 2 1
0 0

1 0 0 2

h
h





    
M F Ku

u u u

TIME-DEPENDENT PROBLEMS

The recurrence relation is then evaluated for n = 0 to yield

from which u1 is determined using u-1 and u0 from the 
initial conditions. 

The recurrence relation is then used successively for n = 1, 
2, ... until the desired time range is included. 

After determining un+1, the velocity ůn and the acceleration 
ün at tn are computed at each time step. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 2 2
1 0 1 02 h h   Mu M K u Mu F
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The entire process is summarized as:

Given: The initial conditions u(0) and ůn(0),

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 1
0 0 0

 u M F Ku

 2 1
0 0

1 0 0 2

h
h





    
M F Ku

u u u

Compute:

 2 1 2 1
1 0 1 02 h h 

   u M K u u M F

TIME-DEPENDENT PROBLEMS

Then for n = 1, 2, ….  Compute un+1 using

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 2 1 2 1
1 12n n n nh h 
    u M K u u M F

1 1

2
n n

n h
 


u u

u

1 1
2

2n n n
n h

  


u u u
u
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TIME-DEPENDENT PROBLEMS

As will be indicated later, this method is conditionally stable 
with the critical step size given by

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

max

2
crh




where (max)2 is the largest eigenvalue of the algebraic 
eigenvalue problem

 2 0 K M x

Just as for the first-order system, values of h > hcr result in 
an unbounded oscillation of the numerical solution.

TIME-DEPENDENT PROBLEMS

Example: Consider the one-dimensional problem

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

Define the dimensionless displacement z = kx/f0 and rewrite 
the differential equation as:

0mx kx f  (0) 0x  (0) 0x 

2 2z z   (0) 0z  (0) 0z 

where 2 = k/m. 
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TIME-DEPENDENT PROBLEMS

Example: It can be shown, that the recurrence relation for 
this one-dimensional problem is:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

    2 2

1 12n n nz h z z h     

with:   20z 
2 1 2

0

1 0 0 2

h z
z z hz





      
M K

  2

2

h


 2 1 2 1 2
1 0 12z h z z h  

   M K M
 2

2

h


TIME-DEPENDENT PROBLEMS

Example: Then as outlined previously for n = 1, 2, ...,

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

    2 2

1 12n n nz h z z h     

with:
1 1

2
n n

n

z z
z

h
 



1 1
2

2n n n
n

z z z
z

h
  


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TIME-DEPENDENT PROBLEMS

Example: For  = 1, the following graph presents the results 
for the displacement as a function of time.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

z

TIME-DEPENDENT PROBLEMS

Example: For  = 1, the following graph presents the results 
for the velocity as a function of time.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

z
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TIME-DEPENDENT PROBLEMS

Example: For  = 1, the following graph presents the results 
for the acceleration, as a function of time.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

z

TIME-DEPENDENT PROBLEMS

Example: The graphs present results for h = 0.1, h = 1.0, 
and h = 2.0. 

The results for h = 0.1 are essentially the same as the exact 
results. 

The critical step size is represented by h = 2.0 and is thus 
the upper limit for stability. 

Values above h = 2.0 would result in unbounded oscillations. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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Example: For  = 1, the following graph presents the results 
for the displacement as a function of time (h = 2.1).

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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TIME-DEPENDENT PROBLEMS

Example: For  = 1, the following graph presents the results 
for the velocity as a function of time (h = 2.1).

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

0 1 2 3 4 5 6 7 8 9 10

CIVL 7/8111 Time-Dependent Problems - 1-D Wave Equation 45/68



TIME-DEPENDENT PROBLEMS

Example: For  = 1, the following graph presents the results 
for the acceleration, as a function of time (h = 2.1).

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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TIME-DEPENDENT PROBLEMS

Example – Consider again the example of the one 
dimensional wave equation previously developed for the 
three-element problem:

4 1 0 2 1 0 0

1 4 1 1 2 1 0

0 1 2 0 1 2 1
3

                  
          

v v

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

m k  v v F (0) 0v (0) 0v
2

54

L

E

  

u

v 0P L

AE
 
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TIME-DEPENDENT PROBLEMS

Example – Numerical results will be based on the values 
E = 3 X 107 psi,  = 7.5 X 10-4 Ibf-s2/in4, L = 20 in., 
A = 1 in2, and P = 1,000 lbf. 

