
EIGENVALUE PROBLEMS

Sturm-Liouville problems arise that are eigenvalue problems 
rather than inhomogeneous boundary value problems. 

The development and application of finite element models to 
these eigenvalue problems will be discussed in this 
section.

The standard form of the eigenvalue problem associated 
with the Sturm-Liouville problem can be expressed as:

    0pu r q u a x b      

     p a u a u a A   

     p b u b u b B  

EIGENVALUE PROBLEMS

Eigenvalues are a special set of scalars associated with a 
linear system of equations (i.e., a matrix equation) that are 
sometimes also known as characteristic roots, 
characteristic values, proper values, or latent roots.

The terms characteristic vector, characteristic value, and 
characteristic space are also used for these concepts. 

The prefix eigen- is adopted from the German word eigen 
for "self" or "proper".
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EIGENVALUE PROBLEMS

In this shear mapping the red arrow changes direction but 
the blue arrow does not. The blue arrow is an eigenvector 
of this shear mapping, and since its length is unchanged 
its eigenvalue is 1.

EIGENVALUE PROBLEMS

The transformation matrix preserves the direction of 
vectors parallel to eigenvector (in blue) and (in violet). The 
points that lie on the line through the origin, parallel to an 
eigenvector, remain on the line after the transformation. 
The vectors in red are not eigenvectors, therefore their 
direction is altered by the transformation. 
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EIGENVALUE PROBLEMS

EIGENVALUE PROBLEMS

The task confronting us is to determine the special values of 
the parameter  for which there are corresponding 
nontrivial solutions u. 

The  's and corresponding u's are termed eigenvalues and 
eigenfunctions, respectively. 

    0pu r q u a x b      

     p a u a u a A   

     p b u b u b B  
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EIGENVALUE PROBLEMS

To this end we assume an approximate solution of the form:
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where ni(x) are the linear nodal interpolation functions 
introduced earlier and E is the error arising from the fact that 
the approximate solution v does not (in general) satisfy the 
differential equation.

To this end we assume an approximate solution of the form:
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EIGENVALUE PROBLEMS

It can be shown that carrying through the integration by 
parts and the subsequent development leads to: 
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EIGENVALUE PROBLEMS

Constraints arising from essential boundary conditions are 
enforced by deleting from both A and B the row and 
column corresponding to the constrained variable. 

We write the constrained set of equations as:

where A and B are now reduced M x M matrices with 
M = N + 1- m, m being the number of essential boundary 
conditions that have been imposed. 

  - 0uA B

EIGENVALUE PROBLEMS

The equation above is an example of the generalized linear
algebraic eigenvalue problem. 

It is very similar in character to the algebraic eigenvalue 
problem:

  - 0i uA I

Constraints arising from essential boundary conditions are 
enforced by deleting from both A and B the row and 
column corresponding to the constrained variable. 

We write the constrained set of equations as:

  - 0uA B
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EIGENVALUE PROBLEMS

For small hand-calculated finite element models, the i and 
ui are frequently obtained in the classical manner by 
expanding the determinant:

The scalars i are the eigenvalues and the corresponding 
nontrivial vectors ui satisfying:                             are the 
eigenvectors.

  - 0i iuA B

 - 0A B

to obtain an Mth order polynomial whose roots are the 
approximate eigenvalues. 

These M roots are then substituted one at a time into the 
equations:   - 0i iuA B

to determine the corresponding approximate eigenvectors. 

EIGENVALUE PROBLEMS

With the matrices pG, qG, rG, and BTG symmetric, A and B
are also symmetric. 

In such a case, the theory can be used to show that all the 
eigenvalues i are real and that eigenvectors ui and uj
corresponding to distinct eigenvalues i and j satisfy a bi-
orthogonality relationship given by:

These general results can be used as checks on the 
calculations when determining the eigenvalues and 
eigenvectors. 

