
TIME-DEPENDENT PROBLEMS

The previous three chapters dealt exclusively with steady-
state problems, that is, problems where time did not enter 
explicitly into the formulation or solution of the problem. 

The types of problems considered in Chapters 2 and 3, 
respectively, were one- and two-dimensional elliptic 
boundary value problems. 

In this chapter, finite element models for parabolic and 
hyperbolic equations, such as the one-dimensional 
transient heat conduction and the one-dimensional scalar 
wave equation, respectively, will be developed. 

TIME-DEPENDENT PROBLEMS

The finite element models for these two types of initial-
boundary value problems will turn out to be, respectively, 
first- and second-order systems of ordinary differential 
equations with time as the independent variable. 

Analytical and numerical algorithms for the solution of these 
systems of equations will be presented and discussed.
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TIME-DEPENDENT PROBLEMS

The finite element models for these two types of initial-
boundary value problems will turn out to be, respectively, 
first- and second-order systems of ordinary differential 
equations with time as the independent variable. 

Analytical and numerical algorithms for the solution of these 
systems of equations will be presented and discussed.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The example to be used to develop a model for one-
dimensional diffusion processes is the classical heat 
conduction problem shown below:

Insulated

Insulated

Heat flow
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

We will assume that energy in the form of heat flows only in 
the x-direction, that is, that there is no flux perpendicular to 
the x-axis. 

The basic physical principle for this type of problem is 
balance of energy. 

A differential element of length x is isolated and an energy 
balance performed as:

energy in - energy out + internal energy generated =
time rate of change of energy within the element
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The coefficients in the energy balance are:

k is the thermal conductivity [W/(mK)], W = kgm2/s3

 is the mass density [kg/m3],  

cp is the specific heat capacity [kgm2/(Ks2)], and 

 = k/(cp) is the thermal diffusivity [m2/s]

x

energy in - energy out + internal energy generated =
time rate of change of energy within the element
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

With the energy terms as indicated below, the balance of 
energy statement becomes:
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x

energy in - energy out + internal energy generated =
time rate of change of energy within the element
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Divide by x and take the limit as x → 0:
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time rate of change of energy within the element
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

This a second-order, linear partial differential equation. The 
auxiliary conditions consist of two boundary conditions and 
one initial condition. 

p

u u
kA qA c A

x x t
         

An appropriate boundary condition prescribes either:

1. The dependent variable u

2. The flux:

3. a linear combination of the flux 
and the dependent variable: 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

This third type of boundary condition is called a convective 
boundary condition

It is a local energy balance between the convection 
externally and the conduction internally. 

At the left boundary x = a, for instance, the external 
convective and internal conductive terms appear as:

 ( ) ( , )L Lh u t u a t ( , )u a t
kA

x


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x = a
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The local energy balance produces:

( , )
( , ) ( )L L L

u a t
kA h u a t h u t
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A similar energy balance at the right end x = b yields:

( , )
( , ) ( )R R R

u b t
kA h u b t h u t

x


 



For a time-dependent diffusion problem it is also necessary 
to specify an initial value for the dependent variable of the 
form:

0( , 0) ( )u x u x

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The complete statement of the initial-boundary value 
problem consists of the differential equation, two boundary 
conditions, and an initial condition:
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

These equations represent a well-posed problem in partial 
differential equations. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

When there is no convection at a boundary the other two 
types of boundary conditions appropriate at x = a are:

0( , 0) ( )u x u x

1. Where the temperature is specified:

( , )
( )

u a t
kA Q t

x


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

2. Where the energy flux is prescribed. 

The general development of the finite element model will 
assume type 3 conditions at both boundaries.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Consider the one-dimensional diffusion problem developed 
in this section.

Discretization. The first step in developing a finite element 
model is discretization. Nodes for the spatial domain 
a ≤ x ≤ b are chosen as indicated below, with a = x1

and b = xN+1. 

( )u x

x

1x a 2x ꞏ ꞏ ꞏ

nodes

4x3x Nx 1Nx b 

elements

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

As was the case for steady-state problems considered in 
Chapter 2, the nodes are usually selected at equally 
spaced intervals, keeping in mind that it may be desirable 
in some problems to concentrate the nodes in regions of 
high gradients.

( )u x

x

1x a 2x ꞏ ꞏ ꞏ

nodes

4x3x Nx 1Nx b 

elements
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Interpolation. The interpolation functions are selected in 
exactly the same fashion as for the time-independent 
problem except that the nodal values are now taken to be 
functions of time rather than constants:

1

1

( , ) ( ) ( )
N

i iu x t u t n x


 

The ni(x) are nodally based interpolation functions and can 
be linear, quadratic, or as otherwise desired. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Interpolation. The interpolation functions are selected in 
exactly the same fashion as for the time-independent 
problem except that the nodal values are now taken to be 
functions of time rather than constants:

1

1

( , ) ( ) ( )
N

i iu x t u t n x


 

The representation above is referred to as semidiscretization
in that the spatial variable x is discretized whereas the 
temporal variable t is not. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Interpolation. The interpolation functions are selected in 
exactly the same fashion as for the time-independent 
problem except that the nodal values are now taken to be 
functions of time rather than constants:

1

1

( , ) ( ) ( )
N

i iu x t u t n x


 

A finite difference model of a time-dependent partial 
differential equation typically involves discretization of both 
the spatial and temporal variables.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. The elemental formulation for the 
diffusion problem is based on a corresponding weak 
statement. 

The weak form is developed by multiplying the differential 
equation by a test function v(x) satisfying any 
homogeneous essential boundary conditions, and 
integrating over the spatial region according to:

0
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v kA qA c A dx

x x t
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
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Integrating by parts and eliminating the derivative terms 
from the boundary conditions yields:
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Elemental formulation. The elemental formulation for the 
diffusion problem is based on a corresponding weak 
statement. 
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b

L L R R
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

This is the required weak statement for the class of one-
dimensional diffusion problems.

Elemental formulation. The elemental formulation for the 
diffusion problem is based on a corresponding weak 
statement. 

