
EIGENVALUE PROBLEMS

Many of the techniques for solving two-dimensional time-
dependent problems such as the diffusion and wave 
equations are very closely related to a corresponding 
boundary value problem. 

In this section, we will investigate the relationship between 
the time-dependent problem and its corresponding 
boundary value problem.

Also we investigate how the FEM can be used to extract 
information about the eigenvalue and eigenfunctions of the 
corresponding boundary value problems. 

EIGENVALUE PROBLEMS

Time-dependent diffusion problems can frequently be stated 
as:
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The first two auxiliary conditions are boundary conditions and 
the third an initial condition. 

Such problems are frequently referred to as initial-boundary 
value problems. 
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EIGENVALUE PROBLEMS

The corresponding completely homogeneous boundary 
value problem, obtained by taking f = g = h = 0, is:
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EIGENVALUE PROBLEMS

Solutions of this completely homogeneous boundary value 
problem have great utility in solving the original 
nonhomogeneous initial-boundary value problem. 

For the diffusion problem, solutions of the homogeneous 
form of the time-depend diffusion equation are known 
generally to behave according to, 

leading to:
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where =
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EIGENVALUE PROBLEMS

The 's and corresponding nontrivial  's that satisfy the 
above equation are known as eigenvalues and 
eigenfunctions respectively. 

The words eigenvalue and eigenvector are derived from the 
German word "eigen" which means "proper" or 
"characteristic." 

These are the two-dimensional counterparts of the n and un

discussed in one-dimensional eigenvalue problems. 
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EIGENVALUE PROBLEMS

This differential equation is known as the Helmholtz Equation
and occurs with remarkable frequency in mathematical 
models. 

The problem to be solved is that of finding the eigenvalues 
and eigenfunctions satisfying the differential equation and 
boundary conditions for the two-dimensional region . 

Exact solutions are known only for a few special regions . 
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EIGENVALUE PROBLEMS

Hermann Ludwig Ferdinand von Helmholtz (August 31, 1821 –
September 8, 1894) was a German physician and physicist 
who made significant contributions to several widely varied 
areas of modern science.

In physics, he is known for his theories 
on the conservation of energy, work in 
electrodynamics, chemical 
thermodynamics, and on a mechanical 
foundation of thermodynamics. 

The largest German association of 
research institutions, the Helmholtz 
Association, is named after him.

EIGENVALUE PROBLEMS

In a completely similar fashion, the two-dimensional initial-
boundary value problem associated with the scalar wave 
equation can be written as:

Here, the first two conditions are boundary conditions and the 
second two are initial conditions.
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EIGENVALUE PROBLEMS

Frequently,  is a displacement or generalized displacement 
and hence /t is a velocity or generalized velocity. 

For a physical problem associated with the wave equation it 
is usually appropriate to investigate solutions to the 
homogeneous differential equation and boundary 
conditions of the form, 

again leading to:
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EIGENVALUE PROBLEMS

This is precisely the same completely homogeneous 
boundary value problem for the diffusion problem. 

This equation describes a two-dimensional vibrating 
membrane, with the edges clamped to be motionless.
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Finite Element Models for the Helmholtz Equation

The finite element model for the Helmholtz equation will be 
discussed in terms of the typical region shown below.

EIGENVALUE PROBLEMS
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Discretization and interpolation are carried out in the same 
fashion as we have discussed earlier. 

Finite Element Models for the Helmholtz Equation

The Galerkin finite element method will be used to generate 
the desired algebraic equations for determining the 
approximate eigenvalues and eigenfunctions.

The form of the solution is taken as:

EIGENVALUE PROBLEMS

where the ni functions are appropriate nodally based 
interpolation functions and i are the unknown values of 
 (x, y).
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Finite Element Models for the Helmholtz Equation

With the test function designated as , the appropriate weak 
form for this boundary value problem is:

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

With the test function designated as , the appropriate weak 
form for this boundary value problem is:

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

With the test function designated as , the appropriate weak 
form for this boundary value problem is:

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

With the test function designated as , the appropriate weak 
form for this boundary value problem is:

EIGENVALUE PROBLEMS

2

0dA ds dA
x x y y

      
  

    
        

  
Taking:

    


 
1

, ,
N

i i
i

x y n x y

1

N

k i i
i

n n dA 
 

  
 
  

 

CIVL 7/8111 2-D Boundary Value Problems - Eigenvalue Problems 8/46



Finite Element Models for the Helmholtz Equation

With the previous substitutions, the boundary value 
problems becomes:

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

With the previous substitutions, the boundary value 
problems becomes:

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

These equations can be written in a more convenient form:

EIGENVALUE PROBLEMS

where:
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Finite Element Models for the Helmholtz Equation

These equations can be written in a more convenient form:

EIGENVALUE PROBLEMS

The above equation is an example of the generalized linear 
algebraic eigenvalue problem. 

