AXISYMMETRIC PROBLEMS

Axisymmetric problems are sometimes referred to as radially symmetric problems.

They are geometrically three-dimensional but mathematically only two-dimensional in the physics of the problem.

In other words, the dependent variable is a function of the coordinates *r* and *z* and not a function of the of the angle θ u = u(r, z).

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Axisymmetric problems are associated with bodies of revolution as indicated in the figure below:

AXISYMMETRIC PROBLEMS

The three-dimensional Laplacian operator in axisymmetric problems reduces to:

$$\nabla^2 u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial^2 u}{\partial z^2}$$

which may be written as:

$$\nabla^2 u = \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(r \frac{\partial u}{\partial z} \right) \right]$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

The Poisson boundary value problem is:

$$\nabla^2 u(r, z) + f(r, z) = 0 \qquad \text{in } \Omega$$
$$u = g(s) \qquad \text{on } \Gamma_1$$
$$\frac{\partial u}{\partial n} + \alpha(s)u = h(s) \qquad \text{on } \Gamma_2$$

where the surface Γ_1 is the portion of the surface Γ where the Dirichlet type boundary conditions are defined and Γ_2 is the portions where the Neumann or Robin boundary conditions are prescribed.

AXISYMMETRIC PROBLEMS

The corresponding energy functional that will serve as the basis for a Ritz finite element model is:

$$Z(u) = \frac{1}{2} \iint_{\Omega} \left[r \left(\frac{\partial u}{\partial r} \right)^2 + r \left(\frac{\partial u}{\partial z} \right)^2 \right] dr \, dz - \iint_{\Omega} ur \, f \, dr \, dz$$
$$+ \frac{1}{2} \int_{\Gamma_2} \alpha r u^2 \, ds - \int_{\Gamma_2} urh \, ds = 0$$

Due to the mathematical nature of the problem, the analysis may be performed within a two-dimensional region in the *rz*-plane which is revolved about the *z*-axis.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

The revolving region defined the actual three-dimensional domain.

AXISYMMETRIC PROBLEMS

The revolving region defined the actual three-dimensional domain.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

The revolving region defined the actual three-dimensional domain.

AXISYMMETRIC PROBLEMS

The revolving region defined the actual three-dimensional domain.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Cross-section and axial schematic of the coaxial slot antenna

AXISYMMETRIC PROBLEMS

Cross-section and axial schematic of the coaxial slot antenna

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

- <u>**Discretization**</u> As usual the first step is developing a finite element model is the discretization of the problem geometry.
- As an introduction, we will limit our discussion of the discretization and formulation of the axisymmetric problem to linear triangles.

AXISYMMETRIC PROBLEMS

Discretization - In terms of the discretization, the functional Z is now a sum of the integrals over each element in the domain Ω , and the sum of surface integrals on the boundary segments along Γ_2 :

$$Z(u) \approx \frac{1}{2} \left(\sum_{e} \iint_{A_{e}} \left[r \left(\frac{\partial u}{\partial r} \right)^{2} + r \left(\frac{\partial u}{\partial z} \right)^{2} \right] dr \, dz + \sum_{e} \int_{\gamma_{2e}} \alpha r u^{2} \, ds \right)$$
$$- \sum_{e} \iint_{A_{e}} urf \, dr \, dz - \sum_{e} \int_{\gamma_{2e}} urh \, ds = 0$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Interpolation - The simplest interpolation over a straightsided three node triangular element is to assume the function u(r, z) is represented by a linear plane.

AXISYMMETRIC PROBLEMS

Interpolation - Linearly interpolated triangular elements represent the variation of the dependent variable *u* over an

element as: $u_{e}(r, z) = \alpha + \beta r + \gamma z$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Interpolation - Linearly interpolated triangular elements represent the variation of the dependent variable *u* over an element as: $u_e(r, z) = \alpha + \beta r + \gamma z$

where α , β , and γ are constant determined by matching the function u_e with the nodal values of the element:

$$u_{e}(r_{i}, z_{i}) = \alpha + \beta r_{i} + \gamma z_{i}$$
$$u_{e}(r_{j}, z_{j}) = \alpha + \beta r_{j} + \gamma z_{j}$$
$$u_{e}(r_{k}, z_{k}) = \alpha + \beta r_{k} + \gamma z_{k}$$

