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EIGENVALUE PROBLEMS

Sturm-Liouville problems arise that are eigenvalue problems
rather than inhomogeneous boundary value problems.

The development and application of finite element models to
these eigenvalue problems will be discussed in this
section.

The standard form of the eigenvalue problem associated
with the Sturm-Liouville problem can be expressed as:

(pu’) +(Ar —q)u=0 a<x<b
-p(a)u’'(a)+au(a)=A
p(b)u’(b)+ Bu(b)=B

EIGENVALUE PROBLEMS

Eigenvalues are a special set of scalars associated with a
linear system of equations (i.e., a matrix equation) that are
sometimes also known as characteristic roots,
characteristic values, proper values, or latent roots.

The terms characteristic vector, characteristic value, and
characteristic space are also used for these concepts.

The prefix eigen- is adopted from the German word eigen
for "self" or "proper".
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EIGENVALUE PROBLEMS

In this shear mapping the red arrow changes direction but
the blue arrow does not. The blue arrow is an eigenvector
of this shear mapping, and since its length is unchanged
its eigenvalue is 1.

EIGENVALUE PROBLEMS

The transformation matrix preserves the direction of
vectors parallel to eigenvector (in blue) and (in violet). The
points that lie on the line through the origin, parallel to an
eigenvector, remain on the line after the transformation.
The vectors in red are not eigenvectors, therefore their
direction is altered by the transformation.
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..........

..........

EIGENVALUE PROBLEMS

The task confronting us is to determine the special values of
the parameter A for which there are corresponding
nontrivial solutions u.

The A's and corresponding u's are termed eigenvalues and
eigenfunctions, respectively.

(pu’) +(Ar —q)u=0 a<x<b
-p(a)u’'(a)+au(a)=A
p(b)u’(b)+ Bu(b)=B
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EIGENVALUE PROBLEMS

To this end we assume an approximate solution of the form:
N+1

v(x)ziZ:vini (x)

To this end we assume an approximate solution of the form:

N+1

(pv') +(Ar —q)v = [p;vini’(x)j’ +(Ar —q)Zvini (x)

=E (X Vy, Voo, Vigy)

where n,(x) are the linear nodal interpolation functions
introduced earlier and E is the error arising from the fact that
the approximate solution v does not (in general) satisfy the
differential equation.

EIGENVALUE PROBLEMS

It can be shown that carrying through the integration by
parts and the subsequent development leads to:

Agu;-ABu; =0

A; =) (ps+0dg)+BTg Bs =D s

X

where )
P = [ NpOON™ o q, = | Na(ON" dx
XX1 a XB 0 - 0
r, = j Nr(x)NT dx . 8 8 8 0
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EIGENVALUE PROBLEMS

Constraints arising from essential boundary conditions are
enforced by deleting from both A and B the row and
column corresponding to the constrained variable.

We write the constrained set of equations as:

(A-2B)u=0

where A and B are now reduced M x M matrices with
M = N + 1- m, m being the number of essential boundary
conditions that have been imposed.

EIGENVALUE PROBLEMS

Constraints arising from essential boundary conditions are
enforced by deleting from both A and B the row and
column corresponding to the constrained variable.

We write the constrained set of equations as:

(A-2B)u=0

The equation above is an example of the generalized linear
algebraic eigenvalue problem.

It is very similar in character to the algebraic eigenvalue
problem:

(A-4)u=0
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The scalars 4, are the eigenvalues and the corresponding
nontrivial vectors u; satisfying: (A-ﬂ,IB)ui =0 are the
eigenvectors.

For small hand-calculated finite element models, the 4, and
u, are frequently obtained in the classical manner by
expanding the determinant: ‘A - /IB‘ =0

to obtain an M™ order polynomial whose roots are the
approximate eigenvalues.

These M roots are then substituted one at a time into the
equations: (A-4B)u, =0

to determine the corresponding approximate eigenvectors.

EIGENVALUE PROBLEMS

With the matrices pg, qg, g, and BTg symmetric, A and B
are also symmetric.

In such a case, the theory can be used to show that all the
eigenvalues 4, are real and that eigenvectors u; and u,
corresponding to distinct eigenvalues 4 and 4 satisfy a bi-
orthogonality relationship given by:

T . .
uBu; =0 I # ]

These general results can be used as checks on the
calculations when determining the eigenvalues and
eigenvectors.
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EIGENVALUE PROBLEMS

For eigenvalue problems of dimension larger than three or
four, it is essential to have available a reliable computer
code for extracting the eigenvalues and eigenvectors.

Appendix C (in your textbook) contains a discussion of and
listings for several routines appropriate for this task.

In addition, MathCAD has functions for determining
eigenvalues and eigenvectors:

eigenvals(A) and eigenvecs(A)

In Matlab the functions are:
[V.D]l=eig(A)

EIGENVALUE PROBLEMS

Torsional Vibrations

Consider the problem of the torsional vibrations of a uniform
circular-cross-section bar.