 0 i jT
i juBu
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EIGENVALUE PROBLEMS

For eigenvalue problems of dimension larger than three or 
four, it is essential to have available a reliable computer 
code for extracting the eigenvalues and eigenvectors. 

Appendix C (in your textbook) contains a discussion of and 
listings for several routines appropriate for this task. 

In addition, MathCAD has functions for determining 
eigenvalues and eigenvectors:

eigenvals(A) and eigenvecs(A)

In Matlab the functions are:
[V,D]=eig(A)

EIGENVALUE PROBLEMS

Torsional Vibrations

Consider the problem of the torsional vibrations of a uniform 
circular-cross-section bar. 

The relationship governing twist  is given as:

where G is the shear modulus, J is the polar moment of 
inertia, and  is the mass density.
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EIGENVALUE PROBLEMS

Torsional Vibrations

Consider the problem of the torsional vibrations of a uniform 
circular-cross-section bar. 

Torsional vibration is angular vibration of an object, 
commonly a shaft along its axis of rotation. 

With  = 2, comparison with the standard form shows that 
p = JG, r = J, q = 0, and  =  = 0.
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:

For the present physical problem with q = 0, ke = pe are the 
elemental mechanical stiffness matrices. 

The re are the corresponding elemental mass matrices and 
will be denoted by me. 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

In an analogous fashion we will use K rather than A, and M
rather than B at the global level. 

If we consider linear interpolation functions: 

with le = L/2 for each element:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

In an analogous fashion we will use K rather than A, and M
rather than B at the global level. 

If we consider linear interpolation functions: 

with le = L/2 for each element:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Expanded to the global level:

1 1 0
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2 1 0

1 4 1
12
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GM

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

With BTG = 0, the assembled matrices are:

The constraint 1 = 0 arises from the essential boundary
condition  (0) = 0.

Denoting K and M as KG and MG with the first row and 
column deleted, there results:

1 1 0
2

1 2 1

0 1 1

JG
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Requiring the determinant of K-M to vanish yields:

The roots are: 1 = 0.1082 and 2 = 1.3204.

The corresponding frequencies are given by:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The estimate of the lowest eigenvalue is quite acceptable 
(5.1% error).

However, the estimate of the second eigenvalue is much 
less satisfactory (42.7% error). 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The eigenvectors are obtained by substituting the i's, one at 
a time, back into the constrained equations. 

For the first eigenvalue-eigenvector pair, the first equation 
becomes:

where T = [12 13] is the constrained first eigenvector.

   1 12 1 132 4 1 0      

12 130.707 

Repeating for the 2 yields:
22 230.707  

Solving for 12 yields:

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The corresponding approximate eigenfunctions or mode 
shapes are shown below: 

1
12 130.707 

13 1 

2

x

22 230.707  

23 1 

These two eigenfunctions or mode shapes are approximations 
to the exact eigenfunctions:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The corresponding approximate eigenfunctions or mode 
shapes are shown below: 

1
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These two eigenfunctions or mode shapes are approximations 
to the exact eigenfunctions:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Note that the approximate eigenvectors can be made, by the 
appropriate choice of the arbitrary constant arising in the 
solution, to coincide at the nodes with the eigenfunctions 
they are trying to represent, and that they have the correct 
number of interior zeros (n -1) as required by the theory. 

The corresponding approximate eigenfunctions or mode 
shapes are shown below: 

1
12 130.707 

13 1 

2

x

22 230.707  

23 1 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The corresponding approximate eigenfunctions or mode 
shapes are shown below: 

1 2

Note that the approximate eigenvectors can be made, by the 
appropriate choice of the arbitrary constant arising in the 
solution, to coincide at the nodes with the eigenfunctions 
they are trying to represent, and that they have the correct 
number of interior zeros (n -1) as required by the theory. 

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

The corresponding approximate eigenfunctions or mode 
shapes are shown below: 

1 2

Note that the approximate eigenvectors can be made, by the 
appropriate choice of the arbitrary constant arising in the 
solution, to coincide at the nodes with the eigenfunctions 
they are trying to represent, and that they have the correct 
number of interior zeros (n -1) as required by the theory. 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Example of torsional vibration mode shape

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Four-element solution - The elemental ke and me matrices 
have exactly the same form as in the two-element model 
with le now taken as L/4. 

