
One of the most useful differential equations for engineers is
Laplace’s equation.

Pierre-Simon, marquis de Laplace (March 23, 1749 – March 
5, 1827) was a French mathematician and astronomer 
whose work was pivotal to the development of 
mathematical astronomy and statistics.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

He formulated Laplace's equation, and 
pioneered the Laplace transform which 
appears in many branches of 
mathematical physics, a field that he took 
a leading role in forming. 

The Laplacian differential operator, widely 
used in applied mathematics, is also 
named after him.

Laplace’s equation can describe torsion in solids, flow in 
porous media, steady state heat transfer, incompressible 
flow of inviscid fluids, electrostatic problems, and magneto-
statics. 

The general form of Laplace’s equation in Cartesian 
coordinates:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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The partial differential operator, 2, or Δ, (which may be 
defined in any number of dimensions) is called the Laplace 
operator, or just the Laplacian.
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

The nonhomogeneous form of Laplace’s equation is called
the Poisson equation:
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Siméon-Denis Poisson (June 21, 1781 – April 25, 1840), 
was a French mathematician, geometer, and physicist.

Poisson's well-known correction of Laplace's 
second order partial differential equation for 
potential was first published in the Bulletin 
de la société philomatique (1813). 

Each of the physical problems mentioned above involve 
either equilibrium or time independent states. 

This type of problem is called an elliptic boundary value 
problem. 

In general, a two-dimensional elliptic boundary value 
problem has the form:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Where  is the interior domain, and 1 and 2 form the 
boundary of the domain.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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A boundary condition that specifies the value of the function 
u on the surface 1 is called a Dirichlet (dee ree KLAY) 
boundary condition or type one condition. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Johann Peter Gustav Lejeune Dirichlet (February 13, 1805 –
May 5, 1859) was a German mathematician credited with 
the modern formal definition of a function

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

A boundary condition prescribed in the form of a derivative 
of the function u on the surface 2 is called a type two or a 
Neumann boundary condition. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Carl Gottfried Neumann (May 7, 1832 - March 27, 1925) 
was a German mathematician. Neumann worked on the 
Dirichlet principle, and can be considered one of the 
initiators of the theory of integral equations.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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If the value of  is not zero then the condition is called a 
Robin boundary condition. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Victor Gustave Robin (1855-1897) was a French 
mathematical analyst and applied mathematician who 
lectured in mathematical physics at the Sorbonne in Paris 
and also worked in the area of thermodynamics.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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If the entire boundary is a Type 1 boundary condition, then 
the boundary value problem is called a Dirichlet Problem. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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If the entire boundary is a Type 2 with  = 0 then the 
boundary value problem is called a Neumann Problem.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

The Ritz finite element formulation is based on the functional
for the Poisson equation.

If you are interested in how the energy functional is developed 
refer to your textbook. 

The Poisson functional is:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Discretization - The first step in developing a finite element 
model, just as in one-dimensional analysis, is 
discretization. 

The first type of two-dimensional discretization we will 
discuss utilizes straight-sided or linear triangular elements.
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Discretization - The linear triangular elements are not 
capable of describing curved geometries with much 
accuracy. 

The error between the elemental model and the actual 
domain may be improved by using more elements. 

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Discretization - Another difficulty is that the boundary 
conditions which are generally described as continuous 
function over the boundary are distributed over a piece-
wise linear representation of the surface. 
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Discretization - Both of these difficulties may be modeled 
more accurately by using more sophisticated elements, for 
example a triangular element with curved sides.

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Discretization - In terms of the discretization, the functional 
Z may be represented by a sum of the integrals over each 
element area Ae and each elemental surface e as:
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where the sum is over all the elements, and ’ is the sum 
over each elemental segment 2e of the 2 portion of the 
surface.

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - The simplest interpolation over a straight-
sided three node triangular element is to assume the 
function u(x, y) is represented by a linear plane.
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - In a manner similar to that used to develop 
the linear, quadratic, and cubic shape functions for one-
dimensional problems, we may describe the variation of u
over the element as:
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - Solving the three equations for , , and 
and substituting back into the expression representing the 
variation of u over the element results in:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - As before the functions N are called the 
shape functions. The determinant of the coefficients is:

where Ae is the area of the element. 