The relationship governing twist @ is given as:

o (.. 06 020
gyl 53l
- 8x( 8xj P

. :
Ty

where G is the shear modulus, J is the polar moment of
inertia, and p is the mass density.
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EIGENVALUE PROBLEMS

Torsional Vibrations
Consider the problem of the torsional vibrations of a uniform
circular-cross-section bar.

Torsional vibration is angular vibration of an object,
commonly a shaft along its axis of rotation.

O(x,t) = p(x)e'

o(xt)
(JGLI/’)’ —0*pJy =0

— X w(0)=0
T v'(L)=0

With 1 = «?, comparison with the standard form shows that
p=JG,r=pJ,q=0,and o= p=0.

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:
Xj 41 Xi 41
p. = [ NJGN dx r,= [ NpIN" dx
X

X

1 1 1

p. =— [NIGNT d¢ r, = [NpIN"I.d&

Ie 0 0

For the present physical problem with q = 0, k, = p, are the
elemental mechanical stiffness matrices.

The r, are the corresponding elemental mass matrices and
will be denoted by m..
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

In an analogous fashion we will use K rather than A, and M
rather than B at the global level.

If we consider linear interpolation functions:

_ —1
It
& 1
with |, = L/2 for each element:

1 -1
K. 2JGJNN,Td§ 2JG{ } K, =k

el

L |-1 1

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

In an analogous fashion we will use K rather than A, and M
rather than B at the global level.

If we consider linear interpolation functions:

- 1
Pt
il 1
with |, = L/2 for each element:

1 1 1_ 2 1
= [NpINTI, d¢& =j{ ;} J(1-¢& &)l dé = pJLL 2}

me2 = me1
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Torsional Vibrations — Example 1

Expanded to the global level:

Element 1

1 10 0 0 0]
K :ZJTG -1 170 Ke, :ZJTG o1 -1
0 0 O 0 |-1 1
2 110 0 0 0]
mg, :% 120 mg, :% 0|2 1
0 00 01 2

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1
With BT = 0, the assembled matrices are:

Element 1

1 1] 0] JL210
K:ZJ—G—12—1 M. =251 1411
S € 12

0 -1 1 0|1 2

Element 2 Element 2

The constraint y, = 0 arises from the essential boundary
condition  (0) = 0.
Denoting K and M as K and M with the first row and
column deleted, there results:
2-4¢ —1- 712
(K_¢M)W{ ¢ ¢sz}:0 PCA,
—1-¢ 1-24 ]|y, 24G

10/52
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EIGENVALUE PROBLEMS
Torsional Vibrations — Example 1
Requiring the determinant of K-¢M to vanish yields:
2 2 o’®p
2(1—2¢) :(1+¢) ¢

The roots are: ¢, = 0.1082 and ¢, = 1.3204.
The corresponding frequencies are given by:

24 . ? .
o2 - 24C4, _ 2.5968G (@) [ G _24674G
exact 2L yo, p|_2

pl? pl?

2 _24G4, _31.690G () _(s_nfg | 22.207G
N ,0L2 ,0L2 exact 2|_

= .
2 2 p pLZ

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

The estimate of the lowest eigenvalue is quite acceptable
(5.1% error).

However, the estimate of the second eigenvalue is much
less satisfactory (42.7% error).

2
o2 = 24G4 _ 2.5068G () == G _2.4674G
pL ,OI— exact yo,

1 - p L2

, 24G¢, 31.690G ) 37V G 22.207G
0)2 - L2 - |_2 ((() )exact - Z = |_2
P p P P
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Torsional Vibrations — Example 1

The eigenvectors are obtained by substituting the ¢'s, one at
a time, back into the constrained equations.

For the first eigenvalue-eigenvector pair, the first equation
becomes:

(2_4¢1)‘//12 _(1+¢1)‘//13 =0

where y' = [y,, ;4] is the constrained first eigenvector.
Solving for w,, yields: ¥;, =0.707y,,

Repeating for the ¢, yields: y,, = -0.707y,,

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

The corresponding approximate eigenfunctions or mode
shapes are shown below:

Vi w12 =0.707y,

0 0.5 1

Wig =1

These two eigenfunctions or mode shapes are approximations
to the exact eigenfunctions:

7% =sin M 74 =sin ”_X 74 =sin %
" 2L 1 2L ? 2L
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Torsional Vibrations — Example 1

The corresponding approximate eigenfunctions or mode
shapes are shown below:

Vi Vi =0.707y,

0 0.5 1

Wig =1

These two eigenfunctions or mode shapes are approximations
to the exact eigenfunctions:

7% =sin M 74 =sin ”_X 74 =sin %
" 2L 1 2L ? 2L

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

The corresponding approximate eigenfunctions or mode
shapes are shown below:

Vi Vi =0.707y,

Wig =1

Note that the approximate eigenvectors can be made, by the
appropriate choice of the arbitrary constant arising in the
solution, to coincide at the nodes with the eigenfunctions
they are trying to represent, and that they have the correct
number of interior zeros (n -1) as required by the theory.
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Torsional Vibrations — Example 1

The corresponding approximate eigenfunctions or mode
shapes are shown below:

70 P

0.5 05

A
0 05 1 0 05

Note that the approximate eigenvectors can be made, by the
appropriate choice of the arbitrary constant arising in the
solution, to coincide at the nodes with the eigenfunctions
they are trying to represent, and that they have the correct
number of interior zeros (n -1) as required by the theory.