( ) ( , ) ( ) ( , )

b

p

a

L R

u u
v kA c Av dx

x t

h v a u a t h v b u b t


         

 



( ) ( ) ( ) ( )
b

L L R R
a

vAq dx h v a u t h v b u t  

CIVL 7/8111 Time-Dependent Problems - 1-D Diffusion Equation 12/76



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. The finite element model is 
obtained by substituting the approximate solution and v = 
nk, k = 1, 2, ..., N + 1, successively, into the above 
expression to obtain:
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    
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1 1 1 1( ) ( )L k R kN Nh u t h u t    

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. Which can be written as:

 
1

1

( ) ( ) ( ) 1,2,..., 1
N

ki i ki i kA u t B u t q t k N


    
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. In matrix notation, the above 
expression can be written as:

 Au Bu q

e e e

  G G GA k +BT B = m q = q +bt

   T T
j j

i i

x x

p
x x

kA dx c A dx   e ek N N m N N

 
j

i

x

x

qA dx eq N

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. In matrix notation, the above 
expression can be written as:

e e e

  G G GA k +BT B = m q = q +bt

0

0

0

L

R

h

h

 
 
 
 

  
 
 
 
  

BT


 Au Bu q

T ( ) 0 0 .... 0 ( )L L R Rh u t h u tbt
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. The original initial-boundary value 
problem has been converted into the initial value problem:

0with (0)  Au Bu q u u

The initial vector u0 is usually taken to be a vector consisting 
of the values of u0(x) at the nodes:

T

0 0 0 2 0 3 0 0(0) ( ) ( ) ( ) ... ( ) ( )Nu a u x u x u x u b u u

Note that the assembly process has taken place implicitly 
during the process of carrying out the details of obtaining 
the governing equations using the Galerkin method.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. The original initial-boundary value 
problem has been converted into the initial value problem:

0with (0)  Au Bu q u u

It is instructive to note that when time is not involved, the 
above equations are exactly what would result from the 
finite element model developed in Chapter 2 for the 
corresponding boundary value problem.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. The original initial-boundary value 
problem has been converted into the initial value problem:

0with (0)  Au Bu q u u

Enforcement of constraints is necessary if either of the 
boundary conditions is essential, that is, if the dependent 
variable is prescribed at either boundary point. 

The system equations must be altered to reflect these 
constraints. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. Consider for example the case 
where the boundary condition at x = a is u(a, t) = ua(t). 

The hL terms in both BT and bt would be taken as zero and 
the first equation would be replaced by the constraint 
resulting in:

1

21 1 22 2 23 3 21 1 22 2 23 3 2

31 1 32 2 33 3 31 1 32 2 33 3 3

( )

( )

( )

au u t

a u a u a u b u b u b u q t

a u a u a u b u b u b u q t


       
       

   
   


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1

22 2 23 3 22 2 23 3 2 21 1 21 1

22 2 23 3 22 2 23 3 3 31 1 31 1

( )

( )

( )

au u t

a u a u b u b u q t a u b u

a u a u b u b u q t a u b u


       
       

   
   



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. Consider for example the case 
where the boundary condition at x = a is u(a, t) = ua(t).

The u1 and ů1 terms in the remaining equations are transferred 
to the right-hand side to yield

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. For a linearly interpolated model 
the half bandwidth is two and only the terms involving u1

and ů1 in the second equation need to be transferred to 
the right-hand side. 

For a quadratically interpolated model the half bandwidth is 
three and terms from the first two equations need to be 
transferred. 

If the constraint is at the right end, the N th, (N - 1)st, . . . 
equations would be similarly altered.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

The Galerkin Finite Element Method

Elemental formulation. For a linearly interpolated model 
the half bandwidth is two and only the terms involving u1

and ů1 in the second equation need to be transferred to 
the right-hand side. 

 Mu Ku f 0(0) u u

The constrained set of equations may be written as:

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

As a typical example consider the specific heat conduction 
problem:

0 , 0p

u u
kA c A x L t

x x t
           

0(0, ) and ( , ) 0 0u t u u L t t  

( ,0) 0 0u x x L  
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

This corresponds to the idealized situation of a region 
initially at zero temperature and whose left end x = 0 is 
instantaneously forced to assume the value u0 for all time 
greater than zero. 

With A = constant and  = k/cp the initial boundary value 
problem can be written as:

2

2
0 , 0

u u
x L t

tx
  

   


0(0, ) and ( , ) 0 0u t u u L t t  

( ,0) 0 0u x x L  

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Discretization. For purposes of illustration, a four-element 
model will be investigated. 

1 0x  2x 4x 5x L

u

x

3x

Interpolation. Linear interpolation will be used for the four 
elements.

Assume all elements are of equal length L/4.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. 

1

1

i
i

i i

x x
N

x x







 1
1

i
i

i i

x x
N

x x







ix 1ix 

1

iN

1

1iN 

ix 1ix 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 

1

1
i

i i

N
x x

  
 1

1

1
i

i i

N
x x



 


1
1 1iN  

ix 1ix 

1iN  

ix 1ix 

1
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 

 


  
1

T
i

i

x

x

dxek N N






 



     
  

  


1

1

1 1

1

1

1 1

1

i

i

x
i i

i i i ix

i i

x x
dx

x x x x

x x

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 

 


  
1

T
i

i

x

x

dxek N N

 






 
  

  


1

2

1

11
1 1

1

i

i

x

xi i

dx
x x

   
   


1

2

1 1

1 1

i

i

x

e x

dx
l

1 1

1 1el

  
   

1 14

1 1L

  
   

CIVL 7/8111 Time-Dependent Problems - 1-D Diffusion Equation 21/76



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 


 
1i

i

x

x

dxT
em NN



 
1i

i

x

x

dxT
e1m NN

 
  

 

/4 4

4 4
4

0

1
1

L x
L x x

L Lx
L

dx
 

  
 

2 1

1 224

L





 

 



 
         
  


1

1

1 1

1 1

1

i

i

i
x

i i i i

i i i i ix

i i

x x

x x x x x x
dx

x x x x x x

x x

At xi = 0 and xi+1 = L/4, then 

 
/4

0

L

dxT
e1m NN

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 


 
1i

i

x

x

dxT
em NN

1

0

dx  T
e1m NN

   
 

21

2
0

1 1

1
el d

     
  


   

  
 

  
 

2 1

1 224

L

1

0

1
1 el d

 
  

 



  


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One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Elemental Formulation. The elemental matrices are: 

  
       