Omitting some of the details, the constrained 4 x 4 
eigenvalue problem is:

where:

  0 K - M ψ

2 1 0 0

1 2 1 0

0 1 2 1

0 0 1 1

 
   
  
 

 

GK

4 1 0 0

1 4 1 0

0 1 4 1

0 0 1 2

 
 
 
 
 
 

GM

2 3 4 5
T    ψ

2 2

96

L

G
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Four-element solution - Requiring the determinant of K-M
to vanish yields four roots; using Matlab function 
eig(MG

-1KG) the eigenvalues are displayed below along 
with the corresponding exact eigenvalues, and percent 
errors. 

2 2 /i L G   2 2 /i exact
L G 

41.96120.90171.621.7877924

33.0561.68582.0730.8549243

12.0522.20724.8720.2590852

1.302.46742.49930.0260341

% errorii

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Four-element solution – The Matlab function eig(MG
-1KG)

gives:

1 2 3 4

0.242030 -0.584313 0.584313 -0.242030

0.447214 -0.447214 -0.447214 0.447214

0.584313 0.242030 -0.242030 -0.584313

0.632456 0.632456 0.632456 0.632456

   

       
       
                 
      
             




1 2 3 4

0.382656 0.923814 0.923814 -0.382656

0.707057 0.707057 -0.707057 0.707057

0.923814 -0.382656 -0.382656 -0.923814

1.000000 -1.000000 1.000000 1.000000

   

       
       
                 
      
             




Scaling the Matlab results to make the largest value equal to 
1 gives:
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Four-element solution – The Matlab function eig(MG
-1KG)

gives:

1
2

1 2 3 4

0.382656 0.923814 0.923814 -0.382656

0.707057 0.707057 -0.707057 0.707057

0.923814 -0.382656 -0.382656 -0.923814

1.000000 -1.000000 1.000000 1.000000

   

       
       
                 
      
             




EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Four-element solution – The Matlab function eig(MG
-1KG)

gives:

1 2 3 4

0.382656 0.923814 0.923814 -0.382656

0.707057 0.707057 -0.707057 0.707057

0.923814 -0.382656 -0.382656 -0.923814

1.000000 -1.000000 1.000000 1.000000

   

       
       
                 
      
             




3
4
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1
Four-element solution - For the two-element model, the 

number of constrained degrees of freedom is two. 

The lowest eigenvalue predicted by that model is 5.2% in 
error, a good estimate. 

1
2

3
4

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1
Four-element solution - With four degrees of freedom, the 

two lowest eigenvalue estimates are 1.3% and 12.0% in 
error respectively, again quite reasonable. 

1
2

3
4
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1
This observation can be stated as a rule of thumb: 

For an algebraic eigenvalue problem of the type considered in 
this section, a model with 2N constrained degrees of freedom is 
necessary to obtain good estimates for the first N eigenvalues. 

1
2

3
4

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1
This observation can be stated as a rule of thumb: 

For an algebraic eigenvalue problem of the type considered in 
this section, a model with 2N constrained degrees of freedom is 
necessary to obtain good estimates for the first N eigenvalues. 

1 2

3 4
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Torsional Vibrations – Example 1
This observation can be stated as a rule of thumb: 

For an algebraic eigenvalue problem of the type considered in 
this section, a model with 2N constrained degrees of freedom is 
necessary to obtain good estimates for the first N eigenvalues. 

1 2

3 4

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Eight-element solution - The elemental ke and me matrices 
have exactly the same form as in the two- and four-
element models with le now taken as L/8.

The constrained 8 x 8 eigenvalue problem is:   0 K - M ψ

2 2

384

L

G

  

2 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

0 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 1

 
   
  
 

     
 

  
   

  

GK

2 3 4 5 6 7 8 9
T        ψ
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Eight-element solution - The elemental ke and me matrices 
have exactly the same form as in the two- and four-
element models with le now taken as L/8.