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

The corresponding approximate eigenfunctions or mode
shapes are shown below:

L4 123

Note that the approximate eigenvectors can be made, by the
appropriate choice of the arbitrary constant arising in the
solution, to coincide at the nodes with the eigenfunctions
they are trying to represent, and that they have the correct
number of interior zeros (n -1) as required by the theory.

14/52
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Example of torsional vibration mode shape

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Four-element solution - The elemental k, and m_ matrices
have exactly the same form as in the two-element model
with |, now taken as L/4.

Omitting some of the details, the constrained 4 x 4
eigenvalue problem is: (K - ¢M)l|1 =0

where: "2 1 0 0] _ _

4 100
-1 2 -1 0 14 10
Ke = M; =
o -1 2 1 0O 1 4 1
0 0 -1 1] 00 1 2
22
l|»'T:<‘//2 Vs Va4 '//5> ¢:a)Lp
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Torsional Vibrations — Example 1

Four-element solution - Requiring the determinant of K-¢gM
to vanish yields four roots; using Matlab function
eig(M;'K;) the eigenvalues are displayed below along
with the corresponding exact eigenvalues, and percent

errors.
[ ¢ w?%plG (a)iszp/G)exact % error
1 0.026034 2.4993 2.4674 1.30
2 0.259085 24.872 22.207 12.05
3 0.854924 82.073 61.685 33.05
4 1.787792 171.62 120.90 41.96

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Four-element solution — The Matlab function eig(M;'K;)

gives:
0.242030 -0.584313 0.584313 -0.242030
_ |0.447214 _]-0.447214 _|-0.447214 _]0.447214
V170584313 27 0.242030 Vs7).0.242030( V7 )-0.584313
0.632456 0.632456 0.632456 0.632456
Scaling the Matlab results to make the largest value equal to
1 gives:
0.382656 0.923814 0.923814 -0.382656
0.707057 0.707057 -0.707057 0.707057

Y17l0.023814( Y27 )-0.382656( V* 7 ]-0.382656 V4710923814
1.000000 -1.000000 1.000000 1.000000
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Torsional Vibrations — Example 1

Four-element solution — The Matlab function eig(M;'K;)

gives:

¥ ; Va2

05 05

0 0

0 05 1 0 05 1

-05 -05

K E

0.382656 0.923814 0.923814 -0.382656
_|o.707057 | 0.707057 _ |-0.707057 | 0.707057

170023814 Y27 )-0.382656( V* 7 )-0.382656 ¢ ]-0.923814
1.000000 -1.000000 1.000000 1.000000

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Four-element solution — The Matlab function eig(M;'K;)

gives:
¥s W,
! 1
05 05
0 0
0 05 1 0 05 1
-05 -05
- -1
0.382656 0.923814 0.923814 -0.382656
0.707057 0.707057 -0.707057 0.707057
Vi=

0923814 Y27 ).0382656( V*|-0.382656 V4710923814
1.000000 -1.000000 1.000000 1.000000

17/52
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Torsional Vibrations — Example 1

Four-element solution - For the two-element model, the
number of constrained degrees of freedom is two.

The lowest eigenvalue predicted by that model is 5.2% in
error, a good estimate.

¥
1

05

0
o} 05

-0.5

-
¥,

¥
1
o /
0
0 05 1
-05
-1
L]
1 1
05 0.5
0 0
0 0.5 1 0 05 1
-05 -0.5
4 -

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Four-element solution - With four degrees of freedom, the

two lowest eigenvalue estimates are 1.3% and 12.0% in
error respectively, again quite reasonable.

-

o wn -
o

o [ -

o

05

o
o
n
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

This observation can be stated as a rule of thumb:

For an algebraic eigenvalue problem of the type considered in
this section, a model with 2N constrained degrees of freedom is
necessary to obtain good estimates for the first N eigenvalues.

¥ , W,

;
05 / 05
0

0
o} 05

o
o
o

05 -0.5

- -1
¥s3 Ya

1

05 05
0 0

] 05 1 0 05 1
-05 -0.5

A -1

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

This observation can be stated as a rule of thumb:

For an algebraic eigenvalue problem of the type considered in
this section, a model with 2N constrained degrees of freedom is
necessary to obtain good estimates for the first N eigenvalues.
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Torsional Vibrations — Example 1
This observation can be stated as a rule of thumb:

For an algebraic eigenvalue problem of the type considered in
this section, a model with 2N constrained degrees of freedom is
necessary to obtain good estimates for the first N eigenvalues.