1

T 1 14

1 1

i

i

x

x

dx
Lek N N

 
  

   
 


1

T 2 1

1 224

i

i

x

x

L
dxem NN

 


 
1

0
i

i

x

x

q dxeq N

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Assembly. With both the boundary conditions essential, 
BT=0 and bt=0. It follows that the assembled equations 
are:

0 Au Bu

1 1 0 0 0

1 2 1 0 0
4

0 1 2 1 0

0 0 1 2 1

0 0 0 1 1

G
e

k
L



 
   
    
 

  
  

A

T

1 2 3 4 5u u u u uu

2 1 0 0 0

1 4 1 0 0

0 1 4 1 0
24

0 0 1 4 1

0 0 0 1 2

G
e

L
m

 
 
 
  
 
 
  

B

The initial condition is homogeneous so that: (0) 0u
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One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Assembly. With both the boundary conditions essential, 
BT=0 and bt=0. It follows that the assembled equations 
are:

0 Au Bu

1 1

2 2

3 3

4 4

5 5

1 1 0 0 0 2 1 0 0 0 0

1 2 1 0 0 1 4 1 0 0 0
4

0 1 2 1 0 0 1 4 1 0 0
24

0 0 1 2 1 0 0 1 4 1 0

0 0 0 1 1 0 0 0 1 2 0

u u

u u
L

u u
L

u u

u u

         
                                  

                 
                









TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Assembly. With both the boundary conditions essential, 
BT=0 and bt=0. It follows that the assembled equations 
are:

0 Au Bu 1 0 5and 0u u u 

0

0u
0u1 0u 

5 0u 

1 1

2 2

3 3

4 4

5 5

1 1 0 0 0 2 1 0 0 0 0

1 2 1 0 0 1 4 1 0 0 0
4

0 1 2 1 0 0 1 4 1 0 0
24

0 0 1 2 1 0 0 1 4 1 0

0 0 0 1 1 0 0 0 1 2 0

u u

u u
L

u u
L

u u

u u

         
                                  

                 
                








4 L

CIVL 7/8111 Time-Dependent Problems - 1-D Diffusion Equation 24/76
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One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Constraints. The constraints equations are: 

2 2 0

3 3

4 4

2 1 0 4 1 0

1 2 1 1 4 1 0

0 1 2 0 1 4 0

u u u

u u

u u

         
                   
                 








2

96

L

 Subject to the initial condition: 0(0, )t uu

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

These approximate equations must now be integrated for an 
estimate of the time-dependent solution. 

Appropriate analytical and numerical methods of integration 
are presented and discussed in the following sections.

2 2 0

3 3

4 4

2 1 0 4 1 0

1 2 1 1 4 1 0

0 1 2 0 1 4 0

u u u

u u

u u

         
                   
                 







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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

The elemental mass matrices me are referred to as 
consistent mass matrices in that they are determined on 
the basis of the same interpolation functions as were used 
for the corresponding stiffnesses ke. 

 
1

T
i

i

x

x

dx


 em NN

1

0

1
1 el d


  


 

  
 


2 1

1 26
el  

  
 

lumped
ii ij

j

 m m

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

Another approach to generating mass matrices is referred to 
as lumping with the results referred to as lumped mass 
matrices. The idea is simply that the total mass 
associated with the consistent mass matrix:

For a two-noded linear element the lumped mass matrix mle:

ij
j

 lem m
2 1

1 26
el  

  
 

3 0

0 36
el  

  
 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

This lumped mass matrix has advantages in certain of the 
time integration algorithms to be discussed in later 
sections.

Also, it has the interesting property that the resulting 
eigenvalues are generally smaller than the exact values.

Eigenvalues are generally overestimated when using the 
consistent mass matrices.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

This suggests that a third possibility for treating the mass is 
to consider a weighted average of the consistent mass 
matrix mce and lumped mass matrix mle according to:

 1   w ce lem m m

If  = ½ then:

2 1 3 01

1 2 0 32 6
el            
       

wm
5 1

1 512
el  

  
 
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One-Dimensional Diffusion or Parabolic Equations

Example of One-Dimensional Diffusion

This is one of the so-called higher-order accurate mass 
matrices. 

Its use results in improved estimates for the eigenvalues as 
compared with estimates using either of the consistent or 
lumped mass matrix formulations. 

The corresponding result for the quadratically interpolated 
element turns out to be:

9 2 1

2 36 2
60

1 2 9

el
 

   
  

wm

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

An analytical approach to the integration of the set of 
equations decomposes the solution of:

 Ku Mu f

where uh is the homogeneous solution satisfying:

0 h hKu Mu

and up is any particular solution satisfying:

 p pKu Mu f

into + h pu u u
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. For the case where K and M are 
matrices of constants:

is a set of linear constant-coefficient, ordinary differential 
equations. 

When K and M are not constant matrices, it is necessary to 
use techniques such as discussed in the next section.

( ) 0t h hKu Mu =

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 

where v is a vector of constants. 

The negative sign in the exponential function is a matter of 
anticipating the decaying character of the solution of 
diffusion problems.

( ) tt e hu v

The standard approach to the 
solution of such a constant coefficient system is to 
assume:
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 

Thus the homogeneous solutions are obtained by solving 
the generalized linear algebraic eigenvalue problem.

Nontrivial solutions of this expression require:

( ) tt e hu v

  0te   K M v   0 K M v

 det 0 K M

Substitute:

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. The eigenvalues are obtained 1, 2, 
… and the corresponding eigenvectors v1, v2, … are then 
determined by back-substituting the eigenvalues one at a 
time. 

The analytical approach is quite valuable from the stand-
point that the results can be immediately interpreted in 
terms of the decay rates [exp(-it) as determined by the 
eigenvalues] that will be present in the solution regardless 
of whether an analytical or a numerical approach is being 
used. 