Any numbering scheme that proceeds counterclockwise 
around the element is valid, for example (i, j, k), (j, k, i), or 
(k, i, j). 

This numbering convention is important and necessary in 
order to compute a positive area for Ae. 
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - In matrix notation, the distribution of the 
function over the element is:

The linear triangular shape functions are illustrated below:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - The derivatives of u over the element with 
respect to both coordinates are:

Calculating the derivatives of the shape functions gives:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Interpolation - Observing the form of the derivative it is 
apparent that the partial derivatives of the function u will be 
constant over a linear triangular element. 

There are many problems associated with accuracy and 
convergence for this type of element. 

In elasticity analysis, stress and strain are related by a 
partial differential equation, using a linear triangular 
element to described stress will result in a constant 
approximation for strain over the element. 

Therefore, elements of this type are called constant strain 
elements. 

Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - The functional for the Poisson 
equation is:

We can write the functional in the following form:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation – Where the components are 
defined as:
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Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze1:

Recall the first derivatives of u with respect to x and y are:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze1: Replacing the 

derivatives with the above approximations gives:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze1:The integrals 

defined in ke are the elemental “stiffness” matrix. 

For the linear triangular element we have discussed the 

stiffness matrix reduces to: 

Since the integrand of ke is a constant, the elemental 
stiffness matrix becomes:
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The resulting is a 3x3 elemental stiffness matrix

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze2:

In this case, the interpolation of u with respect to x and y is
used to describe the behavior along the boundary:
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The resulting is a 2x2 elemental stiffness matrix

Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze3:

Substituting the approximation for u into the integral results
in:
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The resulting is a 3x1 elemental load vector

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - Evaluation of Ze4:

Substituting the approximation for u into the integral results
in:

The resulting is a 2x1 elemental load vector
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - In terms of the matrix definitions, 
the functional may be written in the following form:

where the first sum is over all the elements that form the 
domain of the problem and the second sum is over 
elements that have a straight-line segment on the 
boundary of the domain. 
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - In terms of the matrix definitions, 
the functional may be written in the following form:

In this formulation, there are two types of “stiffness” 
components. 

The first, the ke terms, are associated with the Laplacian 
differential operator and the second, the ae terms, 
correspond to the prescribed boundary conditions. 
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Elemental Formulation - In terms of the matrix definitions, 
the functional may be written in the following form:

The right-hand side of the system equations is also formed 
from two components. 

The fe terms correspond to the Poisson term of the 
differential equation. 

The he terms handle any nonhomogeneous boundary 
conditions.
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Assembly - The assembly is denoted by the summation in 
the matrix equation. The global matrix form of the 
formulation is:
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Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Constraints - The constraints on the system equations are 
the forced boundary conditions u = g(s) on the surface 1. 

These conditions are applied to the system equations in a 
manner similar to that discussed for one-dimensional 
problems.

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solution - Since there are two types of boundary conditions, 
there are three possible situations to consider when 
determining a solution to the system equations. 

One case is when the entire boundary consists of Dirichlet 
boundary conditions, u = g(s). 

In this situation, a unique solution may be found. 

Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

A second case where a unique solution is possible is when 
the boundary is composed of both Dirichlet and Neumann 
boundary conditions. 

Solution - Since there are two types of boundary conditions, 
there are three possible situations to consider when 
determining a solution to the system equations. 

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

The one situation where a singular solution is obtained is 
when Neumann-type conditions are prescribed along the 
entire boundary. 

In this case, only a derivative-type condition exists. 

There are infinite solutions in this type of problem. 

Solution - Since there are two types of boundary conditions, 
there are three possible situations to consider when 
determining a solution to the system equations. 

Ritz Finite Element Model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Computation of Derived Variables - The solution for the 
nodal values of u are often called the primary variables, 
whereas the derivatives and any other values based on 
the primary variables are called secondary or derived 
variables. 

In this case the values of the function u are the primary 
variables and u/n = nx u/x + ny u/y is consider a 
secondary variable. 