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Eight-element solution - The elemental k, and m_ matrices

have exactly the same form as in the two- and four-
element models with |, now taken as L/8.

The constrained 8 x 8 eigenvalue problem is: (K - ¢M)L|J =0

(2100 0 0 0 0

121000 0 0

0-12-100 0 0 2,2
(|0 012100 0 ¢ZWL'0
°“lo 0 0-12-10 0 384G

0 0001210

0 000 0-1 2 1

(00 0 0 0 0 -1 1

p :<‘//2 Vs ¥y Vs W V7 Vs ‘//9>

20/52
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Torsional Vibrations — Example 1

Eight-element solution - The elemental k, and m_ matrices
have exactly the same form as in the two- and four-
element models with |, now taken as L/8.

The constrained 8 x 8 eigenvalue problem is: (K - ¢M)L|J =0

(4 1000 0 0 O]

14 100000

00 141000 Lp
M, - ¢ =
/00014100 384G

0000 14 10

00000 14 1

0 00000 1 2]

lpT:<‘//2 Vs V4 Vs Ve Y7 Vs ‘//9>

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Eight-element solution - Requiring the determinant of
K-¢M to vanish yields eight roots; using Matlab function
eig(M;'K;).

The first four eigenvalues are displayed below along with the
corresponding exact eigenvalues, and percent errors.

i & 0?2pIG  (0’p/G) % error
1 0.0064462 2.4753 2.4674 0.32%
2 0.0595205 22.8559 22.2066 2.92%
3 0.1739060  66.7799 61.6850 8.26%
4  0.3666860 140.8074 120.9026  16.46%
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Torsional Vibrations — Example 1

Compared to the four-element solution, the error in the
values of the first four eigenvalues is significantly lower
than those computed using the four-element
approximation.

Using Matlab, the corresponding eigenvectors using
eig(M;'K;) are:

0.091966 -0.261898 0.391959 -0.462347
0.180399 -0.435521 0.435521 -0.180399
0.261898 -0.462347 0.091966 0.391959
0.333333 -0.333333 -0.333333 0.333333
V1710301059 Y27 ).0.001966  V° 7 )-0462347( Y7 )-0.261898
0.435521 0.180399 -0.180399 -0.435521
0.462347 0.391959 0.261898 0.091966
0.471405 0.471405 0.471405 0.471405

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

Compared to the four-element solution, the error in the
values of the first four eigenvalues is significantly lower
than those computed using the four-element
approximation.

Scaling the results of Matlab as that the max is 1 gives:

0.195090 0555571 0.831469 0.980785
0.382683 ~0.923880 0.923879 0.382683
0.555570 ~0.980786 0.195093 ~0.831470
0.707106 ~0.707107 -0.707106 ~0.707107
Y17los31469( Y27 )-0.195001 ¥*7)-0.980785[ Y“7) 0.555570
0.923879 0.382683 -0.382683 0.923879
0.980785 0.831469 0.555570 ~0.195091
1.000000 1.000000 1.000000 ~1.000000
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Torsional Vibrations — Example 1

Vi v,
1 1
05 05
0 0
1] 05 1 0 0.5 1
05 -05
1 -1
0.195090 0555571 0.831469 0.980785
0.382683 ~0.923880 0.923879 0.382683
0.555570 ~0.980786 0.195093 ~0.831470
~|0.707106 ~|-0.707107 _ |-0.707106 _|-0.707107
Y1=Vo0.831469[ Y27 )-0.195001 Y7 )-0.980785( Y*7) 0.555570
0.923879 0.382683 -0.382683 0.923879
0.980785 0.831469 0.555570 ~0.195091
1.000000 1.000000 1.000000 ~1.000000
EIGENVALUE PROBLEMS
Torsional Vibrations — Example 1
V3 Wy
1 1
05 05
0 0
0 05 1 ] 05 1
05 -05
1 -1
0.195090 0555571 0.831469 0.980785
0.382683 ~0.923880 0.923879 0.382683
0.555570 ~0.980786 0.195093 ~0.831470
~|0.707106 ~|-0.707107 _ |-0.707106 _|-0.707107
Y1=Vo0.831460[ Y27 )-0.195001 Y7 )-0.980785( Y*7) 0.555570
0.923879 0.382683 -0.382683 0.923879
0.980785 0.831469 0.555570 ~0.195091
1.000000 1.000000 1.000000 ~1.000000
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Torsional Vibrations — Example 1

These eigenvectors are similar in shape to those developed
in the four-element solution; however, with an eight-
element solution there is more detail in the curves.

The sinusoidal nature of the first four modes of vibration are

more apparent in these plots than those using the four-
element solution.

Vi v,
1

1
05 / 05
0 0
0 05 1 0
05 -05
-1 -1
L
1
05
0 0
0 0.5 1 0 0. 1
05 -05

-1 -1

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 1

These eigenvectors are similar in shape to those developed
in the four-element solution; however, with an eight-
element solution there is more detail in the curves.