These eigenvalues are an important part of the discussions 
of convergence and stability covered in later sections.
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 




   
         
      

2 1 0 4 1 0

1 2 1 1 4 1 0

0 1 2 0 1 4
2

96

L

 

 det 0 K M





2

96

L


   
         
      

2 1 0 4 1 0

1 2 1 1 4 1 0

0 1 2 0 1 4

For the particular example, the 
equations can be written as:

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

 
 

   
 

2 4 1 0

det 1 2 4 1 0

0 1 2 4

 
   

 

  
       

  
K M

3 256 76 32 4 0       

1 2 30.1082 0.5000 1.3204    

Solving for  gives:

Homogenous Solution. For the particular example, the 
equations can be written as:
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 

1 2 30.1082 0.5000 1.3204    

1 2 32 2 2

10.387 48.000 126.76

L L L

      

Which compares to the exact eigenvalues of:

2 2 2

1 2 32 2 2

4 9

L L L

         

The roots of the corresponding 
characteristic equation:

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

1 2 30.1082 0.5000 1.3204    

1 2 32 2 2

10.387 48.000 126.76

L L L

      

Which compares to the exact eigenvalues of:

1 2 32 2 2

9.8696 39.478 88.826

L L L

      

Homogenous Solution. The roots of the corresponding 
characteristic equation:
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 

1 2 32 2 2

10.387 48.000 126.76

L L L

      

Which compares to the exact eigenvalues of:

1 2 32 2 2

9.8696 39.478 88.826

L L L

      

It can easily be seen that, roughly, 
the solutions will decay to steady state too rapidly in view of 
the fact that the ’s predicted by the finite element solution 
are larger than the corresponding exact values. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Homogenous Solution. 

And the homogeneous solution can then be written as: 

1 2 3

1 11

2 0 2

1 1 1

v v v

    
            
         

31 2
1 1 2 2 3 3( ) tt tt c v e c v e c v e      hu

The corresponding eigenvectors 
obtained by back-substitution:
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Particular Solution. For the particular solution, consider: 

By inspection (Method of Intelligent Guessing!) it can be see 
that by taking up=d, a constant, there results:

0
1

2 1 0 4 1 0

1 2 1 1 4 1 0

0 1 2 0 1 4 0

u

 

     
            
         

p pu u

2

96

L

 

T0 3 2 1
4

u
d

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

The general solution can then be written as: 

Satisfying the initial conditions u(0) = 0 leads to the set of 
linear algebraic equations: 

31 2
1 1 2 2 3 3

tt tc v e c v e c v e        pu u

0

1

0
2

3
0

3

41 1 1
2

2 0 2
4

1 1 1

4

u

c
u

c

c u

  
     
           

         
  1 2 3v v v

2

3

4

u

u

u
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One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

The solution can finally be expressed as: 

31 2
1 1 2 2 3 3

tt tc v e c v e c v e        pu u

1 2 3

1 11

2 0 2

1 1 1

v v v

    
            
         

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

31 22
1 2 3

0

( )
0.7500 ( 1 ) ( 1 ) ( 1 ) tt tu t

c e c e c e
u

      

31 23
1 2 3

0

( )
0.5000 ( 2) ( 0) ( 2) tt tu t

c e c e c e
u

       

31 24
1 2 3

0

( )
0.2500 ( 1 ) ( 1) ( 1 ) tt tu t

c e c e c e
u

       

The solution can finally be expressed as: 

pu 1v 2v 3v
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

31 22

0

( )
0.7500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      

313

0

( )
0.5000 0.6036 0.1036 ttu t

e e
u

   

31 24

0

( )
0.2500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      

The solution can finally be expressed as: 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Note that as:

The solution can finally be expressed as: 

This is the correct steady state solution.

2 0 3 0 4 0, ( ) 0.7500 , ( ) 0.5000 , ( ) 0.2500 ,t u t u u t u u t u   

31 22

0

( )
0.7500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      

313

0

( )
0.5000 0.6036 0.1036 ttu t

e e
u

   

31 24

0

( )
0.2500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

As mentioned previously, the finite element model predicts 
that these steady-state values are reached too quickly.

For a specific case assume that the bar is 0.2 m in length 
and is composed of an aluminum alloy for which 
 = 8.4 x 10-4 m2/s, from which /L2 = 0.021 s-1.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Four-element analytical versus exact solution

t (sec) (u2/u0) (u2/u0)exact (u3/u0) (u3/u0)exact (u4/u0) (u4/u0)exact

1.0 0.3105 0.2225 0.0219 0.0147 -0.0070 0.0003

2.0 0.4404 0.3884 0.1103 0.0845 0.0070 0.0096

3.0 0.5106 0.4812 0.1863 0.1589 0.0403 0.0342

4.0 0.5672 0.5419 0.2478 0.2223 0.0761 0.0650

5.0 0.6050 0.5852 0.2972 0.2742 0.1082 0.0953

6.0 0.6341 0.6180 0.3369 0.3164 0.1353 0.1224

7.0 0.6571 0.6435 0.3689 0.3508 0.1575 0.1455

8.0 0.6754 0.6638 0.3946 0.3787 0.1755 0.1647

9.0 0.6900 0.6801 0.4152 0.4014 0.1901 0.1805

10.0 0.7018 0.6933 0.4319 0.4199 0.2018 0.1934

15.0 0.7338 0.7299 0.4771 0.4716 0.2338 0.2299

20.0 0.7446 0.7429 0.4923 0.4899 0.2446 0.2429
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

As mentioned previously and as can easily be seen from 
these data, the finite element solution tends towards 
steady state too rapidly. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques
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The trend is of course helped by taking more elements, in 
which case the approximate eigenvalues arising from the 
finite element model approach the exact.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques
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With more elements the results are correspondingly closer 
to those given by the exact solution. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

With more elements the results are correspondingly closer 
to those given by the exact solution. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Repeat the solution using the lumped mass matrix.

 det 0 K M





2

96

L
2 1 0 6 0 0

1 2 1 0 6 0 0

0 1 2 0 0 6

   
         
      



 
2 6 1 0

det 1 2 6 1 0

0 1 2 6

 
     

 
K M


 



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Repeat the solution using the lumped mass matrix.