AXISYMMETRIC PROBLEMS

Interpolation - Solving the three equations for α , β , and γ and substituting back into the expression representing the variation of *u* over the element results in:

$$u_{e}(r, z) = N_{i}u_{i} + N_{j}u_{j} + N_{k}u_{k}$$

where :
$$N_{i} = \frac{a_{i} + b_{i}r + c_{i}z}{2A_{e}}$$

$$i = 1, 2, 3$$

$$a_{i} = r_{j}z_{k} - r_{k}z_{j}$$

$$b_{i} = z_{j} - z_{k}$$

$$c_{i} = r_{k} - r_{j}$$

where *i*, *j*, and *k* are permuted cyclically

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Interpolation - The determinant of the coefficients is:

$$2A_{e} = \begin{vmatrix} 1 & r_{i} & z_{i} \\ 1 & r_{j} & z_{j} \\ 1 & r_{k} & z_{k} \end{vmatrix}$$

where A_e is the area of the element.

Any numbering scheme that proceeds counterclockwise around the element is valid, for example (*i*, *j*, *k*), (*j*, *k*, *i*), or (*k*, *i*, *j*).

This numbering convention is important and necessary in order to compute a positive area for A_{e} .

AXISYMMETRIC PROBLEMS

Interpolation - In matrix notation, the distribution of the function over the element is:

 $U_{e}(r, z) = \mathbf{u}_{e}^{\mathsf{T}} \mathbf{N} = \mathbf{N}^{\mathsf{T}} \mathbf{u}_{e}$

The linear triangular shape functions are illustrated below:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

AXISYMMETRIC PROBLEMS

Interpolation - The derivatives of *u* over the element with respect to both coordinates are:

$\frac{\partial u_{\rm e}(r,z)}{\partial r} = \mathbf{u_{e}}^{\rm T}$	∂N _	∂N [™]	$\frac{\partial u_{e}(r,z)}{\partial z} = \mathbf{u}_{e}^{T}$	∂N _	∂N [™]
$\frac{\partial r}{\partial r} = \mathbf{u}_{\mathbf{e}}$	∂r	∂r ue	$\frac{\partial z}{\partial z} = u_{e}$	∂z	∂z u _e

Calculating the derivatives of the shape functions gives:

$\frac{\partial \mathbf{N}}{\partial r} = \frac{\mathbf{b}_{\mathbf{e}}}{2A_{\mathbf{e}}}$	$\frac{\partial \mathbf{N}}{\partial z} = \frac{\mathbf{c}_{e}}{2A_{e}}$
$\mathbf{b}_{\mathbf{e}}^{T} = \left\langle b_1 b_2 b_3 \right\rangle$	$\mathbf{C_e}^{T} = \begin{pmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \mathbf{C}_3 \end{pmatrix}$
$b_i = Z_j - Z_k$	$\boldsymbol{c}_i = \boldsymbol{r}_k - \boldsymbol{r}_j$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

- **Interpolation** Observing the form of the derivative it is apparent that the partial derivatives of the function *u* will be constant over a linear triangular element.
- There are many problems associated with accuracy and convergence for this type of element.
- In elasticity analysis, stress and strain are related by a partial differential equation, using a linear triangular element to described stress will result in a constant approximation for strain over the element.
- Therefore, elements of this type are called **constant strain** elements.

AXISYMMETRIC PROBLEMS

<u>Elemental Formulation</u> - The functional for the Poisson equation is:

$$Z(u) \approx \frac{1}{2} \sum_{e} \iint_{A_{e}} \left[r \left(\frac{\partial u}{\partial r} \right)^{2} + r \left(\frac{\partial u}{\partial z} \right)^{2} \right] dA$$
$$+ \frac{1}{2} \sum_{e} \int_{\gamma_{2e}} \alpha r u^{2} ds - \sum_{e} \iint_{A_{e}} urf dA - \sum_{e} \int_{\gamma_{2e}} urh ds = 0$$

We can write the functional in the following form:

$$Z(u) \approx \sum_{e} \frac{Z_{e1}}{2} + \sum_{e} \frac{Z_{e2}}{2} - \sum_{e} Z_{e3} - \sum_{e} \frac{Z_{e4}}{2}$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