The sinusoidal nature of the first four modes of vibration are

more apparent in these plots than those using the four-
element solution.

- 1 P

Vi Vs

Vs ¢
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Torsional Vibrations — Example 1

These eigenvectors are similar in shape to those developed
in the four-element solution; however, with an eight-
element solution there is more detail in the curves.

[}

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2
Consider the torsional vibration of a non-uniform bar shown

below.
2] 3
:: __________ X G and p are constant
L L
2 2

Four-element solution - The constrained 4 x 4 eigenvalue
problem is:

(K-¢M)y =0

25/52
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Torsional Vibrations — Example 2
The elemental k, matrices, with |, = L/4 are:

8JG| 1 -1
k,=—— k, =k
1 L {_1 J 2 =Ky

43G| 1 -1
k,=—— k, =k
BT ke

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2
The elemental m, matrices, with |, = L/4 are:

26/52
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Torsional Vibrations — Example 2
The unconstrained 5 x 5 eigenvalue problem is:

(KG-¢MG)I.|J:0
5 2,0 0 0] 4 210 0 0]
241210 0 2181200
Ke=[0 -2 3 |-1]0 M;=/0[2]|6|1]0
0O 0 |12 1™ O 0|14 1
(0 0 0 [-1 1 00 0[1 2
21 2
T _ _a)Lp
W=y, v, Vs Wi Vs) ? = oea

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2
The constrained 4 x 4 eigenvalue problem with ¥, =0 is:

(KG-¢MG)I.|J=0
4 -2 0 O] 8 2 0 0]
-2 3 -1 0 2 6 10
Ks = M; =
o -1 2 -1 O 1 4 1
0 0 -1 1] 0 0 1 2
21 2
T :a)Lp
Y —<‘//2 Vs W,y ‘//5> ¢ 96G
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Torsional Vibrations — Example 2

Requiring the determinant of K-¢M to vanish yields four
roots; using Matlab function eig(Mg'Kg) the eigenvalues
are displayed below.

i & wL’p G
1 0.0388 3.7248

2 0.2197 21.0912
3 0.9477 90.9792
4 1.6980 163.0080

Note that the eigenvalues for the four-element non-uniform

bar are slightly larger than the four-element solution for the
uniform bar.

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The eigenvalues can be found using a variety of available
solution techniques.

In Matlab, eig(Mg'Kg) gives:

0.217788 -0.450968 0.450968 -0.217788
0.386824 -0.414621 -0.414621 0.386824
"Tlosos009( Y27 0330131 Y2 7)-0.330131 Y%7 )-0.595009
0.670000 0.718144 0.718144 0.670000

The eigenvectors for the four-element solution with a
constant value of J are:

0.242030 -0.584313 0.584313 -0.242030
_ |0.447214 _|-0.447214 _ |-0.447214 | 0.447214
V170584313 Y271 0.242030 Y371.0.242030 Y471.0.584313

0.632456 0.632456 0.632456 0.632456

28/52
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The corresponding scaled eigenfunctions are shown in the
figures below (the eigenvalues for J, , = 2J are shown by
the solid red lines).

Vi

. ¥,

14

0
0.5 1 0.5

0.5 05 -
R ER

Vs
1

0.5 / 05
0

o4
w 1 05 1

-0.5 0.5

A -1

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The values of the scaled eigenvectors are slightly smaller
over the first half of the bar reflecting the increased value
of J in that portion of the bar.
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

To examine this effect further, consider the same non-
uniform bar; however, the polar moment of inertia is
J12 = 4J over the first half of the bar.

4] 3
:: __________ X J and p are constant

Four-element solution - The constrained 4 x 4 eigenvalue
problem is:

-
-

(K-¢M)y =0

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The polar moment of inertia is J, , = 4J over the first half of
the bar.

The elemental k, matrices, with |, = L/4 are:

16JG| 1 -1
k,=—— k, =k
1 L {_1 J 2 =Ky

43G| 1 -1
k,=—— k, =k
3 L |:_1 J a = K;
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The polar moment of inertia is J, , = 4J over the first half of
the bar.

The elemental m, matrices, with |, = L/4 are:

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2
The constrained 4 x 4 eigenvalue problem is:

(KG-¢MG)I.|J=0
8 -4 0 O] 16 4 0 O]
-4 5 -1 0 4 10 1 0
Ks = M; =
o -1 2 -1 0 1 4 1
0 0 -1 1] 1 0 0 1 2]
2y 2
T _ :a)Lp
P —<l//2 Vs VW, ‘//5> ¢ 96G
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

Requiring the determinant of K-¢M to vanish yields four
roots; using Matlab function eig(Mg'Kg) the eigenvalues
are displayed below.

i @ w’plG
1 0.05239 5.02944
5 018777 18.0263
3 1.03491 99.35136
4 1.61017 154.5763

EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The eigenvalues can be found using a variety of available
solution techniques.