Evaluating the differential equation at t = 0 yields:

0 0

4 1 0 2 1 0 0

1 4 1 1 2 1 0

0 1 2 0 1 2 1
3



                  
          

v v

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

0

4 1 0 0

1 4 1 0

0 1 2 1
3



          
      

v 0

1
1

4
78

15


 
   
 
 

v

 0 0 0v

TIME-DEPENDENT PROBLEMS

Example – Recall, the general form of the v-1 is:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

2
0

1 0 0 2

h
h   

v
v v v



 1
0 0 0

 v M F Kv

 2 1 2 1
1 12n n n nh h 
    v M K v v M F
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TIME-DEPENDENT PROBLEMS

Example – The v-1 is determined:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

2
0

1 0 0 2

h
h   

v
v v v


2

0

2

h


v 2
1

4
156

15

h



 
   
 
 

 0 0 0v  0 0 0v

The basic algorithm can be expressed as

 1 12n n n n     mv m k v mv F

2h



2

2

54Eh

L


TIME-DEPENDENT PROBLEMS

Example – The first iteration yields

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 1 0 1 02     mv m k v mv F

 0 0 0v

1
1 1 0 

  v v m F

2 2
1 7 2 1 0

4 2 8 4 0
156 26

15 1 4 15 1
3

h h

 

                   
          

2 2
1 2

4 8
156 156

15 30

h h

 

   
          
   
   

1

4
156

15


 
   
 
 

CIVL 7/8111 Time-Dependent Problems - 1-D Wave Equation 48/68



TIME-DEPENDENT PROBLEMS

Example – In order to further carry out the numerical 
integration for this example, a step size t = h must be 
chosen. 

Recall that the largest eigenvalue is so that the critical step 
size is given by:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 2

max 2

54
1.6456

E

L



 

  
 

The critical step size is given by:

max

2
crh




1
22

0.2121
L

E

 
  

 

TIME-DEPENDENT PROBLEMS

Example – In terms of the parameter  appearing in the 
differential equation:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

For values  of  below cr the solution will remain bounded 
for large t.

Whereas for  > cr the solution as given by the numerical 
procedure will oscillate with ever-increasing amplitude; 
that is, the algorithm is not stable when  > cr

2
cr

cr

h





2

2

54 crEh

L
 254(0.2121) 2.4307
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TIME-DEPENDENT PROBLEMS

Example – As was seen from the analytical solution 
presented previously, all of the frequencies determined 
from K - 2M = 0 are contained in the solution. 

In order to obtain numerical results that accurately contain 
the effects of all the frequency components, it is necessary 
to choose a step size that is relatively small compared with 
the period of the largest frequency. 

A general rule is to break half the period of the largest 
frequency into 10 equal intervals; that is, take:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

*

max10
h






TIME-DEPENDENT PROBLEMS

Example – For the present example

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

*

max10
h





94.267

L

c




with the parameter  given by

2
* h




2

94.267
L

c




 
 
 

2

2

54

94.267

L E

c L




     
   

0.05998
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TIME-DEPENDENT PROBLEMS

Example – Results for this example for h1 = 4.2433(10-6) 
sec and h2 = 2.1216(10-5) sec.

The critical step size is h2 and h1 = h2 /5 is a value somewhat 
larger than the one corresponding to dividing the half 
period of the maximum frequency into 10 equal segments.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

The displacement at x = L, that is, u4(t) is shown below

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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TIME-DEPENDENT PROBLEMS

The analytical solution and the central difference numerical 
solution for t = h = 4.2433(10-6) sec. agree well. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

Example – The velocity at x = L is:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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Example – The acceleration at x = L is:

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

Generally, the accuracy of the results improves with an 
increase in the number of elements used. 

This can be traced to the fact that more of the approximate 
eigenvalues corresponding to the exact solution are more 
accurately determined using more elements. 

The use of higher-order interpolations may also result in 
some improvement in accuracy, although not to the same 
extent as increasing the number of linearly interpolated 
elements. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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TIME-DEPENDENT PROBLEMS

As is apparent from the results of the example, that all three 
of the frequencies contribute to the solution. 

This means that the combined requirements of not 
exceeding the critical time step and integrating the effects 
of the higher modes accurately can lead to a very small h, 
and hence an expensive algorithm. 

Fortunately for large systems the higher modes do not 
contribute significantly to the solution so that an 
unconditionally stable algorithm with a larger time step can 
be used satisfactorily. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

Finally, it is easily seen that if lumped mass matrices are 
used, M is a diagonal matrix and the computations 
involved in the central difference algorithm reduce at each 
step to a matrix multiplication and vector additions, that is, 
no solution of a set of algebraic equations is required at 
each step.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations
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NEWMARK'S METHOD - Newmark's method is based on 
an extension of the average acceleration method, which is 
conditionally stable. 