  3 2det 216 216 60 4 0      K M   

1 2 30.0976; 0.3333; 0.5690    Solving for  gives:

1 2 32 2 2

9.3726 32.000 54.627

L L L
  

    

Which compares to the exact eigenvalues of:

1 2 32 2 2

9.8696 39.478 88.826

L L L

      
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

The general solution can then be written as: 

Satisfying the initial conditions u(0) = 0 leads to the set of 
linear algebraic equations: 

31 2
1 1 2 2 3 3

tt tc v e c v e c v e        pu u

0

1

0
2

3
0

3

41 1 1
2

2 0 2
4

1 1 1

4

u

c
u

c

c u

  
     
           

         
  1 2 3v v v

2

3

4

u

u

u

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

The solution can finally be expressed as: 

31 2
1 1 2 2 3 3

tt tc v e c v e c v e        pu u

1 2 3

1 11

2 0 2

1 1 1

v v v

    
            
         
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

31 22
1 2 3

0

( )
0.7500 ( 1 ) ( 1 ) ( 1 ) tt tu t

c e c e c e
u

      

31 23
1 2 3

0

( )
0.5000 ( 2) ( 0) ( 2) tt tu t

c e c e c e
u

       

31 24
1 2 3

0

( )
0.2500 ( 1 ) ( 1) ( 1 ) tt tu t

c e c e c e
u

       

The solution can finally be expressed as: 

pu 1v 2v 3v

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Solving the set of linear algebraic equations yields: 

1 0 2 0 3 00.4268 0.2500 0.0732c u c u c u     

31 22

0

( )
0.7500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      

313

0

( )
0.5000 0.6036 0.1036 ttu t

e e
u

   

31 24

0

( )
0.2500 0.4268 0.2500 0.0732 tt tu t

e e e
u

      

The solution can finally be expressed as: 

CIVL 7/8111 Time-Dependent Problems - 1-D Diffusion Equation 42/76



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

As mentioned previously, the finite element model predicts 
that these steady-state values are reached too quickly.

For a specific case assume that the bar is 0.2 m in length 
and is composed of an aluminum alloy for which 
 = 8.4 x 10-4 m2/s, from which /L2 = 0.021 s-1.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

Four-element analytical versus exact solution

t (sec) (u2/u0) (u2/u0)exact (u3/u0) (u3/u0)exact (u4/u0) (u4/u0)exact

1.0 0.2485 0.2225 0.0371 0.0147 0.0039 0.0003
2.0 0.3895 0.3884 0.1033 0.0845 0.0199 0.0096
3.0 0.4779 0.4812 0.1689 0.1589 0.0445 0.0342
4.0 0.5380 0.5419 0.2264 0.2223 0.0720 0.065
5.0 0.5816 0.5852 0.2747 0.2742 0.0989 0.0953
6.0 0.6145 0.6180 0.3148 0.3164 0.1233 0.1224
7.0 0.6401 0.6435 0.3478 0.3508 0.1446 0.1455
8.0 0.6604 0.6638 0.3750 0.3787 0.1628 0.1647
9.0 0.6768 0.6801 0.3973 0.4014 0.1780 0.1805
10.0 0.6901 0.6933 0.4157 0.4199 0.1907 0.1934
15.0 0.7277 0.7299 0.4685 0.4716 0.2277 0.2299
20.0 0.7417 0.7429 0.4882 0.4899 0.2417 0.2429
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

The trend is of course helped by taking more elements, in 
which case the approximate eigenvalues arising from the 
finite element model approach the exact.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Analytical Integration Techniques

As you can see, the lumped-mass solution is better than the 
consistent mass solution, even with just a few elements. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

In situations where M and/or K in: 

0with (0)  Mu Ku f u u

are functions of t or where f is such that a particular 
solution by analytic means is difficult or impossible, the 
analytical technique discussed may be practically 
impossible to carry through. 

Depending on the particulars, numerical techniques are 
attractive or even necessary to carry out the integration.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The Euler Method - Recall that for a first-order initial value 
problem of the form:

it is possible to develop numerical integration schemes for 
the approximate integration of the initial value problem.

The problem is to determine a function y(x) passing through 
the initial point (x0, y0) and satisfying the differential 
equation y' = f

0 0( , ) with ( )y f x y y x y  
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The Euler Method - Recall that for a first-order initial value 
problem of the form:

0 0( , ) with ( )y f x y y x y  

0x nx 1nx 
x

y

0y

ny
1ny 

1

1

n n
n

n n

y y
y

x x




 


TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

In the Euler Method, the derivative y′ is represented as a 
forward difference according to: 

1

1

n n

n n

y y
y

x x




 


0x nx 1nx 
x

y

0y

ny
1ny 

1

1

n n
n

n n

y y
y

x x




 

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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Giving a linear approximation to the derivative at xn

with h = xn+1 – xn. The differential equation at xn is: 

 1 ,n n
n n

y y
y f x y

h
   

0x nx 1nx 
x

y

0y

ny
1ny 

1

1

n n
n

n n

y y
y

x x




 


TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Solving for yn+1 results in:  1 ,n n n ny y hf x y  

0x nx 1nx 
x

y

0y

ny
1ny 

1

1

n n
n

n n

y y
y

x x




 

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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Starting with y(x0) = y0, this algorithm can be used to step 
ahead in the independent variable x to determine an 
approximate solution.

Note that the Euler Method can also be viewed in the 
following manner. 

Integrate the differential equation between the limits of xn

and xn+1 to obtain:

 
1

,
n

n

x

x

f x y dx


 
1n

n

x

x

y dx



1

1

1

n

n

x

n n

n n x

y y
x

x x










 1n ny y 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Approximate the remaining integral by hf(xn, yn) to obtain:

 1 ,n n n ny y hf x y  

The integral has been approximated by evaluating f at the 
left end of the interval over which the integral is evaluated 
and multiplying by the interval h. 

This is again clearly the Euler algorithm.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The analogue of the Euler Method for the system of 
equations:

is obtained by again representing the derivative term at a 
particular value of the time tn as a forward difference 
according to:

0with (0)  Mu Ku f u u

1n n
n h

 


u u
u 1n nh t t 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

And evaluating the differential equation at t = tn to obtain: 

From which the Euler algorithm is obtained:

n n n Mu Ku f

 1 0(0)n n nh h u    Mu M K u f u

1n n
nh

 
 

u u
M Ku
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

And evaluating the differential equation at t = tn to obtain: 

The utility and effectiveness of the algorithm is affected by 
its stability, that is, by whether for large time the solution 
predicted by the algorithm remains finite, independent of 
the step size h. 