In Matlab, use eig(Ms'Kg) gives:

0.186214 -0.330386 0.330386 -0.186214

0.316806 -0.347388 -0.347388 0.316806

Y1710.602601 V271 0408379  ¥* 7 )-0.408379[ ¥*7)-0.602601
0.708400 0.776784 0.776784 0.708400

The eigenvectors for the four-element solution with a
constant value of J are:

0.242030 -0.584313 0.584313 -0.242030
_ |0.447214 _|-0.447214 _ |-0.447214 | 0.447214
V170584313 Y271 0.242030 Y371.0.242030 Y471.0.584313

0.632456 0.632456 0.632456 0.632456

32/52
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The corresponding scaled eigenfunctions are shown in the
figures below (the eigenvalues for J, , = 4J are shown by
the solid lines).

Vi v,

—
_ ~

-0.5

1
Vs
1

0.5

0 +

-0.5 4
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EIGENVALUE PROBLEMS

Torsional Vibrations — Example 2

The values of the scaled eigenvectors are smaller over the
first half of the bar (increased value of J) and slightly
increased over the second half of the bar.

¥ v,
1 1

05 / 05
0 . . 0
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EIGENVALUE PROBLEMS

PROBLEM #16 - Consider the torsional vibration of a
uniform bar shown below and develop a solution to one-
dimensional eigenvalue problems using a quadratic
interpolation function.

I ________ ,X E, J, and p are constant

Use the resulting formulation to solve for the problem using:
a) one quadratic element with equally spaced nodes,

b) two equal length quadratic elements with equally
spaced nodes, and

c) compare the quadratic solution with those using
linear interpolation functions.

EIGENVALUE PROBLEMS

Axial Vibrations

For axial vibrations the elemental stiffness and mass
matrices are given by:

Xj 41 Xiy1
k,= [NAENTdx  m, = [ NpAN" dx
X Xi
Concentrated masses are handled by simply adding the
mass M to the corresponding main diagonal element of the

global M matrix.

The rest of the basic steps in the finite element method are
carried out in exactly the same manner as described in the
previous section for the corresponding torsion problem.
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EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:

X
I— --------- " A E, and p are constant
L
‘ K 2AE
K=——
L

EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:

X
& _________ > A, E’ and p are ConStant
L

Then with: N - {1 - 5} N = {—1} dx =1.d¢&
& 1

and |, = x;,, - X,= L/2 for each element:

X

i1 1
k,= [ NAENTdx = Il [N'AENT d¢&
X e 0

35/52
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EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:

X
I— -------- " A E, and p are constant
L

Then with: N - {1 - 5} N = {—1} dx =1.d¢&
& 1

and |, = x,,, - X;= L/2 for each element:

11 1 2AE[ 1 1
k., =— AEdSE =—— k., =k

EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:

X
& _________ > A, E’ and p are ConStant
L

Then with: N - {1 - 5} N = {—1} dx =1.d¢&
& 1

and |, = x;,, - X,= L/2 for each element:

m,, :JNPANT l.dS = I{NNi }pA<Ni Ni+1>|ed§

0 i+1

36/52



CIVL 7/8111 1-D Boundary Value Problems - Eigenvalues

EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with
equal-length elements. The elemental matrices are:

X

I ......... * A E, and p are constant

N = {_11} dx =1.dé&

me2 =m

Then with: N - {1 — 5}
4

and |, = x;,, - X,= L/2 for each element:

ol P s S

el

EIGENVALUE PROBLEMS

Axial Vibrations
With BT = 0, the assembled matrices are:

1 -1 0 2 10

K 2Bl o 5 4] mM.=PAYq 4 ¢
¢ L ¢ 12

0 -1 1 0 1 2

The constraint y, = 0 arises from the essential boundary
condition  (0) = 0.

1i-1 0 210

K, =2REIT o ) m =LA
L ) 12 l

011 011 2

37/52
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EIGENVALUE PROBLEMS

Axial Vibrations

Denoting K and M as K; and M with the first row and
column deleted, there results:

e e

Requiring the determinant of K-¢M to vanish yields:

2(1-2¢)" =(1+¢)°
with roots ¢, = 0.1082 and ¢, = 1.3204

o’®p
0 ¢= 24E

EIGENVALUE PROBLEMS
Axial Vibrations

The corresponding frequencies are given by:

, _24E¢, _2.5968E

a) =
topl? pl*
, 7 VY E 24674E
(0)1 )exact - o = 2
2L) p pL

, 24E¢, 31.690E
W, = 2 E
p p

, 37V E 22207E
(a)2 )exact - o = 2
2L ) p pL
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EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode
shapes are shown below.

'//1 = v
1 v,, =0.707y,, 2, W =—0.707y,,

05 05

0 0
0 0.5 1

05
iz =1
Was =1
4 4

These two eigenfunctions or mode shapes are
approximations to the exact eigenfunctions:

B sin(2n—1) zx
T

EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode
shapes are shown below.