 ,eu x y

x x x

  
 

  

T
T

e e

N N
u u

 ,eu x y

y y y

  
 

  

T
T

e e

N N
u u

2 eA


T
e eb u

2 eA


T
e ec u

Ritz Finite Element Model
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

Recall the elemental matrices have the following form:

A

dA
x x y y

    
      


T T

e

N N N N
k

2e

ds


  T
ea N N

eA

f dA ef N

2e

hds


 eh N

4 eA




T T
e e e e

e

b b c c
k

The evaluation of these integrals over a general element Ae
can be very tedious. In order to simplify the computation 
we will discuss and introduce a local set of coordinates 
called area coordinates.

Consider a general linear triangular element:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

1I J KL L L  

I I J J K Kx x L x L x L  

I I J J K Ky y L y L y L  

  I J K eA A A A

Where LI, LJ, and LK are the area coordinates.

x

y

I
J

K

P

KA

IAJA

   1JI K

e e e

AA A

A A A
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As point P approaches any point on line IK, the area AJ  0
and therefore, LJ  0

As point P approaches point K, then AK  Ae and LK  1

Solving the three equations, LI, LJ, and LK we find these area 
coordinates are equal to the linear triangular shape 
functions Ni, Nj, and Nk. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

1I J KL L L  

I I J J K Kx x L x L x L  

I I J J K Ky y L y L y L  

Where LI, LJ, and LK are the area coordinates.

x

y

I
J

K

P

KA

IAJA

From the area coordinate relationship:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

1I J KL L L  

We observe that if LI and LJ are known then LK = 1 - LI - LJ

Therefore we can write the variation of x and y with the area
coordinates as:

     ,k i k I j k J I Jx x x x L x x L x L L     

     ,k i k I j k J I Jy y y y L y y L y L L     
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Evaluation of ke - Using the local or area coordinates in the 
integrals transform the elemental matrices as follows:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

The differential area dA is a vector with magnitude dA and
direction normal to the element area, which in this case is
k.

 ,
A

dA G x y dx dy
x x y y

    
       
 

T T

e

N N N N
k

Evaluation of ke - The vector dA is given by the 
determinant rule:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

where:

 
  

 

 
 

0

0

I J
I I

J J

i j k

x y
dL dL

L L

x y

L L

dA dx dy

I J
I J

x x
dL dL

L L

 
 
 

dx

I J
I J

y y
dL dL

L L

 
 
 

dy

| | I JdA dL dL J

    
      

I J
I J J I

x y x y
dL dL

L L L L
k
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Evaluation of ke - where |J| is defined as the determinant 
of:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

Therefore, ke transformed into area coordinates is:

 
 


 
 

| | I I

J J

x y

L L

x y

L L

J

   , , | |I J I J I Jx L L y L L dL dL     ek G J

 


 
i k i k

j k j k

x x y y

x x y y
 2 eA

Evaluation of ke - To transform the partial derivatives /x 
and /y to functions of LI and LJ:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

where J, /L, and /x are:

I I I

x y

L x L y L

    
 

    

J J J

x y

L x L y L

    
 

    

 


 
J

L x

  
   
  
   

I I

J J

x y

L L

x y

L L

J

 
       
  

I

J

L

L

L

 
       
  

x

y
x
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Evaluation of ke - Where J is called the Jacobian matrix of 
the transformation. The matrix form of the transformation 
may be inverted.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

The matrix may be partitioned as:

 


 
J

L x

 


 x 1J
L

where J1 and J2 are the first and second rows of J-1.

 
 

 
1J

x L

 


 y 2J
L

Carl Gustav Jacob Jacobi (10 December 1804 – 18 
February 1851) was a German mathematician, who made 
fundamental contributions to elliptic functions, dynamics, 
differential equations, and number theory. His name is 
occasionally written as Carolus Gustavus Iacobus Iacobi in 
his Latin books, and his first name is sometimes given as 
Karl.