The me is referred to as an elemental consistent mass 
matrix.
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This results in:

where the rows and columns associated with the 
constraints have been removed. 

Finite Element Models for the Helmholtz Equation

The boundary conditions for the Helmholtz equation are 
entirely homogeneous. 

In particular, the constraints associated with the essential 
boundary conditions on 1 can be enforced by deleting the 
row and column corresponding to the degree of freedom in 
question. 

EIGENVALUE PROBLEMS

0 * * * *
G G G GK Ψ - M Ψ

Finite Element Models for the Helmholtz Equation

The solution is obtained by determining the eigenvalues and 
corresponding eigenvectors. 

For a problem with a small number (two to four) of 
constrained degrees of freedom, it is perhaps feasible to 
extract the eigen information by hand. 

EIGENVALUE PROBLEMS

1 * *
G GA M KThis results in:

where the rows and columns associated with the 
constraints have been removed. 

0 * * * *
G G G GK Ψ - M Ψ
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Finite Element Models for the Helmholtz Equation

For larger problems, it is essential to have a robust 
computer code for this task. 

Appendix C in your textbook contains FORTRAN source 
listings for several routines that may be used in this 
regard.

More conveniently, you can use the MATLAB function:
[V,D] = eig(A) 

which returns diagonal matrix D of eigenvalues and matrix V
whose columns are the corresponding right eigenvectors.

EIGENVALUE PROBLEMS

Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

The propagation of time harmonic sound waves is usually 
described by the Helmholtz equation. 

When the pressure source is moving with respect to the 
fluid, or vice versa, the wave length is different in different 
directions - the phenomenon is referred to as the Doppler 
effect.

The figure represents the sound waves 
produced by a simple vibrating 
pressure source in the middle of the 
computational domain. 

The fluid is moving with a constant 
velocity in the horizontal direction. 
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Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

The propagation of time harmonic sound waves is usually 
described by the Helmholtz equation. 

When the pressure source is moving with respect to the 
fluid, or vice versa, the wave length is different in different 
directions - the phenomenon is referred to as the Doppler 
effect.

Because of the movement, the wave 
length is shorter and the amplitude 
smaller in the upwind direction. 

Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

Stationary source Vsource < Vsound 
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Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

Vsource > VsoundVsource = Vsound

Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS
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Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

Second eigenfunction First eigenfunction 

Finite Element Models for the Helmholtz Equation

EIGENVALUE PROBLEMS

Tenth eigenfunction Third eigenfunction 
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Examples for the Helmholtz Equation – Example 1

Consider the problem of a classical square vibrating 
membrane with all edges fixed against transverse 
displacement. 

The differential equation of motion can be written as:

EIGENVALUE PROBLEMS

where T is the initial tension in the membrane and  the 
area density. 

The boundary condition is that w equals zero on all the 
edges of the membrane. 
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS
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Examples for the Helmholtz Equation – Example 1

Recall, the differential equation of motion can be written as:

EIGENVALUE PROBLEMS

Taking:
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where  = 2/T

This is the Helmholtz problem on the square, with the 
dependent variable  prescribed as zero everywhere on 
the boundary. 

Examples for the Helmholtz Equation – Example 1

Recall, the differential equation of motion can be written as:

EIGENVALUE PROBLEMS

Taking:
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The eigenvalues are related to the natural frequencies and 
the eigenfunctions to the mode shapes. 
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Examples for the Helmholtz Equation – Example 1

The simplest possible model using linearly interpolated 
triangular elements is shown below. 