Vi Wi =0.707y, Ve

1 1 W =—0.707y
05 / 05
0 0

0 05 1 0
05

yis =1
Yo =1
4 4

These two eigenfunctions or mode shapes are
approximations to the exact eigenfunctions:

B sin(2n—1) zx
T
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EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode
shapes are shown below.

Y, ' '
L J

0 05 1

Y, ! !
<@ &

0 05 1

EIGENVALUE PROBLEMS

Axial Vibrations

Example of axial vibration mode shape
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EIGENVALUE PROBLEMS

Axial Vibrations

The following example shows a 20 kHz 8" square block horn.

The horn is one half-wavelength long at the axial resonance (the desired
resonance), as indicated by the single node that is generally transverse to the
principal direction of vibration.

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider the following four-
element solution of the vibration of an axial rod using the
lumped-masses (similar to that used in our discussion for
springs) shown below.

I X
L

A, E, and p are constant

k k k k
O @ ® O k_4AE

L
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider a two-element model
with equal-length elements. The elemental matrices are:

Then with: {1 - cf} N - {—1} dx =1,d¢&
& 1

and |, = L/4 for each element:

- 1 -1
ke:l T - AEd§:4A;E
ILd[-1 1 L |-1 1

o!—._\

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider a two-element model
with equal-length elements. The elemental matrices are:

Thenwith: {1 - cf} N {—1} dx =I,d¢&
& 1

and |, = L/4 for each element:

[ petre anas= G0

42/52



CIVL 7/8111 1-D Boundary Value Problems - Eigenvalues 43/52

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - The elemental k, and m_ matrices
have exactly the same form as in the two-element model
with |, now taken as L/4.

Omitting some of the details, the constrained 4 x 4
eigenvalue problem is: (K - ¢M) p=0

where: o5 4 0 0] 4 1 0 0]
AAE|-1 2 -1 0 ApL|1 4 1 0
K, =25 M, =22
Lo -1 2 -1 24 10 1 4 1
0 0 -1 A1 001 2
2] 2
W ={y, v, v, ) p=Lp

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Requiring the determinant of K-¢gM
to vanish yields four roots; using the Matlab function
eig(M;'K;) the eigenvalues are displayed below along
with the corresponding exact eigenvalues, and percent
errors.

i ¢ o’2plE  (02pIE) % error

exact

0.026034 2.4993 2.4674 1.29
0.259084  24.8721 22.2066 12.00
0.854924  82.0727 61.6851 33.05
1.787791 171.6279 120.9026  41.93

A~ ODN -
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution —The Matlab function eig(Mg;'Kj)

gives:
0.242030 -0.584313 0.584313 -0.242030
_ |0.447214 _ |-0.447214 _|-0.447214 | 0.447214
Y170.584313 V271 0042030  V*7)-0.242030[ Y7 )-0.584313
0.632456 0.632456 0.632456 0.632456

Scaling the eigenvectors so that the largest value is 1 gives:

0.382683 0.923879 0.923879 0.382683
0.707106 0.707106 -0.707106 -0.707106
V1710023879 Y27 )-0.382683( "> ]-0.382683[ ¥*7) 0.923879
1.000000 -1.000000 1.000000 -1.000000

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution —The Matlab function eig(Mg"'Kj)
gives:

¥ W,

1

1

05 / :

0 0

[} 05 1 0 05 1
05 -05
-1 -1

Scaling the eigenvectors so that the largest value is 1 gives:

0.382683 0.923879 0.923879 0.382683
_|0.707106 | 0.707106 _|-0.707108 _|-0.707106
Y1710.923879 V271 0382683 V* " )-0.382683[ V¢ 7] 0.923879

1.000000 -1.000000 1.000000 -1.000000
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution —The Matlab function eig(Mg"'Kj)
gives:

¥s3
1

W,
1
05 05
0 0
0 05 1 0 05 1
-05 -0.5
-1 -1

Scaling the eigenvectors so that the largest value is 1 gives:

0.382683 0.923879 0.923879 0.382683
0.707106 0.707106 -0.707106 -0.707106
Y"7lo.923879( Y27 )-0.382683( "> |.0.382083[ V* ’ 0.923879
1.000000 -1.000000 1.000000 -1.000000

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - For the two-element model, the
number of constrained degrees of freedom is two.

The lowest eigenvalue predicted by that model is 5.2% in

error, a good estimate.

¥ , W,

;
05 / 05
0 0

0 05 1 0
05 -0.5

05 1

-1 -1
¥ Ya
1

05 0.5
0 0

0 05 1 0 05
-05 -0.5

A -1
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - For the four-element model, with
four degrees of freedom, the two lowest eigenvalue
estimates are 1.3% and 12% in error respectively, again
quite reasonable.