<u>Elemental Formulation</u> – Where the components are defined as:

$$Z_{e1} = \iint_{A_e} \left[r \left(\frac{\partial u}{\partial r} \right)^2 + r \left(\frac{\partial u}{\partial z} \right)^2 \right] dr \, dz \qquad Z_{e2} = \int_{\gamma_{2e}} \alpha r \, u^2 \, ds$$
$$Z_{e3} = \iint_{A_e} ur \, f \, dr \, dz \qquad \qquad Z_{e4} = \int_{\gamma_{2e}} ur \, h \, ds$$

AXISYMMETRIC PROBLEMS

Elemental Formulation - Evaluation of Z_{e1}:

$$Z_{\rm e1} = \iint_{A} \left[r \frac{\partial u}{\partial r} \frac{\partial u}{\partial r} + r \frac{\partial u}{\partial z} \frac{\partial u}{\partial z} \right] dA$$

Recall the first derivatives of *u* with respect to *r* and *z* are:

$$\frac{\partial u_{e}(r,z)}{\partial r} = \mathbf{u_{e}^{T}} \frac{\partial \mathbf{N}}{\partial r} = \frac{\partial \mathbf{N}^{T}}{\partial r} \mathbf{u_{e}}$$
$$\frac{\partial u_{e}(r,z)}{\partial z} = \mathbf{u_{e}^{T}} \frac{\partial \mathbf{N}}{\partial z} = \frac{\partial \mathbf{N}^{T}}{\partial z} \mathbf{u_{e}}$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

<u>Elemental Formulation</u> - Evaluation of Z_{e1}: Replacing the derivatives with the above approximations gives:

$$Z_{e1} = \iint_{A} \left[\mathbf{u}_{e}^{\mathsf{T}} \frac{\partial \mathsf{N}}{\partial r} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial r} \mathbf{u}_{e} + \mathbf{u}_{e}^{\mathsf{T}} \frac{\partial \mathsf{N}}{\partial z} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial z} \mathbf{u}_{e} \right] dr dz$$
$$= \mathbf{u}_{e}^{\mathsf{T}} \left(\iint_{A} \left[\frac{\partial \mathsf{N}}{\partial r} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial r} + \frac{\partial \mathsf{N}}{\partial z} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial z} \right] dr dz \right) \mathbf{u}_{e} = \mathbf{u}_{e}^{\mathsf{T}} \mathbf{k}_{e} \mathbf{u}_{e}$$
$$\mathbf{k}_{e} = \iint_{A} \left[\frac{\partial \mathsf{N}}{\partial r} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial r} + \frac{\partial \mathsf{N}}{\partial z} r \frac{\partial \mathsf{N}^{\mathsf{T}}}{\partial z} \right] dA$$

AXISYMMETRIC PROBLEMS

<u>Elemental Formulation</u> - Evaluation of Z_{e1} : The integrals defined in k_e are the elemental "stiffness" matrix.

For the linear triangular element we have discussed the stiffness matrix reduces to:

$$\mathbf{k}_{\mathbf{e}} = \iint_{A_{e}} \left[\frac{\mathbf{b}_{\mathbf{e}} r \, \mathbf{b}_{\mathbf{e}}^{\mathsf{T}} + \mathbf{c}_{\mathbf{e}} r \, \mathbf{c}_{\mathbf{e}}^{\mathsf{T}}}{4 \, A_{e}^{2}} \right] dr \, dz$$

The resulting 3 x 3 elemental stiffness matrix contributes to the global system equations at locations corresponding to the element nodes.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Elemental Formulation - Evaluation of Z_{e2}:

$$Z_{e2} = \int_{\gamma_{2e}} \alpha r \, u^2 \, ds$$

In this case, the interpolation of u with respect to r and z is used to describe the behavior along the boundary:

1

$$Z_{e2} = \int_{\gamma_{2e}} \mathbf{u}_{e}^{\mathsf{T}} \mathbf{N} \alpha r \, \mathbf{N}^{\mathsf{T}} \mathbf{u}_{e} \, ds = \mathbf{u}_{e}^{\mathsf{T}} \left(\int_{\gamma_{2e}} \mathbf{N} \alpha r \, \mathbf{N}^{\mathsf{T}} \, ds \right) \mathbf{u}_{e} = \mathbf{u}_{e}^{\mathsf{T}} \mathbf{a}_{e} \mathbf{u}_{e}$$
$$\mathbf{a}_{e} = \int_{\gamma_{2e}} \mathbf{N} \alpha r \, \mathbf{N}^{\mathsf{T}} \, ds$$