The constrained 8 x 8 eigenvalue problem is:

4 1 0 0 0 0 0 0

1 4 1 0 0 0 0 0

0 1 4 1 0 0 0 0

0 0 1 4 1 0 0 0

0 0 0 1 4 1 0 0

0 0 0 0 1 4 1 0

0 0 0 0 0 1 4 1

0 0 0 0 0 0 1 2

 
 
 
 
 
   
 
 
 
 
  

GM

2 2

384

L

G

  

  0 K - M ψ

2 3 4 5 6 7 8 9
T        ψ

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Eight-element solution - Requiring the determinant of 
K-M to vanish yields eight roots; using Matlab function 
eig(MG

-1KG). 

The first four eigenvalues are displayed below along with the 
corresponding exact eigenvalues, and percent errors. 

16.46%120.9026140.80740.36668604

8.26%61.685066.77990.17390603

2.92%22.206622.85590.05952052

0.32%2.46742.47530.00644621

% errorii 2 2 /i L G   2 2 /i exact
L G 
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Torsional Vibrations – Example 1

Compared to the four-element solution, the error in the 
values of the first four eigenvalues is significantly lower 
than those computed using the four-element 
approximation.

Using Matlab, the corresponding eigenvectors using 
eig(MG

-1KG) are: 

1 2 3

0.091966 -0.261898 0.3919

0.180399 -0.435521

0.261898 -0.462347

0.333333 -0.333333

0.391959 -0.091966

0.435521 0.180399

0.462347 0.391959

0.471405 0.471405

  

   
   
   
   
   
        
   
   
   
   
      

4

59 -0.462347

0.435521 -0.180399

0.091966 0.391959

-0.333333 0.333333

-0.462347 -0.261898

-0.180399 -0.435521

0.261898 0.091966

0.471405 0.471405



   
   
   
   
   
      
   
   
   
   
      

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

Compared to the four-element solution, the error in the 
values of the first four eigenvalues is significantly lower 
than those computed using the four-element 
approximation.

Scaling the results of Matlab as that the max is 1 gives:

1 2 3

0.195090 0.555571

0.382683 0.923880

0.555570 0.980786

0.707106 0.707107

0.831469 0.195091

0.923879 0.382683

0.980785 0.831469

1.00000

0.8314

1.000000 0

  





   
   
   
   
   
        
   
   
   
   
      


 4

0.980769

0.923

85

0.382879

0.195093

-0.

683

0.831470

0.707107

0.55557

707106

-0.9 0

0.923879

0.195091

1.0

80785

-0.382683

0.555570

1.000000 00000






   
   
   
   
   
      
   
   
   
   
      




CIVL 7/8111 1-D Boundary Value Problems - Eigenvalues 22/52



EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1

1
2

1 2 3

0.195090 0.555571

0.382683 0.923880

0.555570 0.980786

0.707106 0.707107

0.831469 0.195091

0.923879 0.382683

0.980785 0.831469

1.00000

0.8314

1.000000 0
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0.980769

0.923

85

0.382879

0.195093

-0.

683

0.831470

0.707107

0.55557

707106

-0.9 0

0.923879

0.195091

1.0

80785

-0.382683

0.555570

1.000000 00000
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Torsional Vibrations – Example 1

3
4

1 2 3

0.195090 0.555571

0.382683 0.923880

0.555570 0.980786

0.707106 0.707107

0.831469 0.195091

0.923879 0.382683

0.980785 0.831469

1.00000

0.8314

1.000000 0
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0.980769

0.923

85

0.382879

0.195093

-0.
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0.831470

0.707107

0.55557

707106

-0.9 0

0.923879

0.195091

1.0

80785

-0.382683

0.555570

1.000000 00000
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Torsional Vibrations – Example 1
These eigenvectors are similar in shape to those developed 

in the four-element solution; however, with an eight-
element solution there is more detail in the curves. 