¥ Wy

1 1
05 05
0 0

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - For the four-element model, with
four degrees of freedom, the two lowest eigenvalue
estimates are 1.3% and 12% in error respectively, again
quite reasonable.
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Consider a two-element model
with equal-length elements. The elemental matrices are:

Then with: {1 - cf} N - {—1} dx =1,d¢&
& 1

and |, = L/8 for each element:

- (=
o -1 1 T agqs - BAE
ILd[-1 1 L [-1 1

o!—._\

EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Consider a two-element model
with equal-length elements. The elemental matrices are:

Thenwith: {1 - cf} N {—1} dx =I,d¢&
& 1

and |, = L/8 for each element:

[ petre anas= G5

47152
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - The elemental k, and m_ matrices
have exactly the same form as in the two- and four-
element models with |, now taken as L/8.

The constrained 8 x 8 eigenvalue problem is: (K - ¢M)l.|1 =0

(2 10 0 0 0 0 O
-1 2 -1 0 0 0 0 O
01 2-10 0 0 O
0 01 2-10 0O
K; =
0o 0o o1 2 -1 0 O
0o 0o o 01 2 -10
0 0 0 00 -1 241
0 0 0 00 0 -1 1
o’?p
.
) :<‘//2 Vs Vs Vs Ve V7 Vs l//9> o=
384E

EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - The elemental k, and m_ matrices
have exactly the same form as in the two- and four-
element models with |, now taken as L/8.

The constrained 8 x 8 eigenvalue problem is: (K - ¢M)l.|1 =0

0 0 00O

O O O o b 4o OO

O O O O O O a b
O O O O O 4 b

O O O O a b
O O oAb 0o OO
O A o O OO
a b o OO0 OO0
N o O O o o

_o®Pp
384E

T

y :<‘//2 Vs W, Vs Vs YW, Vg l//9> ¢
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Requiring the determinant of
K-¢M to vanish yields four roots; using Matlab function
eig(M;'K;) the eigenvalues are displayed below along
with the corresponding exact eigenvalues, and percent

errors.
i ¢ w?’plE (a)i2L2p/E)exact % error
1 0.006446 2.4753 2.4674 0.32%
2 0.059520 22.8557 22.2066 2.92%
3 0.173906 66.7799 61.6850 8.26%
4 0.366686  140.8074 120.9027 16.46%

EIGENVALUE PROBLEMS

Axial Vibrations

Compared to the four-element solution, the error in the
values of the first four eigenvalues is significantly lower
than those computed using the four-element

approximation.

Using Matlab, the corresponding eigenvectors using

eig(M;'K;) are:

0.091966 -0.261898 0.391958 0.462346
0.180398 -0.435520 0.435520 0.180398
0.261898 -0.462346 0.091966 -0.391958
0.333333 -0.333333 -0.333333 -0.333333

V"7l0.391958 Y27 ).0.001966( V*7)-0462346] V7] 0.261898
0.435520 0.180398 -0.180398 0.435520
0.462346 0.391958 0.261898 -0.091966
0.471404 0.471404 0.471404 -0.471404
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EIGENVALUE PROBLEMS

Axial Vibrations

18 Vs
1 1
05 05
0 0
0] 0.5 1 0 05 1
-05 -05
-1 -1
The scaled eigenvectors are:
0.195090 -0.555570 0.831469 0.980785
0.382683 -0.923879 0.923879 0.382683
0.555570 -0.980785 0.195090 -0.831469
_|o.707106 _|-0.707106 _|-0.707106 _|-0.707106
Y"7lo.831469 Y27 )-0.195000( V2710980785 ¥* 7 0.555570
0.923879 0.382683 -0.382683 0.923879
0.980785 0.831469 0.555570 -0.195090
1.000000 1.000000 1.000000 -1.000000
EIGENVALUE PROBLEMS
Axial Vibrations
Vs wy
1 1
05 05
0 0
0 05 1 0 05 1
05 -05
4 -1
The scaled eigenvectors are:
0.195090 -0.555570 0.831469 0.980785
0.382683 -0.923879 0.923879 0.382683
0.555570 -0.980785 0.195090 -0.831469
_|o.707106 _|-0.707106 _|-0.707106 _|-0.707106
Y"7lo0.831469 Y27 )-0.195000( V* 710980785 ¥* 7 0.555570
0.923879 0.382683 -0.382683 0.923879
0.980785 0.831469 0.555570 -0.195090
1.000000 1.000000 1.000000 -1.000000
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EIGENVALUE PROBLEMS

Axial Vibrations

These eigenvectors are similar in shape to those developed
in the four-element solution; however, with an eight-
element solution there is more detail in the curves.

The sinusoidal nature of the first four modes of vibration are

more apparent obvious in these plots than those using the
four-element solution.
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EIGENVALUE PROBLEMS

Axial Vibrations

These eigenvectors are similar in shape to those developed
in the four-element solution; however, with an eight-
element solution there is more detail in the curves.
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End of
1-D Eigenvalues