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements
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Evaluation of ke - The partial derivatives /x and /y may 
now be written entirely in terms of L. Therefore, the partial 
derivatives of the shape functions may be written as:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

 
  

 

T T
T

1 1

N N
J J

x L


 


T

1

N
J

x

JI K

I I IT

JI K

J J J

LL L

L L L

LL L

L L L

  
       
   
    

TN

L

 
  

 

T T
T

2 2

N N
J J

y L


 


T

2

N
J

y

1 0 1

0 1 1

 
   

Evaluation of ke - Substituting all the pieces of the 
transformation in the ke terms gives:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

| | I JdL dL         
T T T T

e 1 1 2 2k J J J J J

| | I JdL dL       
T T T

1 1 2 2J J J J J

where JJ = (J1
TJ1 + J2

TJ2)|J|.

The integrand of the above integral is a constant, therefore,
ke reduces to:  

4 eA




T T
e e e e

e

b b c c
k

I JdL dL    TJJ

The resulting elemental stiffness matrix ke is a 3 x 3
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Evaluation of fe - In general, the integral fe is:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

For a general function f(x,y), the above integral may be quite
tedious to evaluate, therefore we will assume that f varies
linearly over the element, f(x,y) = NTf, where the vector f
contains values of the function f at the node points.

With this assumption the integral becomes:

 ,
eA

f x y dA ef N

eA

dA  T
ef NN f

eA

dA
 

   
 
 TNN f

Evaluation of fe – Expanding the integral gives:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

1

2 1 2 3

3

i

j

k

N f

N N N N f dA

N f

   
       
   
   


eA

dA  T
ef NN f

2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

i

j

k

N N N N N f

N N N N N f dA

N N N N N f

   
      

     


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Evaluation of fe - For integrations of the type:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

Therefore:
e

a b c
I J K

A

N N N dA

2 1 1

1 2 1
12

1 1 2

i

e
j

k

f
A

f

f

   
     
     

The resulting is a 3 x 1 
elemental load vector

 
2

! ! !
2 !

eA
a b c

a b c


  

2

2
12

2

i j k

e
i j k

i j k

f f f
A

f f f

f f f

  
    
   

ef

2
1 1 2 1 3

2
2 1 2 2 3

2
3 1 3 2 3

i

j

k

N N N N N f

N N N N N f dA

N N N N N f

   
      

     

ef

Evaluation of he - Consider the integral:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

where the integration is along a boundary segment of the
element.

Since, the integration is computed along a single side of the 
triangular element, the original shape functions reduce to: 

2e

hds


 eh N

0 1I J KN N N    

 
2

1

e

eh l d



 


 

  
 
eh

kh

jh

0 

1 el

i

j

k

CIVL 7/8111 2-D Boundary Value Problems - Triangular Elements 30/48



Evaluation of he - For a general function h() the integral 
may be tedious to evaluate, therefore we will assume that 
h varies linearly over the boundary.

Consider h() = NTh, where the vector h contains the values 
of the function h at the boundary node points. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

0 1I J KN N N    

 
2

1

e

eh l d



 


 

  
 
eh

kh

jh

0 

1 el

i

j

k

Evaluation of he - With this assumption the integral 
becomes:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

2e

el d


  T
eh NN h

2 1

1 26
el  

  
 

eh h

The resulting is a 2 x 1 elemental load vector

2

26
j ke

j k

h hl
h h

      
eh

2e

el d



 

   
 
 TNN h

2 1

1 26
je

k

hl

h

  
   

   

2e

a b
I JN N ds


  

! !
1 !

ela b
a b


 

Therefore:
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Evaluation of ae - The evaluation of ae is very similar that of 
he except that there is an extra NT in the integrand. 

The variation of the function (s) will be approximated as 
  jNj + kNk. Consider the integral ae:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

The resulting is a 2 x 2 elemental stiffness matrix

2e

ds


  T
ea N N

   
   2e

j j j k k j j j j k k k

e

k j j k k j k j j k k k

N N N N N N N N
l d

N N N N N N N N

   


   

  
 
   


Evaluation of ae - The integration formula for the type of 
integrals is:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

The resulting 2 x 2 stiffness matrix contributes to the global 
system equations when the element has a side as part of 
the boundary. 