The sinusoidal nature of the first four modes of vibration are 
more apparent in these plots than those using the four-
element solution.

1
2

3
4

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 1
These eigenvectors are similar in shape to those developed 

in the four-element solution; however, with an eight-
element solution there is more detail in the curves. 

The sinusoidal nature of the first four modes of vibration are 
more apparent in these plots than those using the four-
element solution.

1 2

3 4
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Torsional Vibrations – Example 1
These eigenvectors are similar in shape to those developed 

in the four-element solution; however, with an eight-
element solution there is more detail in the curves. 

1 2

3 4

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2

2

L

x and are constantG

2

L

J2J

Consider the torsional vibration of a non-uniform bar shown
below.

Four-element solution - The constrained 4 x 4 eigenvalue 
problem is:

  0 K - M ψ
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Torsional Vibrations – Example 2
The elemental ke matrices, with le = L/4 are: 

1 18

1 1

JG

L

 
   

1k

1 14

1 1

JG

L

 
   

3k

2 1k k

4 3k k

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The elemental me matrices, with le = L/4 are: 

2 1

1 212

JL  
  

 
1m

2 1

1 224

JL  
  

 
3m

2 1m m

4 3m m
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Torsional Vibrations – Example 2
The unconstrained 5 x 5 eigenvalue problem is:

   0G GK - M ψ

2 2 0 0 0

2 4 2 0 0

0 2 3 1 0

0 0 1 2 1

0 0 0 1 1

 
   
   
 

  
  

GK

     1 2 3 4 5
Tψ

4 2 0 0 0

2 8 2 0 0

0 2 6 1 0

0 0 1 4 1

0 0 0 1 2

 
 
 
 
 
 
  

GM
Element 3

Element 2

Element 1

Element 4

  
2 2

96

L

G
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Torsional Vibrations – Example 2
The constrained 4 x 4 eigenvalue problem with 1 = 0 is:

   0G GK - M ψ

 
   
  
 

 

4 2 0 0

2 3 1 0

0 1 2 1

0 0 1 1

GK

2 2

2 3 4 5 96
T L

G

      ψ

 
 
 
 
 
 

8 2 0 0

2 6 1 0

0 1 4 1

0 0 1 2

GM
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
Requiring the determinant of K-M to vanish yields four 

roots; using Matlab function eig(MG
-1KG) the eigenvalues 

are displayed below.

i i 2 2 /i L G   

1 0.0388 3.7248 

2 0.2197 21.0912 

3 0.9477 90.9792 

4 1.6980 163.0080 

 
Note that the eigenvalues for the four-element non-uniform 

bar are slightly larger than the four-element solution for the 
uniform bar.

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The eigenvalues can be found using a variety of available 

solution techniques. 

In Matlab, eig(MG
-1KG) gives:

1 2 3 4

0.217788 -0.450968 0.450968 -0.217788

0.386824 -0.414621 -0.414621 0.386824

0.595009 0.330131 -0.330131 -0.595009

0.670000 0.718144 0.718144 0.670000

   

       
       
                 
      
             




1 2 3 4

0.242030 -0.584313 0.584313 -0.242030

0.447214 -0.447214 -0.447214 0.447214

0.584313 0.242030 -0.242030 -0.584313

0.632456 0.632456 0.632456 0.632456

   

       
       
                 
      
             




The eigenvectors for the four-element solution with a 
constant value of J are:
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Torsional Vibrations – Example 2
The corresponding scaled eigenfunctions are shown in the 

figures below (the eigenvalues for J1,2 = 2J are shown by 
the solid red lines). 
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EIGENVALUE PROBLEMS

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The values of the scaled eigenvectors are slightly smaller 

over the first half of the bar reflecting the increased value 
of J in that portion of the bar. 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2

2

L

x and are constantJ

2

L

J4J

To examine this effect further, consider the same non-
uniform bar; however, the polar moment of inertia is 
J1,2 = 4J over the first half of the bar.