The resulting is a 2 x 2 elemental stiffness matrix

AXISYMMETRIC PROBLEMS

Elemental Formulation - Evaluation of Ze3:

$$Z_{e3} = \iint_{A_e} ur f dA$$

Substituting the approximation for u into the integral results in:

$$Z_{e3} = \mathbf{u}_{\mathbf{e}}^{\mathsf{T}} \left(\iint_{A_{\mathbf{e}}} \mathbf{N} r f \, ds \right) = \mathbf{u}_{\mathbf{e}}^{\mathsf{T}} \mathbf{f}_{\mathbf{e}} \qquad \mathbf{f}_{\mathbf{e}} = \iint_{A_{\mathbf{e}}} \mathbf{N} r f \, dA$$

The resulting is a 3 x 1 elemental load vector

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Elemental Formulation - Evaluation of Z_{e4}:

$$Z_{e4} = \int_{\gamma_{2e}} ur h ds$$

Substituting the approximation for *u* into the integral results in:

$$Z_{e4} = \mathbf{u}_{e}^{\mathsf{T}} \left(\int_{\gamma_{2e}} \mathbf{N}r \, h \, ds \right) = \mathbf{u}_{e}^{\mathsf{T}} \mathbf{h}_{e} \qquad \mathbf{h}_{e} = \int_{\gamma_{2e}} \mathbf{N}r \, h \, ds$$

The resulting is a 2 x 1 elemental load vector

AXISYMMETRIC PROBLEMS

<u>Elemental Formulation</u> - In terms of the matrix definitions, the functional may be written in the following form:

$$Z(u_1, u_2, u_3, \dots, u_N) \approx \sum_{e} \left(\frac{\mathbf{u}_e^\mathsf{T} \mathbf{k}_e \mathbf{u}_e}{2} - \mathbf{u}_e^\mathsf{T} \mathbf{f}_e \right) + \sum_{e} \left(\frac{\mathbf{u}_e^\mathsf{T} \mathbf{a}_e \mathbf{u}_e}{2} - \mathbf{u}_e^\mathsf{T} \mathbf{h}_e \right)$$

where the first sum is over the each element of area A_e describing the domain Ω and the second sum is over every element that has a segment along the Γ_2 portion of the boundary.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Assembly - The assembly is denoted by the summation in the matrix equation. The global matrix form of the formulation is:

$$Z \approx \frac{\mathbf{u}_{G}^{\mathsf{T}} \mathbf{K}_{G} \mathbf{u}_{G}}{2} - \mathbf{u}_{G}^{\mathsf{T}} \mathbf{F}_{G} = Z(\mathbf{u}_{G})$$
$$\mathbf{K}_{G} = \sum_{e} \mathbf{k}_{G} + \sum_{e} \mathbf{a}_{G} \qquad \mathbf{F}_{G} = \sum_{e} \mathbf{f}_{G} + \sum_{e} \mathbf{h}_{G}$$
$$Z = \partial Z \quad \left(\mathbf{K}_{G} + \mathbf{K}_{G}^{\mathsf{T}}\right) \mathbf{u}_{e} = \mathbf{I}_{e} \mathbf{f}_{G} + \mathbf{I}_{e} \mathbf{f}_{G}$$

$$\frac{\partial Z}{\partial u_i} = 0 \qquad \frac{\partial Z}{\partial u_i} = \frac{\left(\mathbf{K}_{\mathbf{G}} + \mathbf{K}_{\mathbf{G}}'\right)\mathbf{u}_{\mathbf{e}}}{2} - \mathbf{F}_{\mathbf{G}} \rightarrow \mathbf{K}_{\mathbf{G}}\mathbf{u}_{\mathbf{G}} = \mathbf{F}_{\mathbf{G}}$$

AXISYMMETRIC PROBLEMS

<u>**Constraints</u>** - The constraints on the system equations are the forced boundary conditions u = g(s) on the surface Γ_1 .</u>

These conditions are applied to the system equations in a manner similar to that discussed for one- and twodimensional problems.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

<u>Solution</u> - Details of the solution of the simultaneous equations resulting from axisymmetric boundary value problems are presented in the two-dimensional section of the notes.