Newmark was able to generalize the algorithm so as to 
retain its simple form, yet produce an unconditionally 
stable algorithm.

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

TIME-DEPENDENT PROBLEMS

NEWMARK'S METHOD - The average acceleration method 
is based on the assumption that over a small time 
increment any nodal acceleration can be considered to be 
a linear function of time. 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

t

 u t

t

t h


hu 

u

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NEWMARK'S METHOD - For the interval 0 <  < h, the 
interval corresponding to the time step, the acceleration is 
expressed as

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

1t t t hh h
 

 
        
   

u u u  

2 2

2 2t t t t hh h
  

   
      

   
u u u u   

Integrating yields

Linear function in 

TIME-DEPENDENT PROBLEMS

NEWMARK'S METHOD – If  = h, then

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 
2

t t h
t t

h






 

u u
u u

 
 

That is, the increment in the velocity is based on the 
approximate average acceleration on the interval (0, h).

Integrating ut+ yields:

t averageh u u 

2 3 3

2 6 6t t t t t hh h
   

   
       

   
u u u u u  
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NEWMARK'S METHOD – These expressions are employed 
with the differential equations

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

to yield the conditionally stable average acceleration 
algorithm. Newmark generalized equations as: 

 Mu Ku F

 1t h t t t h h       u u u u   

21

2t h t t t t hh h  

        
  

u u u u u  

TIME-DEPENDENT PROBLEMS

NEWMARK'S METHOD – Newmark generalized equations 

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

The method is unconditionally stable as long as the 
parameters  and  are chosen to satisfy   0.5 and 
  0.25( + 0.5)2. 

Note that  = ½ and  =¼ corresponds to the average 
acceleration method.

 1t h t t t h h       u u u u   

21

2t h t t t t hh h  

        
  

u u u u u  
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NEWMARK'S METHOD – The equation for ut+h is solved for 
üt+h and substituted into the equation for ůt+h to yield

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

where c2 = 1 -  /(2) and then into the differential equation 
evaluated at t + h to yield

 
2

t h t t
t h t t

h
c h

h







 
  

u u u
u u u


  

   2 2 2
1t h t t t t hh h c h h      M K u M u u u F 

where c1 = 1/2 - 

TIME-DEPENDENT PROBLEMS

NEWMARK'S METHOD – This equation, together with the 
two equations for the velocity and acceleration at t + h, can 
be used to step ahead in time to determine the solution

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

 
2

t h t t
t h t t

h
c h

h







 
  

u u u
u u u


  

   2 2 2
1t h t t t t hh h c h h      M K u M u u u F 

1
2

t h t t t
t h

h c

h 




 
 

u u u u
u

 
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NEWMARK'S METHOD – In order to start the process, the 
acceleration at t = 0 is needed and is determined by 
solving the governing equations evaluated at t = 0,

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

     0 0 0 Mu F Ku

for acceleration ü(0), the previous equations are then used 
to step ahead using the unconditionally stable Newmark 
algorithm.

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

Given: The initial conditions u(0) and ůn(0),

Compute: ü(0), then un, ůn, and ün, for n = 1, 2, …..

NEWMARK'S METHOD – The algorithm consists of:

   2 2 2
1 1 1n n n n nh h c h h      M K u M u u u F 

 1
1 2

n n n
n n n

h
c h

h







 
  

u u u
u u u


  

1 1
1 2

n n n n
n

h c

h 




 
 

u u u u
u

 
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

Specifically, with u0, ů0, and ü0 known 

NEWMARK'S METHOD – The algorithm consists of:

   2 2 2
1 0 0 1 0 1h h c h h     M K u M u u u F 

 1 0 0
1 0 2 0

h
c h

h




 
  

u u u
u u u


  

1 0 0 1 0
1 2

h c

h 
 

 
u u u u

u
 

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

Then with u1, ů1, and ü1 known 

NEWMARK'S METHOD – The algorithm consists of:

   2 2 2
2 1 1 1 1 2h h c h h     M K u M u u u F 

 2 1 1
2 1 2 1

h
c h

h



 

  
u u u

u u u


  

2 1 1 1 1
2 2

h c

h 
 

 
u u u u

u
 
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The algorithm is continued until 
the time range of interest is covered. 

Note that for the Newmark algorithm, lumping of the mass 
matrix results in no computational advantage.