EIGENVALUE PROBLEMS
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Examples for the Helmholtz Equation – Example 1

The elemental ke matrix using 3-noded triangular elements 
is:

EIGENVALUE PROBLEMS
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

For element 1: node 1 is at (0, 0); 
node 2 at (a, 0); and node 3 at (0.5a, 0.5a).
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

For element 2: node 2 is at (a, 0); 
node 5 at (a, a); and node 3 at (0.5a, 0.5a).
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

For element 3: node 3 is at (0.5a, 0.5a); 
node 5 at (a, a); and node 4 at (0, a).
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

For element 4: node 1 is at (0, 0); 
node 3 at (0.5a, 0.5a); and node 4 at (0, a).
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Examples for the Helmholtz Equation – Example 1

The elemental me matrices are:

EIGENVALUE PROBLEMS
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Recall, the following relationship:

Examples for the Helmholtz Equation – Example 1

The elemental me matrices are:

EIGENVALUE PROBLEMS

eA

dA  T
em NN

1

2 1 2 3

3
eA

N

N N N N dA

N

 
   
 
 



2 1 1

1 2 1
12

1 1 2

eA
 
   
  

 
2

! ! !
2 !

e

a b c e
I J K

A

A
N N N dA a b c

a b c


  
Recall, the following relationship:
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Examples for the Helmholtz Equation – Example 1

The elemental me matrices are:

EIGENVALUE PROBLEMS

eA

dA  T
em NN

1

2 1 2 3

3
eA

N

N N N N dA

N

 
   
 
 



2 1 1

1 2 1
12

1 1 2

eA
 
   
  

 
      
  

2
2 1 1

1 2 1
48

1 1 2

a
1 2 3 4m m m m

2

4e

a
A 

Examples for the Helmholtz Equation – Example 1

The assembled KG and MG matrices are determined to be:

EIGENVALUE PROBLEMS

 
  
     
 

 
  

2 0 2 0 0

0 2 2 0 0
1

2 2 8 2 2
2

0 0 2 2 0

0 0 2 0 2

GK
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Examples for the Helmholtz Equation – Example 1

The assembled KG and MG matrices are determined to be:

EIGENVALUE PROBLEMS

 
 
 
 
 
 
  

2

4 1 2 1 0

1 4 2 0 1

2 2 8 2 2
48

1 0 2 4 1

0 1 2 1 4

a
GM

Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

Constraining                              yields the single equation:1 2 4 5, , , and   

    
33 33

0G GK M

2

2

24
4 0 where

6

a

a
   

This approximate value is to be compared to the exact 
value of 2 2/a2 (19.74/a2), an error of approximately 22%. 

This is quite reasonable for the very crude mesh. 
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Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

When plotted, the corresponding eigenfunction is the 
pyramid-shaped function. 

It can shown that a model using four square elements over 
the same region also yields  = 24/a2.

2

4 5

1

3

Examples for the Helmholtz Equation – Example 1

EIGENVALUE PROBLEMS

When plotted, the corresponding eigenfunction is the 
pyramid-shaped function. 
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Consider the problem of the vibration of a circular 
membrane. 

The Helmholtz problem for the circle is related to the 
vibration of the circular membrane. 

Consider a circular region modeled with eight linearly 
interpolated triangular elements. 

2

4 5

3

a

1

6

7

8

9

5 6

9

45o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For element 1: node 5 is at (0, 0); node 6 at (a, 0); and 
node 9 at (0.70710a, 0.70710a).

0.70710 0.29290

0.70710 0.70710

0 1
e ea a

    
        
   
   

b c  20.35355eA a

  
    
   

5

6

9

0.41421 0.20710 0.20710

0.20710 0.70709 0.50000

0.20710 0.50000 0.70710
ek

The elemental stiffness matrix for the single triangular 
element is:
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The elemental mass matrix is:

where a is the radius of the circle. 

 
    
  


2 1 1

1 2 1
12

1 1 2e

e

A

A
dAT

em NN  20.35355eA a

 
   
  

2
5

6

9

2 1 1
0.35355

1 2 1
12

1 1 2

a
em

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

With a little forward planning, it can be seen that all of nodes 
1-4 and 6-9 will be constrained with only node 5 remaining. 

Thus only (KG)55 and (MG)55 need to be computed. 

The contribution to (KG)55 and (MG)55 from each element 
will be the (5, 5) element of the ke and me, yielding:

The resulting solution is:

       
 

2

55 55

8 0.35355
8 0.41422

6

a
G GK M

 
 

55
2

55

7.02961

a
  

G

G

K

M

The exact value is 5.78/a2
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The eigenfunction plots as the pyramidal cone.

 
 

55
2

55

7.02961

a
  

G

G

K

M

The exact value is 5.78/a2

The resulting solution is:

2

4

3

1
6

7 8

9

5

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The eigenfunction plots as the pyramidal cone.
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For the circle, a better approximation to the fundamental 
eigenvalue can be obtained without having to solve an 
excessively large problem by considering the mesh shown 
below. 