 1 0 0 10n h h    Mu M K u f u

 2 1 1 21n h h    Mu M K u f u

 3 2 2 32n h h    Mu M K u f u



TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The Euler algorithm is conditionally stable: there is a 
critical step size hcr such that when h > hcr the solution 
oscillates with ever increasing amplitude, obviously 
negating the results of the algorithm.

 1 0 0 10n h h    Mu M K u f u

 2 1 1 21n h h    Mu M K u f u

 3 2 2 32n h h    Mu M K u f u



And evaluating the differential equation at t = tn to obtain: 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The use of the Euler algorithm results in a local discretization 
error e, which depends upon the step size h according to:

indicating that when the time step h is halved the local 
discretization error is reduced approximately by 1/4. 

The accumulated discretization error E is given by:

 2e O h

 E O h

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The accumulated discretization error is approximately 
halved by halving the integration time step. 

One might assume on the basis of these results that by 
decreasing the step size sufficiently the error could be 
decreased indefinitely. 

This is not the case in that the roundoff error begins to 
dominate the process for h too small.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Example 1 – Consider the application of the Euler algorithm 
to the set of equations previously developed for the four-
element problem:

4 1 0 2 1 0 1

1 4 1 1 2 1 0

0 1 4 0 1 2 0

 
     

            
         

w w

 
2

96

L
 Ku Mu f 

0u

u
w

    1n n nh hMw M K w f

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These equations become:

1

4 1 0 4 1 0 2 1 0 1

1 4 1 1 4 1 1 2 1 0

0 1 4 0 1 4 0 1 2 0
n nh h 

        
                    
                

w w

For this set of equation, the inverse of M can be determined, 
so that the equations may be written as:

 1 1
1n n nh h 
   w I M K w M f
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These equations become:

1

4 1 0 4 1 0 2 1 0 1

1 4 1 1 4 1 1 2 1 0

0 1 4 0 1 4 0 1 2 0
n nh h 

        
                    
                

w w

For this set of equation, the inverse of M can be determined, 
so that the equations may be written as:

1

1 0 0 34 24 6 15

0 1 0 24 40 24 4
56 56

0 0 1 6 24 34 1
n n

h h 


      
                 
             

w w

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

With /L2 = 0.021 s-1 and h = 0.1 s the equations become: 

1

0.8776 0.0864 0.0216 0.0540

0.0864 0.8560 0.0864 0.0144

0.0216 0.0864 0.8776 0.0036
n n

   
      
     

w w

1n n  w Sw b
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

With w(0) = 0, successive iterations of the equations give:

The algorithm is repeatedly applied until the range of times 
of interest is covered. 

T

1 0.0540 0.0144 0.0036  w b
T

2 1 0.1001 0.0217 0.0043   w Sw b
T

3 2 0.1398 -0.0240 0.0034  w Sw b



T

4 3 0.1746 -0.0226 0.0015  w Sw b

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

0.1h s
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

0.1h s

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

1h s
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

1h s

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The algorithm in the example is used with several values of 
the step size h = t. 

Approximate solution w3(t) for different h using the Euler algorithm

t (sec) h = 0.083 h = 0.167 h = 0.333 h = 1.0 uexact

1 0.0208 0.0198 0.0189 -0.1440 0.0147
2 0.1116 0.1131 0.1163 0.4170 0.0845
3 0.1881 0.1901 0.1940 -0.2683 0.1589
4 0.2497 0.2518 0.2560 1.0643 0.2223
5 0.2991 0.3013 0.3055 0.9891 0.2742
6 0.3388 0.3409 0.3449 2.5436 0.3164
7 0.3706 0.3726 0.3763 -3.2333 0.3508
8 0.3962 0.3980 0.4014 6.4408 0.3787
9 0.4167 0.4183 0.4214 -9.5789 0.4014
10 0.4331 0.4346 0.4373 17.0888 0.4199
20 0.4926 0.4929 0.4935 2674.49 0.4899
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These results show clearly several aspects of the numerical 
solution:

1. The approximate solution tends toward steady state 
more rapidly than the exact solution. This property is 
primarily attributable to the eigenvalues of M - K being 
larger than the exact eigenvalues.

2. There is clearly a step size h above which the 
approximate solution is unstable as indicated by 
the h = 1.0 results.

3. When the step size is not exceeded, the approximate 
solution approaches the correct steady-state values for  
large t.

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These results show clearly several aspects of the numerical 
solution:

4. If lumping is used, the assembled mass matrix M is 
diagonal and easily inverted. The integration procedure 
is reduced at each step to a simple matrix multiplication 
and vector addition:

1
1n n nh 
  u Su M f

where if M and K are constant matrices, S = I - hM-1K
can be computed at the first time step and used 
thereafter for the subsequent applications of the basic 
algorithm.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Example 1 – Consider the Euler algorithm for the four-
element problem using the lumped mass matrix:

6 0 0 2 1 0 1

0 6 0 1 2 1 0

0 0 6 0 1 2 0

     
            
         

w w  

 
2

96

L
 Ku Mu f 

0u

u
w

    1n n nh hMw M K w f

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These equations become:

1

6 0 0 6 0 0 2 1 0 1

0 6 0 0 6 0 1 2 1 0

0 0 6 0 0 6 0 1 2 0
n nh h

        
                    
                

w w 

For this set of equation, the inverse of M can be determined, 
so that the equations may be written as:

 1 1
1n n nh h 
   w I M K w M f
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

These equations become:

1

6 0 0 6 0 0 2 1 0 1

0 6 0 0 6 0 1 2 1 0

0 0 6 0 0 6 0 1 2 0
n nh h

        
                    
                

w w 

For this set of equation, the inverse of M can be determined, 
so that the equations may be written as:

1

1 0 0 2 1 0 1

0 1 0 1 2 1 0
6 6

0 0 1 6 1 2 0
n n

h h


      
                
             

w w
 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

With /L2 = 0.021 s-1 and h = 0.1 s the equations become: 

1

0.9328 0.0336 0 0.0336

0.0336 0.9328 0.0336 0

0 0.0336 0.9328 0
n n

   
      
     

w w

1n n  w Sw b
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

0.1h s

With lumped mass matrix the solution become: 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

With lumped mass matrix the solution become: 

,
4

L
u t
 
 
 

,
2

L
u t
 
 
 

3
,

4

L
u t
 
 
 

0.1h s
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The Improved Euler or Crank-Nicolson Method - The 
improved Euler or Crank-Nicolson algorithm can be 
thought of is the following way. 