AXISYMMETRIC PROBLEMS

<u>Computation of Derived Variables</u> - In this case, the values of the function *u* are the primary variables and $\partial u/\partial r$ and $\partial u/\partial z$ are considered a secondary variable.

The partial derivatives are determined by the following expressions:

$\frac{\partial u_{e}(r,z)}{\partial r}$	$= \mathbf{u}_{\mathbf{e}}^{T} \frac{\partial \mathbf{N}}{\partial r}$	$=\frac{\partial \mathbf{N}^{T}}{\partial r}\mathbf{u}_{e}^{F}$	$=\frac{\mathbf{b}_{e}^{T}\mathbf{u}_{e}}{2A_{e}}$
$\frac{\partial u_{e}(r,z)}{\partial z} =$	$= \mathbf{u}_{\mathbf{e}}^{T} \frac{\partial \mathbf{N}}{\partial z}$	$=\frac{\partial \mathbf{N}^{T}}{\partial z}\mathbf{u}_{e}^{T}$	$=\frac{\mathbf{c}_{e}^{T}\mathbf{u}_{e}}{2A_{e}}$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

Recall the elemental matrices have the following form:

$$\mathbf{k}_{e} = \iint_{A} \left[\frac{\mathbf{b}_{e} r \mathbf{b}_{e}^{\mathsf{T}} + \mathbf{c}_{e} r \mathbf{c}_{e}^{\mathsf{T}}}{4A_{e}} \right] dr dz \qquad \mathbf{f}_{e} = \iint_{A_{e}} \mathbf{N} r f dr dz$$
$$\mathbf{a}_{e} = \iint_{\gamma_{2e}} \mathbf{N} \alpha r \mathbf{N}^{\mathsf{T}} ds \qquad \mathbf{h}_{e} = \iint_{\gamma_{2e}} \mathbf{N} r h ds$$

These integrals are essentially the same as the terms developed for two-dimensional Poisson's equations using linear triangular element.

The obvious difference is the *r* coordinate which appears in each integral.

AXISYMMETRIC PROBLEMS

Evaluation of k_e - Substituting all the pieces of the transformation in the k_e terms gives:

$$\mathbf{k}_{\mathbf{e}} = \iint_{A_{e}} \left[\frac{\mathbf{b}_{e} r \mathbf{b}_{e}^{\mathsf{T}} + \mathbf{c}_{e} r \mathbf{c}_{e}^{\mathsf{T}}}{4A_{e}^{4}} \right] dr dz$$
$$= \frac{\mathbf{b}_{e} \mathbf{b}_{e}^{\mathsf{T}} + \mathbf{c}_{e} \mathbf{c}_{e}^{\mathsf{T}}}{4A_{e}^{4}} \iint_{A_{e}} r dr dz = \frac{\mathbf{b}_{e} \mathbf{b}_{e}^{\mathsf{T}} + \mathbf{c}_{e} \mathbf{c}_{e}^{\mathsf{T}}}{4A_{e}^{4}} R$$
$$R = \frac{r_{i} + r_{j} + r_{k}}{3}$$

The value of *R* is the *r*-coordinate of the centroid of the linear triangular element.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of f_e - In general, the integral f_e is:

$$\mathbf{f}_{\mathbf{e}} = \iint_{A_{\mathbf{e}}} \mathbf{N} r f(r, \mathbf{z}) d\mathbf{A}$$

Replacing *r* by the exact representation $\mathbf{r_e}^T \mathbf{N}$, and assuming that the function *f* may be approximated by the linear interpolation $\mathbf{N}^T \mathbf{f}$, the element matrix $\mathbf{f_e}$ becomes:

$$\mathbf{f}_{\mathbf{e}} \approx \iint_{A_{\mathbf{e}}} \mathbf{N} \mathbf{r}_{\mathbf{e}}^{\mathsf{T}} \mathbf{N} \mathbf{N}^{\mathsf{T}} \mathbf{f} \, dr \, dz$$