For this model, we will enforce constraints at nodes 1, 2, and 
3 with nodes 4, 5, and 6 unconstrained. 

4

5

6 45o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For the circle, a better approximation to the fundamental 
eigenvalue can be obtained without having to solve an 
excessively large problem by considering the mesh shown 
below. 

The portion of the boundary containing nodes 1-2-3 is 1
and the two straight portions 1-4-6 and 3-5-6 must be 
considered as 2. 

4

5

6 45o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For the circle, a better approximation to the fundamental 
eigenvalue can be obtained without having to solve an 
excessively large problem by considering the mesh shown 
below. 

In the limit as the mesh is refined, the natural boundary 
conditions ( /n = 0) will be satisfied on 2. 

4

5

6 45o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For element 1: node 4 is at (a/2, 0); 5 at (0.35355a, 
0.35355a); and node 6 at (0, 0).

2
1 1 1

0.35355 0.35355

0 0.50000 0.08839

0.35355 0.14645

a a A a

   
        
       

b c

4

5

6 45
o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

1

1

4

5

6

0.70709 0.50000 0.20710

0.50000 0.70709 0.20711

0.20710 0.20711 0.41421

  
    
   

k
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For element 2: node 1 is at (a, 0); node 2 at (0.9289a, 
0.3827a); and node 4 at (a/2, 0).

2
2 2 2

0.38296 0.42388

0.00000 0.50000 0.09574

0.38296 0.07612

a a A a

   
        
       

b c

4

5

6 45
o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

2

2

1

2

4

0.85186 0.55327 0.29860

0.55327 0.65281 0.09954

0.29860 0.09954 0.39813

  
    
   

k

4

5

6 45
o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For element 3: node 2 is (0.9289a, 0.3827a); node 5 at 
(0.35355a, 0.35355a); and node 4 at (a/2, 0).

2
3 3 3

0.02913 0.14645

0.38268 0.42388 0.10295

0.02913 0.57033

a a A a

   
         
      

b c

3

3

2

5

4

0.05413 0.17781 0.20488

0.17781 0.79191 0.61410

0.20488 0.61410 0.79191

 
   
   

k
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4

5

6 45
o

 0,0  ,0a

 
  
 

2 2
,

2 2

a a

1

2

3

 ,02
a

 
  
 

2 2
,

4 4

a a

     cos 22.5 , sin 22.5a a

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For element 4: node 2 is (0.9289a, 0.3827a); node 3 at 
(0.70711a, 0.70711a); and 
node 5 at (0.35355a, 0.35355a).

2
4 4 4

0.32442 0.35355

0.02913 0.57032 0.09567

0.32442 0.21677

a a A a

   
        
       

b c

4

4

2

3

5

0.60167 0.55161 0.07476

0.55161 0.85219 0.29837

0.07476 0.29837 0.39782

  
    
   

k

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The elemental me matrices are:

2 1 1

1 2 1
12

1 1 2e

e

A

A
dA

 
    
  

 T
em NN

2

1

4

5

6

2 1 1
0.08839

1 2 1
12

1 1 2

a
 
   
  

m

2

3

2

5

4

2 1 1
0.10295

1 2 1
12

1 1 2

a
 
   
  

m

2

2

1

2

4

2 1 1
0.095671

1 2 1
12

1 1 2

a
 
   
  

m

2

4

2

3

5

2 1 1
0.09567

1 2 1
12

1 1 2

a
 
   
  

m
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

For the subregion shown in the mesh above, the 
constrained K*

G and M*
G matrices respectively are:

*

4

5

6

1.89713 1.11411 0.20710

1.11411 1.89682 0.20710

0.20710 0.20710 0.41421

  
    
   

GK

 
   
  

2
4

5

6

0.57416 0.19134 0.08839

0.19134 0.57388 0.08839
12

0.08839 0.08839 0.17678

a*
GM

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The eigenvalues can be found using a variety of available 
solution techniques. In Matlab, use [V,D] = eig(A).