2e

a b
I JN N ds




3

312
j k j ke

j k j k

l    
   

  
    

ea

 
! !

1 !
ela b

a b


 
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Recall, the global system equations are composed from the 
following summations:

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Evaluation of Matrices - Linear Triangular Elements

The resulting system equations are, in matrix form, given as:

'
e e

  G G GK k a

G G GK u F

'
e e

  G G GF f h

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

PROBLEM #17 - For a linear interpolation, verify that the 
two expressions for the elemental stiffness ke, given as:

are exactly the same.

| | I JdL dL         
T T T T

e 1 1 2 2k J J J J J

and

 
4 eA




T T
e e e e

e

b b c c
k
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solid Mechanics Application – Torsion of a prismatic bar
An important application form solid mechanics is the problem 

of torsion of a homogeneous isotropic prismatic bar of 
arbitrary cross section. 

L

T


Y

Z

X

The three basic ideas of solid mechanics – kinematics, 
kinetics, and constitution – are used to develop the strain-
displacement relations, equilibrium equations, and the 
stress-strain relationships. 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solid Mechanics Application – Torsion of a prismatic bar
Determining the deformations and stresses in a bar of arbitrary 

cross section can be reduced to the flowing two-dimensional 
boundary value problem:

L

T


Y

Z

X

  



   

 

2 , 2 0 in

0 on

X Y G
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solid Mechanics Application – Torsion of a prismatic bar
Where  is the Prandtl stress function, G is the shear modulus, 

and  is the constant rate of twist along the axis of the bar. 

L

T


Y

Z

X

  



   

 

2 , 2 0 in

0 on

X Y G

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solid Mechanics Application – Torsion of a prismatic bar

Ludwig Prandtl (4 February 1875 – 15 August 1953
was a German engineer. He was a pioneer 
in the development of rigorous systematic 
mathematical analyses which he used for 
underlying the science of aerodynamics, 
which have come to form the basis of the 
applied science of aeronautical engineering. 
His studies identified the boundary layer, 
thin-airfoils, and lifting-line theories. The 
Prandtl number was named after him.
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Solid Mechanics Application – Torsion of a prismatic bar

xz yzy x

   
  
 

The nonzero stress components are given in terms of the 
stress function:

The total torque transmitted along the bar is determined from:

2T dA


 
Generally, the determine of the stress function  and then the 

stresses and the applied torque T as follows:
1. determine  by solving the differential equation
2. determine the stresses and the torque T as function of 

2a

2a

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - The simplest model for torsion of a square bar, 
utilizing symmetry is a single triangular element. 

The general problem domain and the FEM mesh are shown 
below.

0
n




 0 

x

y

0
n






X

Y

1

(0,0)

2

(1,0)

3

(1,1)

Lines of Symmetry

cross-sectional area
2a

T2a
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Before beginning the FEM model, it is desirable to 
non-dimensionalize the problem.

22

x y
X Y

a a G a




   

Therefore, the governing differential equation becomes:

        
     

2 , 1 0 in 1 1

0 on 1 1

X Y X

Y

The stresses and torque for the Prandtl stress function are:

2 2xz yzG a G a
Y X

    
  

 
44T G a dXdY 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - Using a linear triangular 
element the elemental stiffness matrix components are:

where

In this example, node 1 is located at (X, Y) = (0, 0), node 2 
at (1, 0), and node 3 at (1, 1), therefore:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - A loading function of 
f = 1 gives a load vector of:

Assembly - Since there is only one element in the model 
the assembly is simple:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Constraints - For this model,  = 0 on the 
boundary, therefore, 2 and 3 = 0.