AXISYMMETRIC PROBLEMS

Evaluation of f_e - The formula for integrations of the type is given without proof as:

$$\iint_{A_e} N_J^a N_J^b N_K^c \, dA = a! \, b! \, c! \frac{2A_e}{\left(a+b+c+2\right)!}$$

Therefore:

$$f_{e} = \frac{A_{e}}{60} \begin{bmatrix} 6r_{i} + 2r_{j} + 2r_{k} & 2r_{i} + 2r_{j} + r_{k} & 2r_{i} + r_{j} + 2r_{k} \\ 2r_{i} + 6r_{j} + 2r_{k} & r_{i} + 2r_{j} + 2r_{k} \\ symmetric & 2r_{i} + 2r_{j} + 6r_{k} \end{bmatrix} \begin{bmatrix} f_{i} \\ f_{j} \\ f_{k} \end{bmatrix}$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of f_e - The formula for integrations of the type is given without proof as:

$$\iint_{A_e} N^a_I N^b_J N^c_K \, dA = a! \, b! \, c! \frac{2A_e}{\left(a+b+c+2\right)!}$$

If the function *f* is a constant, f_0 , the above matrix reduces to:

$$\mathbf{f_e} = \frac{A_e f_0}{12} \begin{bmatrix} 2r_i + r_j + r_k \\ r_i + 2r_j + r_k \\ r_i + r_j + 2r_k \end{bmatrix}$$

The resulting is a 3 x 1 elemental load vector

AXISYMMETRIC PROBLEMS

Evaluation of $\mathbf{a}_{\mathbf{e}}$: $\mathbf{a}_{\mathbf{e}} = \int_{\gamma_{2e}} \mathbf{N} \alpha r \mathbf{N}^{\mathsf{T}} ds$

Since \mathbf{a}_{e} is evaluated along a segment of the boundary γ_{2e} , the interpolation functions reduce to their one-dimensional counterparts.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of $\mathbf{a}_{\mathbf{e}}$: $\mathbf{a}_{\mathbf{e}} = \int_{\gamma_{2e}} \mathbf{N} \alpha r \mathbf{N}^{\mathsf{T}} ds$

As before, *r* may be replace by the exact expression $\mathbf{r_e}^T \mathbf{N}$ and assuming that α may be approximated by a linear interpolation as $\mathbf{N}^T \alpha$, therefore, $\mathbf{a_e}$ becomes:

22/26

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS
Evaluation of
$$\mathbf{a}_{e}$$
: $\mathbf{a}_{e} = \int_{\gamma_{2e}} \mathbf{N} \alpha r \mathbf{N}^{\mathsf{T}} ds$
 $\mathbf{a}_{e} = \int_{0}^{1} \mathbf{N} \mathbf{r}_{e}^{\mathsf{T}} \mathbf{N} \mathbf{N}^{\mathsf{T}} \alpha \mathbf{N}^{\mathsf{T}} I_{e} d\xi$
 $= \int_{0}^{1} \left\{ \frac{1-\xi}{\xi} \right\}_{2x1} \langle r_{j} \quad r_{k} \rangle_{1x2} \left\{ \frac{1-\xi}{\xi} \right\}_{2x1} \langle 1-\xi \quad \xi \rangle_{1x2} \left\{ \frac{\alpha_{j}}{\alpha_{k}} \right\}_{2x1} \langle 1-\xi \quad \xi \rangle_{1x2} I_{e} d\xi$
 $= \int_{0}^{1} \left\{ \frac{1-\xi}{\xi} \right\}_{2x1} (\alpha_{j} [r_{j}(\xi-1)-r_{k}\xi] - \alpha_{k}\xi [r_{j}(\xi-1)-r_{k}\xi])_{1x1} \langle 1-\xi \quad \xi \rangle_{1x2} I_{e} d\xi$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of a_e - The integration formula for the type of integrals is:

$$\int_{\gamma_{2e}} N_{I}^{a} N_{J}^{b} ds = a! b! \frac{I_{e}}{(a+b+1)!}$$
$$[\mathbf{a}_{e}]_{11} = \frac{I_{e}}{60} (12\alpha_{j}r_{j} + 3(\alpha_{j}r_{k} + \alpha_{k}r_{j}) + 2\alpha_{k}r_{k}$$
$$[\mathbf{a}_{e}]_{12} = \frac{I_{e}}{60} (3\alpha_{j}r_{j} + 2(\alpha_{j}r_{k} + \alpha_{k}r_{j}) + 3\alpha_{k}r_{k})$$