The improved Euler algorithm is developed according to: 

0 0( , ) with ( )y f x y y x y  

   1 1

1

, ,

2
n n n n

n n

h f x y f x y
y y

 


   

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

That is, the integral:

has been evaluated by taking the average of f at the ends 
of the interval (xn, xn+1). 

For the vector equation in question, the corresponding 
expression is:

 
1

,
n

n

x

x

f x y dx




 1
1 2

n n
n n

h 



 

u u
u u

 
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1 1 1

n n n

n n n  

 
     

Mu f Ku
Mu f Ku

Mu f Ku






TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

This is equivalent to a central difference representation for 
the derivative ů. Multiplying through by M yields:

which, on using the differential equation Mů + Ku = f, can 
be written as:

 1
1 2

n n
n n

h 



 

Mu Mu
Mu Mu

 

1 1 1

n n n

n n n  

 
     

Mu f Ku
Mu f Ku

Mu f Ku






TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

This is equivalent to a central difference representation for 
the derivative ů. Multiplying through by M yields:

which, on using the differential equation Mů + Ku = f, can 
be written as:

 1
1 2

n n
n n

h 



 

Mu Mu
Mu Mu

  1 1
1 2

n n n n
n n

h  


  
 

f Ku f Ku
Mu Mu
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 1 1
1 2

n n n n
n n

h  


  
 

f Ku f Ku
Mu Mu

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

This is equivalent to a central difference representation for 
the derivative ů. Multiplying through by M yields:

 1
12 2 2

n n
n n

hh h 


         
   

f fK K
M u M u

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

This is the improved Euler or Crank-Nicolson algorithm. 

As opposed to the algorithm studied in the last section, this 
algorithm is unconditionally stable, that is, although the 
accuracy may suffer considerably and oscillations occur 
for a large step size h, the oscillations never become 
unbounded. 

In addition to being unconditionally stable, the improved 
Euler or Crank-Nicolson algorithm is one order more 
accurate than the previously developed Euler algorithm in 
that the accumulated discretization error E is given 
approximately by E = O(h2).
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

To implement the method, write the equations as:

1 1n n Au b

2

h
 

K
A M

This set of linear algebraic equations must be solved at 
each time step.

 1
1 2 2

n n
n n

h h


     
 

f f K
b M u

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Given u(0) = u0,

is to be solved for u1, after which:

   
1 1 0

0

2 2

h h h        
 

f f K
Au b M u

   
2 2 1

2

2 2

h h h h        
 

f f K
Au b M u

is to be solved for u2, and so forth.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

As long as h = constant, the same coefficient matrix M+hK/2
is involved at each step and it is economical to use an 
equation solver that decomposes A at the first step 
according to A = LU. 

This decomposition is then saved so that at each 
succeeding step, two triangular systems can be solved. 

This is substantially more economical than to solve Ax = b
at each step. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

In the event that M and K are functions of t, then M, K, 
M + hK/2, and M - hK/2 must potentially be recomputed at 
each step. 

If the variation of these matrices with time is small, 
recalculation of the necessary matrices and decomposition 
of M + hK/2 can be done at suitable regular intervals 
rather than at each time step.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Example 2 - Consider the previous example with the 
following set of equations

4 1 0 2 1 0 1

1 4 1 1 2 1 0

0 1 4 0 1 2 0

 
     

            
         

w w

 
2

96

L
 Ku Mu f 

0u

u
w

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Generally,

2

4 1 0 2 1 0
48

1 4 1 1 2 1
2

0 1 4 0 1 2

h h

L


   

          
      

K
M

Taking  = 8.4 x 10-4 m2/s, L = 0.2 m, and h = 0.1s results in:

4.2016 0.8992 0.0000

0.8992 4.2016 0.8992
2

0.0000 0.8992 4.2016

h
 
    
  

K
M

3.7984 1.1008 0.0000

1.1008 3.7984 1.1008
2

0.0000 1.1008 3.7984

h
 
    
  

K
M
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The 3 x 3 matrix M + hK/2 can be inverted so that there 
results specifically:

1

0.8879 0.0754 0.0161 0.0504

0.0754 0.8718 0.0754 0.0113

0.0161 0.0754 0.8879 0.0024
n n

   
      
     

w w

1 (0) 0n n   w Sw b w

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

The first couple of iterations yield:

T

2 1 0.1011 0.0169 0.0028   w Sw b

with iteration being continued until the time interval of 
interest is covered.

T

1 0.0540 0.0113 0.0024  w b

T

3 2 0.1424 0.0182 0.0020   w Sw b



T

4 3 0.1790 0.0163 0.0005   w Sw b
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

For this example, results are given for several values of h for 
u3(t) along with those as given by the exact solution.

Approximate solution u3(t) for different h using 
the improved Euler algorithm

t (sec) h = 0.083 h = 0.167 h = 0.333 h = 1.0 uexact

1 0.0219 0.0216 0.0207 0.0004 0.0147

2 0.1103 0.1103 0.1102 0.1126 0.0845
3 0.1863 0.1863 0.1864 0.1868 0.1589
4 0.2478 0.2478 0.2479 0.2487 0.2223
5 0.2972 0.2972 0.2973 0.2981 0.2742
6 0.3369 0.3370 0.3370 0.3378 0.3164
7 0.3689 0.3689 0.3690 0.3697 0.3508
8 0.3946 0.3946 0.3947 0.3953 0.3787
9 0.4153 0.4153 0.4153 0.4159 0.4014
10 0.4319 0.4319 0.4319 0.4324 0.4199
20 0.4923 0.4923 0.4923 0.4924 0.4899

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

Time Integration Techniques – First-Order Systems

Comparing these results with the results presented using 
the Euler method; the following observations can be made:

1. The results using the improved Euler algorithm are 
more accurate than those from the Euler algorithm, 
with steady state not being approached as rapidly 
using the improved Euler algorithm.