For example, [V,D] = eig(MG-1KG) gives eigenvalues D:

1 2 32 2 2

6.1185 46.8869 94.4155

a a a
    

The eigenvectors V are:

* * *
1 2 3

0.4756 0.2360 0.7069

0.4756 0.2358 0.7073

0.7401 0.9427 0.0004

      
             
          

  
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EIGENVALUE PROBLEMS

The eigenvectors as given by Bickford (1994) are:

  
     

            
          

* * *
1 2 3

0.643 0.250 1.000

0.643 0.250 1.000

1.000 1.000 0.000

If the Matlab eigenvectors are scaled they match Bickford’s:

* * *
1 2 3

0.4756 0.2360 0.7069

0.4755 0.2358 0.7073

0.7401 0.9427 0.0004

      
             
          

   *
3

0.9994

1.0000

0.0006

 
   
  

*
2

0.2503

0.2502

1.0000

 
   
 
 

*
1

0.6426

0.6426

1.0000

 
   
 
 



Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

As the results indicate, the lowest eigenvalue is associated 
with an eigenfunction that is symmetric, that is, 4 = 5 
with 4,5, and6 all positive, so that an improved 
approximation for the lowest eigenvalue for the entire 
circle will be obtained. 

The other ’s and ’s must be interpreted very carefully for 
a model consisting of such a subregion, in that correctly 
identifying conditions of symmetry or antisymmetry and the 
character of the corresponding modes can require 
considerable insight into the mathematics of the problem. 
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
 
 

*
1

0.643

0.643

1.000

2

4

3

1

5

6

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
 
 

*
1

0.643

0.643

1.000
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EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
  

*
2

0.250

0.250

1.000

2

4

3

1

5

6

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
  

*
2

0.250

0.250

1.000
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
 
 

*
3

1.000

1.000

0.000

2

4

3

1

5

6

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The corresponding approximate eigenfunctions are shown 
below:


 
   
 
 

*
3

1.000

1.000

0.000
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

The first two eigenvectors clearly have a symmetric 
character in the 4 = 5 . 

2

4

3

1

5

6


 
   
 
 

*
1

0.643

0.643

1.000
2

4

3

1

5

6


 
   
  

*
2

0.250

0.250

1.000

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

One would suspect that these eigenvalues-eigenfunction 
pairs correspond to radially symmetric modes for the 
circle, with the lowest eigenvalue for this model 
representing an improvement in the single eigenvalue 
obtained from the first model using eight elements. 

The third eigenvalue-eigenfunction demonstrates 
asymmetry with respect to the bisector of the angle 
subtended by the element. 

2

4

3

1

5

6


 
   
 
 

*
3

1.000

1.000

0.000
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Bending modes of a fixed circular plate - mode 1

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Bending modes of a fixed circular plate – mode 2
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Bending modes of a fixed circular plate – mode 3

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Bending modes of a fixed circular plate – mode 4
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Normal vibration modes of a circular membrane

Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Normal vibration modes of a circular membrane
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Examples for the Helmholtz Equation – Example 2

EIGENVALUE PROBLEMS

Normal vibration modes of a circular membrane

PROBLEM #26 - Consider the problem of a classical square 
vibrating membrane with all edges fixed against transverse 
displacement. The differential equation of motion can be 
written as:

EIGENVALUE PROBLEMS

2
2

2

w
T w

t
 

 


      , , , expw x y t x y i t

2
10 in with 0 on       

where T is the initial tension in the membrane and  the 
area density. The boundary condition is that w vanishes 
on all the edges of the membrane. Taking:

where  = 2/T
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PROBLEM #26 - Model the top right-most quadrant of the 
membrane using eight equally-sized 3-node triangles and 
compute the associated eigenvalues and the 
eigenfunctions.

EIGENVALUE PROBLEMS

y

x

a

a

Note: Use a node numbering scheme that will make assembly of the 
stiffness and mass matrices as simple as possible.

PROBLEM #26

EIGENVALUE PROBLEMS

Using [V,D] = eig(MG-1KG) gives eigenvalues D:

1 22 2

4.3889 33.6174
x

a a
  

3 42 2

48.0000 110.2290

a a
  
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PROBLEM #26 – The results for mode 1 are:

EIGENVALUE PROBLEMS

PROBLEM #26 – The results for mode 2 are:

EIGENVALUE PROBLEMS

CIVL 7/8111 2-D Boundary Value Problems - Eigenvalue Problems 44/46



PROBLEM #26 – The results for mode 3 are:

EIGENVALUE PROBLEMS

PROBLEM #26 – The results for mode 4 are:

EIGENVALUE PROBLEMS

CIVL 7/8111 2-D Boundary Value Problems - Eigenvalue Problems 45/46



End of 

2-D Eigenvalues
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