Four-element solution - The constrained 4 x 4 eigenvalue 
problem is:

  0 K - M ψ

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The polar moment of inertia is J1,2 = 4J over the first half of 
the bar.

The elemental ke matrices, with le = L/4 are: 

1 116

1 1

JG

L

 
   

1k 2 1k k

1 14

1 1

JG

L

 
   

3k 4 3k k
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2

The elemental me matrices, with le = L/4 are: 

The polar moment of inertia is J1,2 = 4J over the first half of 
the bar.

2 1

1 26

JL  
  

 
1m 2 1m m

2 1

1 224

JL  
  

 
3m 4 3m m

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The constrained 4 x 4 eigenvalue problem is:

   0G GK - M ψ

 
   
  
 

 

8 4 0 0

4 5 1 0

0 1 2 1

0 0 1 1

GK

2 2

2 3 4 5 96
T L

G

      ψ

 
 
 
 
 
 

16 4 0 0

4 10 1 0

0 1 4 1

0 0 1 2

GM
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
Requiring the determinant of K-M to vanish yields four 

roots; using Matlab function eig(MG
-1KG) the eigenvalues 

are displayed below.

i i 2 2 /i L G   

1 0.05239 5.02944 

2 0.18777 18.0263 

3 1.03491 99.35136 

4 1.61017 154.5763 

 

EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The eigenvalues can be found using a variety of available 

solution techniques. 

In Matlab, use eig(MG
-1KG) gives:

1 2 3 4

0.242030 -0.584313 0.584313 -0.242030

0.447214 -0.447214 -0.447214 0.447214

0.584313 0.242030 -0.242030 -0.584313

0.632456 0.632456 0.632456 0.632456

   

       
       
                 
      
             




The eigenvectors for the four-element solution with a 
constant value of J are:

1 2 3 4

0.186214 -0.330386 0.330386 -0.186214

0.316806 -0.347388 -0.347388 0.316806

0.602601 0.408379 -0.408379 -0.602601

0.708400 0.776784 0.776784 0.708400
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The corresponding scaled eigenfunctions are shown in the 

figures below (the eigenvalues for J1,2 = 4J are shown by 
the solid lines). 
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EIGENVALUE PROBLEMS

Torsional Vibrations – Example 2
The values of the scaled eigenvectors are smaller over the 

first half of the bar (increased value of J) and slightly 
increased over the second half of the bar.
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EIGENVALUE PROBLEMS

PROBLEM #16 - Consider the torsional vibration of a 
uniform bar shown below and develop a solution to one-
dimensional eigenvalue problems using a quadratic 
interpolation function. 

Use the resulting formulation to solve for the problem using:

a) one quadratic element with equally spaced nodes, 

b) two equal length quadratic elements with equally 
spaced nodes, and 

c) compare the quadratic solution with those using 
linear interpolation functions. 

x , , and are constantE J

L

EIGENVALUE PROBLEMS

Axial Vibrations

For axial vibrations the elemental stiffness and mass 
matrices are given by:

Concentrated masses are handled by simply adding the 
mass M to the corresponding main diagonal element of the 
global M matrix. 

The rest of the basic steps in the finite element method are 
carried out in exactly the same manner as described in the 
previous section for the corresponding torsion problem.

1i

i

x

x

AE dx


   T
ek N N

1i

i

x

x

A dx


  T
em N N
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EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:


2AE

k
L21

k k

, , and are constantA E 
x

L

EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:

Then with:

, , and are constantA E 





         

   

1 1

1 edx l dN N

and le = xi+1 - xi = L/2 for each element:

1

0

1

e

AE d
l

   TN N
1i

i

x

x

AE dx


   T
ek N N

x

L
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EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:

Then with:

, , and are constantA E 





         

   

1 1

1 edx l dN N

and le = xi+1 - xi = L/2 for each element:

1

1

0

1 11

1 1e

AE d
l


 

   
ek e2 e1k = k

x

L

1 12

1 1

AE

L

 
   

EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:

Then with:

, , and are constantA E 





         

   

1 1

1 edx l dN N

and le = xi+1 - xi = L/2 for each element:

1

0

eA l d   T
e1m N N

x

L

1

1
10

i
i i e

i

N
A N N l d

N
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EIGENVALUE PROBLEMS

Axial Vibrations

Two-element solution - Consider a two-element model with 
equal-length elements. The elemental matrices are:

Then with:

, , and are constantA E 





         

   

1 1

1 edx l dN N

and le = xi+1 - xi = L/2 for each element:

1

0

1
1 eA l d


   


 

  
 
e1m

e2 e1m m

x

L

2 1

1 212

A L  
  

 

EIGENVALUE PROBLEMS

Axial Vibrations

With BTG = 0, the assembled matrices are:

The constraint 1 = 0 arises from the essential boundary
condition  (0) = 0.

1 1 0
2

1 2 1

0 1 1

AE

L

 
    
  

GK

2 1 0

1 4 1
12

0 1 2

AL
 
   
  

GM

1 1 0
2

1 2 1

0 1 1

AE

L

 
    
  

GK

2 1 0

1 4 1
12

0 1 2

AL
 
   
  

GM

CIVL 7/8111 1-D Boundary Value Problems - Eigenvalues 37/52



EIGENVALUE PROBLEMS

Axial Vibrations

Denoting K and M as KG and MG with the first row and 
column deleted, there results:

   
 

 
     

         
2

3

2 4 1
0

1 1 2
K M

  
2 2

24

L

E

Requiring the determinant of K-M to vanish yields:

with roots  1 = 0.1082 and  2 = 1.3204

      
2 2

2 1 2 1

EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding frequencies are given by:

2 1
1 2 2

24 2.5968E E

L L




 
 

 
2

2
2 2

3 22.207

2exact

E E

L L


 

   
 

 
2

2
1 2

2.4674

2exact

E E

L L


 

   
 

2 2
2 2 2

24 31.690E E

L L
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EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode 
shapes are shown below. 

These two eigenfunctions or mode shapes are 
approximations to the exact eigenfunctions:

 



sin 2 1 x

2n

n

L

1
12 130.707 

13 1 

2

x

22 230.707  

23 1 

EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode 
shapes are shown below. 

These two eigenfunctions or mode shapes are 
approximations to the exact eigenfunctions:

 



sin 2 1 x

2n

n

L

1
12 130.707 

13 1 

2

x

22 230.707  

23 1 
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EIGENVALUE PROBLEMS

Axial Vibrations

The corresponding approximate eigenfunctions or mode 
shapes are shown below. 

1

2

EIGENVALUE PROBLEMS

Axial Vibrations

Example of axial vibration mode shape
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EIGENVALUE PROBLEMS

Axial Vibrations

The following example shows a 20 kHz 8" square block horn. 

The horn is one half-wavelength long at the axial resonance (the desired 
resonance), as indicated by the single node that is generally transverse to the 
principal direction of vibration.

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider the following four-
element solution of the vibration of an axial rod using the 
lumped-masses (similar to that used in our discussion for 
springs) shown below. 

, , and are constantA E 

4AE
k

L


L

x

21 3 4

k k k k
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider a two-element model 
with equal-length elements. The elemental matrices are:

Then with: 



         

   

1 1

1 edx l dN N

and le = L/4 for each element:

1

0

1 11

1 1e

AE d
l


 

   
ek

1 14

1 1

AE

L

 
   

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Consider a two-element model 
with equal-length elements. The elemental matrices are:

Then with: 



         

   

1 1

1 edx l dN N

and le = L/4 for each element:

1

0

1
1 eA l d


   


 

  
 
em

2 1

1 224

A L  
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - The elemental ke and me matrices 
have exactly the same form as in the two-element model 
with le now taken as L/4. 