2. For the values of h investigated, the improved Euler 
algorithm is stable.

3. Lumping does not result in any computational 
advantage for the improved Euler algorithm since the 
coefficient matrix is M + hK/2 rather than M as for the 
Euler algorithm.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Both the Euler and improved Euler or Crank-Nicolson 
algorithms presented in the preceding sections can be 
considered as special cases of the so-called  algorithm 
that assumes:

 1 1 1n n n nh        u u u u 

that is, a weighted sum of the derivatives at the beginning 
and end of the interval (tn, tn+1) is used to evaluate the 
integral:

1n

n

t

n
t

dt


 u

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Multiplying the  algorithm by M and subsequently using the 
differential equation to eliminate the Mu terms yields:

It is easily seen that:

     1 1(1 ) 1n n n nh h h            M K u M K u f f

1
2

0 Euler method

Crank-Nicolson method





 

The value  = 1 corresponds to what is referred to as the 
modified Euler method and corresponds to using a 
backward difference scheme obtained by evaluating the 
differential equation at tn+1 and taking:

1
1

n n
n h







u u
u
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Example - As a very simple demonstration, consider a two-
element model for the previous problem.

with (0) 0
2

w w w
  

where w = u2/u0 and  = 12/L2. 

The eigenvalue is determined by taking w = c exp(-t) in the 
homogeneous equation leading to  =  = 12/L2. 

The  method yields:

 
1

1 (1 ) / 2

(1 )
n

n

h w h
w

h

  
 

  




TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Example – The results from the Euler, the Crank-Nicolson, 
and the modified Euler algorithms, along with the analytical 
solution, for h = 0.1, 1.0, 2.0, and 2.2, respectively.

Comparison of numerical and analytical solutions for p = h = 0.1

Step # Euler C-N M-Euler Analytical

1 0.0500 0.0476 0.0455 0.0476

2 0.0950 0.0907 0.0868 0.0906

3 0.1355 0.1297 0.1243 0.1296

4 0.1720 0.1650 0.1585 0.1648

5 0.2048 0.1969 0.1895 0.1967

6 0.2343 0.2257 0.2178 0.2256

7 0.2609 0.2519 0.2434 0.2517

8 0.2848 0.2755 0.2667 0.2753

9 0.3063 0.2969 0.2880 0.2967

10 0.3257 0.3162 0.3072 0.3161
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Example – The results from the Euler, the Crank-Nicolson, 
and the modified Euler algorithms, along with the analytical 
solution, for h = 0.1, 1.0, 2.0, and 2.2, respectively.

Comparison of numerical and analytical solutions for p = h = 1.0

Step # Euler C-N M-Euler Analytical

1 0.5000 0.3333 0.2500 0.3161

2 0.5000 0.4444 0.3750 0.4323

3 0.5000 0.4815 0.4375 0.4751

4 0.5000 0.4938 0.4688 0.4908

5 0.5000 0.4979 0.4844 0.4966

6 0.5000 0.4993 0.4922 0.4988

7 0.5000 0.4998 0.4961 0.4995

8 0.5000 0.4999 0.4980 0.4998

9 0.5000 0.5000 0.4990 0.4999

10 0.5000 0.5000 0.4995 0.5000

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Example – The results from the Euler, the Crank-Nicolson, 
and the modified Euler algorithms, along with the analytical 
solution, for h = 0.1, 1.0, 2.0, and 2.2, respectively.

Comparison of numerical and analytical solutions for p = h = 2.0

Step # Euler C-N M-Euler Analytical

1 1.0000 0.5000 0.3333 0.4323

2 0.0000 0.5000 0.4444 0.4908

3 1.0000 0.5000 0.4815 0.4988

4 0.0000 0.5000 0.4938 0.4998

5 1.0000 0.5000 0.4979 0.5000

6 0.0000 0.5000 0.4993 0.5000

7 1.0000 0.5000 0.4998 0.5000

8 0.0000 0.5000 0.4999 0.5000

9 1.0000 0.5000 0.5000 0.5000

10 0.0000 0.5000 0.5000 0.5000
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

Example – The results from the Euler, the Crank-Nicolson, 
and the modified Euler algorithms, along with the analytical 
solution, for h = 0.1, 1.0, 2.0, and 2.2, respectively.

Comparison of numerical and analytical solutions for p = h = 2.2

Step # Euler C-N M-Euler Analytical

1 1.1000 0.5238 0.3438 0.4446

2 -0.2200 0.4989 0.4512 0.4939

3 1.3640 0.5001 0.4847 0.4993

4 -0.5368 0.5000 0.4952 0.4999

5 1.7442 0.5000 0.4985 0.5000

6 -0.9930 0.5000 0.4995 0.5000

7 2.2916 0.5000 0.4999 0.5000

8 -1.6499 0.5000 0.5000 0.5000

9 3.0799 0.5000 0.5000 0.5000

10 -2.5959 0.5000 0.5000 0.5000

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

The Euler and Crank-Nicolson algorithms both tend toward 
steady state too rapidly, with the modified Euler lagging 
consistently behind steady state. 

For small h (h = 0.1), the Crank-Nicolson algorithm 
essentially reproduces the analytical solution with the 
Euler and modified Euler algorithms above and below the 
analytical solutions, respectively.
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

For the step size h equal to the critical value for the Euler 
algorithm, the Euler algorithm diverges by oscillation 
between the values of 0 and 1. 

The Crank-Nicolson and modified Euler solutions tend 
toward steady state for large t. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

For h > hcr the oscillations of the Euler algorithm become 
unbounded, whereas the Crank-Nicolson oscillates about 
and converges to the steady-state solution. 

The corresponding modified Euler solution converges from 
below to the steady-state solution. These tendencies, 
which are well known for large values of h (h > hcr), are 
shown below. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

These tendencies, which are well known for large values of 
h (h > hcr), are shown below. 

TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

These tendencies, which are well known for large values of 
h (h > hcr), are shown below. 
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TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

It can shown that for the  algorithm, the time step h should 
satisfies the following ratio:

 1 1
1 1

1
i

i

h

h

 


 
  



For  < 0.5 this is:
2

1 2ih





For  = 0:
2

i

h




TIME-DEPENDENT PROBLEMS

One-Dimensional Diffusion or Parabolic Equations

ANALYSIS OF ALGORITHMS

These inequalities are governed by the largest eigenvalue of 
the K – M so that:

max

2
h




FINISH THIS BIT FROM PAGE 432 IN BICKFORD
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End of

1-D Time Dependent

Problems – Part a
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