Solution - In this case, the solution is quite simple:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS
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Solution – The variation of f over the element is by the 
linear interpolation functions. 
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Computation of Derived Variables - The partial 
derivatives with respect to x and y that define the stress 
components are:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Computation of Derived Variables - The total 
torque on the cross-section is:

44T G a dXdY 

4
416

1.7778
9

G a
T G a

  

 
4

1 2 3

4
8

3
eG a A 

      
 

48 4
e

T
e

A

G a N dX dY
 
  
 
 



42.2496exactT G a  

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Consider the same problem of torsion of a 
homogeneous isotropic prismatic bar as above except using 
a more refined mesh.
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Recall, the non-dimensional Poisson equation 
governing this problem.
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The stresses and torque for the Prandtl stress function are:

2 2xz yzG a G a
Y X

    
  

 
44T G a dXdY 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - Using a linear triangular 
element the elemental stiffness matrix components are:

For element 1: node 1 is located at (X, Y) = (0, 0); node 2 at 
(0.5, 0); and node 3 at (0.5, 0.5).
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - Using a linear triangular 
element the elemental stiffness matrix components are:

For element 2: node 2 is located at (X, Y) = (0.5, 0); node 4 
at (1, 0); and node 3 at (0.5, 0.5).
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - Using a linear triangular 
element the elemental stiffness matrix components are:

For element 3: node 3 is located at (X, Y) = (0.5, 0.5); node 
4 at (1, 0); and node 5 at (1, 0.5).
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - Using a linear triangular 
element the elemental stiffness matrix components are:

For element 4: node 3 is located at (X, Y) = (0.5, 0.5); node 
5 at (1, 0.5); and node 6 at (1, 1).
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - The loading function of 
f = 1 gives a series of elemental load vectors of:

Assembly - Since there are four elements in the model the 
assembly is not difficult:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - The loading function of 
f = 1 gives a series of elemental load vectors of:

Assembly - Since there are four elements in the model the 
assembly is not difficult:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - The loading function of 
f = 1 gives a series of elemental load vectors of:

Assembly - Since there are four elements in the model the 
assembly is not difficult:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - The loading function of 
f = 1 gives a series of elemental load vectors of:

Assembly - Since there are four elements in the model the 
assembly is not difficult:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Elemental Formulation - The loading function of 
f = 1 gives a series of elemental load vectors of:

Assembly - Since there are four elements in the model the 
assembly is not difficult:
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Constraints - For this model,  = 0 on the 
boundary, therefore, 4, 5, and 6 = 0.

Solution - Solving the above equations gives:

1

2

3

4

5

6

1 1 0 0 0 0 1

1 4 2 0 0 0 2

0 2 4 0 0 0 41 1

0 0 0 1 0 0 02 24

0 0 0 0 1 0 0

0 0 0 0 0 1 0

     
          
                  

     
     

        

1 2 3

14 10 9

48 48 48
     

2 2 2

1 2 3

28 20 18

48 48 48

G a G a G a      

22G a




 

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

X

Y

1

1
(0,0) 2 (1,0)

3
(1,1)

4

5

6

1

X

Y

(0,0) (1,0)

(1,1)

1 2

3

4

1

2

4

5

6

3

Solution - Solving the above equations gives:

1 2 3

14 10 9

48 48 48
     

2 2 2

1 2 3

28 20 18

48 48 48

G a G a G a      

22G a




 
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Example - Computation of Derived Variables - The total 
torque may be calculated as:

44T G a dXdY 

 
44

1 2 3
1

4
8

3
e

e e e
e

G a A
T




 
      

 


41.9444T G a

48 4
e

T
e

A

G a N dX dY
 
  
 
 



42,240

1,152

G a


42.2496exactT G a  

41.7778T G a  One three-node triangle model

TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

PROBLEMS #18 - For the mesh shown below set up and 
solve the torsion problem for the circle. Compare your results 
for the maximum shear stress and the total torque T with the 
exact solution.

Should the answers depend upon the angle ? 

What boundary conditions should be used on the radial 
lines of the model?  

Check to see how well these boundary conditions are 
satisfied.

0 

1 2

3

4
 

cos
r

X
a



sin
r

Y
a



 1,0

2 2
,

2 2

 
  
 

r a

X

Y

421

3

5
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TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

PROBLEM #19 - Repeat Problem #18 using 4, 8, and 16 
triangular elements.

Utilize the program POIS36 given out in the class to perform 
your analysis. 

Compare your results for the maximum shear stress and the 
total torque T with the exact solution.

End of 

Chapter 3a
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