AXISYMMETRIC PROBLEMS

Evaluation of a_e - The integration formula for the type of integrals is:

$$\int_{\gamma_{2e}} N_{I}^{a} N_{J}^{b} ds = a! b! \frac{I_{e}}{(a+b+1)!}$$
$$[\mathbf{a}_{e}]_{21} = \frac{I_{e}}{60} \Big(3\alpha_{j}r_{j} + 2\Big(\alpha_{j}r_{k} + \alpha_{k}r_{j}\Big) + 3\alpha_{k}r_{k} \Big)$$
$$[\mathbf{a}_{e}]_{22} = \frac{I_{e}}{60} \Big(2\alpha_{j}r_{j} + 3\Big(\alpha_{j}r_{k} + \alpha_{k}r_{j}\Big) + 12\alpha_{k}r_{k} \Big)$$

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of h_e - Consider the integral: $\mathbf{h}_{e} = \int_{\gamma_{2e}} \mathbf{N}r h ds$

where the integration is along a boundary segment of the element.

Since, the integration is computed along a single side of the triangular element, the original shape functions reduce to:

AXISYMMETRIC PROBLEMS

Evaluation of h_e - Replacing r by the exact representation

 $\mathbf{r_e}^T \mathbf{N}$, and assuming that the function *h* may be approximated by the linear interpolation $\mathbf{N}^T \mathbf{h}$, the element matrix $\mathbf{h_e}$ becomes:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of h_e - With this assumption the integral becomes:

$$\mathbf{h}_{\mathbf{e}} = \frac{I_{\mathbf{e}}}{12} \begin{bmatrix} 3r_j + r_k & r_j + r_k \\ r_j + r_k & r_j + 3r_k \end{bmatrix} \begin{bmatrix} h_j \\ h_k \end{bmatrix}$$

Recall that \mathbf{h}_{e} in x and y is:

$$\mathbf{h}_{\mathbf{e}} = \frac{I_{\mathbf{e}}}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{cases} h_j \\ h_k \end{cases} \qquad r_j = r_k = 1$$

AXISYMMETRIC PROBLEMS

Evaluation of h_e - If the function *h* is a constant, h_0 , the above matrix reduces to:

$$\mathbf{h}_{\mathbf{e}} = \frac{I_{e}h_{0}}{6} \begin{bmatrix} 2r_{j} + r_{k} \\ r_{j} + 2r_{k} \end{bmatrix}$$

Recall that \mathbf{h}_{e} in x and y is:

$$\mathbf{h}_{\mathbf{e}} = \frac{I_{e}h_{0}}{6} \begin{bmatrix} 3\\3 \end{bmatrix} \qquad \qquad r_{j} = r_{k} = 1$$

The resulting is a 2 x 1 elemental load vector

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

AXISYMMETRIC PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

Recall the elemental matrices have the following form:

$$\mathbf{k}_{e} = \iint_{A} \left[\frac{\mathbf{b}_{e} r \mathbf{b}_{e}^{\mathsf{T}} + \mathbf{c}_{e} r \mathbf{c}_{e}^{\mathsf{T}}}{4 A_{e}} \right] dr dz \qquad \mathbf{f}_{e} = \iint_{A_{e}} \mathbf{N} r f dr dz$$
$$\mathbf{a}_{e} = \iint_{\gamma_{2e}} \mathbf{N} \alpha r \mathbf{N}^{\mathsf{T}} ds \qquad \mathbf{h}_{e} = \iint_{\gamma_{2e}} \mathbf{N} r h ds$$

It should be clear that any of the elements we have discussed, (quadratic triangles, quadrilaterals, etc.) may be used in connection with the axisymmetric functional to develop a finite element model.

PROBLEM #25 - Use the axisymmetric form of **POIS36** to find the temperature distribution in the problem shown below. Justify your discrimination of the problem and present your solution as a plot of isothermal lines at 10 °C intervals.

End of Axisymmetric Problems