TIME-DEPENDENT PROBLEMS

Example – Consider again the example of the one 
dimensional wave equation previously developed for the 
three-element problem:

4 1 0 2 1 0 0

1 4 1 1 2 1 0
6

0 1 2 0 1 2 1
3


                  
          

v v

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

  mv kv F (0) 0v (0) 0v
2

9

L

E

  

u

v 0P L

AE
 
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The equations to be solved at the 
first step can be written as

   2
1 0 0 1 0 1h c h     m k v m v v v f 

 1 0 0
1 0 2 0

h
c h

h




 
  

v v v
v v v


  

1 0 0 1 0
1 2

h c

h 
 

 
v v v v

v
 

2h




TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – Evaluating the differential 
equation at t = 0 yields

0 0  mv f kv  
1

0 0



  
m

v f kv

0

7 2 1 0
1

2 8 4 0
26

1 4 15 1
3



           
      

v
1

1
4

78
15



 
   
 
 

8

0.6923

10 2.7692

10.3846

 
   
 
 

Numerical results will be based on the values: 
E = 3 X 107 psi,  = 7.5 X 10-4 Ibf-s2/in4, and L = 20 in.

 0 0 0v
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – Taking  = 0.25,  = 0.5, and h = 
4.2422 x 10-6 seconds yield

 
0.6748 0.1626 0.0000

0.1626 0.6748 0.1626

0.0000 0.1626 0.3374


 
    
  

m k

0.0000

0.0000

0.0081


 
   
 
 

f

At step 1:

 2
1 0

0.6748 0.1626 0.0000 0.0000

0.1626 0.6748 0.1626 0.25 0.0000

0.0000 0.1626 0.3374 0.0014

h

   
       
     

v m v

   2
1 0 0 1 0 1h c h     m k v m v v v f 

 0 0 0v  0 0 0v

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The solution for v1 is

 1 0 0
1 0 2 0

h
c h

h




 
  

v v v
v v v


  

 0 0 0v

 0 0 0v

Now solve for the velocity at t = 0 

 1
1 2 0c h

h




 
v

v v 

1 0.000563 0.00234 0.009131
T

v

3 0.265373 1.10116 4.3038510 7
T



 0 0 0v

8
2

0.6923

2.7692 10

10.38

0.00056

0.00234

0.0 43 6091

c h
h




   
        
   
  




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1 0 0 1 0
1 2

h c

h 
 

 
v v v v

v
 

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The equation for acceleration at 
t = 0 is

 0 0 0v

 0 0 0v

Now solve for the acceleration at t = h

1 01
2

c

h 
 

vv 

8
1 10 0.5585 2.4209 9.9008

T
 v

3 8
1 2

0.6923

10 2.7692 10

10.38

0.2654

1.1012

4.303 69 4

c h
h




   
        
  






  

v

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – For n = 2:

2 0.0020 0.0087 0.0357
T

 v

3
2 0.4231 1.9182 8.21 210 1

T
v

8
2 10 0.1848 1.4300 8.5155

T
 v

For n = 3:

3 0.0037 0.0175 0.0772
T

v

3
3 0.3881 2.2111 11.30 7931

T
v

8
3 0.3497 0.0491 6.417210

T
v
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The results for further integration 
are presented in following figures. The step size h1 = 
4.2433 x 10-6 sec indicated above is the same as the 
smaller of the two values used for the central difference 
algorithm in the previous section. 

Integrations are also carried out for h2 = 4.2433 x 10-5 sec = 
10h1, a value twice that of the critical value for the central 
difference algorithm of the previous section. In all the 
figures, the abscissa n represents the number of time 
steps of length h1.

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – Displacement at x = L
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – Velocity at x = L

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – Acceleration at x = L
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TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The results for displacement 
indicate that for h = h1, there is very good agreement 
between the numerical solution and the corresponding 
analytical solution, both comparing favorably with the exact 
solution. 

For h = h2, the unconditionally stable Newmark algorithm is 
unable to predict the part of the response arising from the 
higher frequencies, but is able to predict the essential 
character of the displacement at the end x = L.

TIME-DEPENDENT PROBLEMS

Time Integration Techniques – Second-Order Systems

One-Dimensional Wave or Hyperbolic Equations

NEWMARK'S METHOD – The results velocity at x = L
indicate a rough similarity between the analytical solution 
and the Newmark solution for h = h1. 

Similarly, the numerical results for h = h2 bear some 
resemblance to the analytical and exact solutions, but are 
neither qualitatively nor quantitatively satisfactory. 

The results for the accelerations, as was the case for the 
central difference algorithm, are completely unsatisfactory.
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End of

1-D Time Dependent

Problems – Part b
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