Omitting some of the details, the constrained 4 x 4 
eigenvalue problem is:

where:

  0 K - M ψ

2 1 0 0

1 2 1 04

0 1 2 1

0 0 1 1

AE

L

 
   
  
 

 

GK

4 1 0 0

1 4 1 0

0 1 4 124

0 0 1 2

A L
 
 
 
 
 
 

GM

2 3 4 5
T    ψ

2 2

96

L

E

  

EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution - Requiring the determinant of K-M
to vanish yields four roots; using the Matlab function 
eig(MG

-1KG) the eigenvalues are displayed below along 
with the corresponding exact eigenvalues, and percent 
errors. 

41.93120.9026171.62791.7877914

33.0561.685182.07270.8549243

12.0022.206624.87210.2590842

1.292.46742.49930.0260341

% errorii 2 2 /i L E   2 2 /i exact
L E 
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Axial Vibrations

Four-element solution –The Matlab function eig(MG
-1KG)

gives:

1 2 3 4

0.242030 -0.584313 0.584313 -0.242030

0.447214 -0.447214 -0.447214 0.447214

0.584313 0.242030 -0.242030 -0.584313

0.632456 0.632456 0.632456 0.632456

   

       
       
                 
      
             




Scaling the eigenvectors so that the largest value is 1 gives:

1 2 3 4

0.382683 0.923879 0.923879 0.382683

0.707106 0.707106 -0.707106 -0.707106

0.923879 -0.382683 -0.382683 0.923879

1.000000 -1.000000 1.000000 -1.000000

   

       
       
                 
      
             




EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution –The Matlab function eig(MG
-1KG)

gives:

Scaling the eigenvectors so that the largest value is 1 gives:

1 2 3 4

0.382683 0.923879 0.923879 0.382683

0.707106 0.707106 -0.707106 -0.707106

0.923879 -0.382683 -0.382683 0.923879

1.000000 -1.000000 1.000000 -1.000000

   

       
       
                 
      
             




1
2
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EIGENVALUE PROBLEMS

Axial Vibrations

Four-element solution –The Matlab function eig(MG
-1KG)

gives:

Scaling the eigenvectors so that the largest value is 1 gives:

1 2 3 4

0.382683 0.923879 0.923879 0.382683

0.707106 0.707106 -0.707106 -0.707106

0.923879 -0.382683 -0.382683 0.923879

1.000000 -1.000000 1.000000 -1.000000

   

       
       
                 
      
             




3
4

EIGENVALUE PROBLEMS

Four-element solution - For the two-element model, the 
number of constrained degrees of freedom is two. 

The lowest eigenvalue predicted by that model is 5.2% in 
error, a good estimate. 

Axial Vibrations

1
2

3
4
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EIGENVALUE PROBLEMS

Axial Vibrations
Four-element solution - For the four-element model, with 

four degrees of freedom, the two lowest eigenvalue 
estimates are 1.3% and 12% in error respectively, again 
quite reasonable. 

1
2

3
4

EIGENVALUE PROBLEMS

Axial Vibrations
Four-element solution - For the four-element model, with 

four degrees of freedom, the two lowest eigenvalue 
estimates are 1.3% and 12% in error respectively, again 
quite reasonable. 

1

2

3

4
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Consider a two-element model 
with equal-length elements. The elemental matrices are:

Then with: 



         

   

1 1

1 edx l dN N

and le = L/8 for each element:

1

0

1 11

1 1e

AE d
l


 

   
ek

1 18

1 1

AE

L

 
   

EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Consider a two-element model 
with equal-length elements. The elemental matrices are:

Then with: 



         

   

1 1

1 edx l dN N

and le = L/8 for each element:

1

0

1
1 eA l d


   


 

  
 
em

2 1

1 248

A L  
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - The elemental ke and me matrices 
have exactly the same form as in the two- and four-
element models with le now taken as L/8.

The constrained 8 x 8 eigenvalue problem is:    0K - M ψ

  
2 2

384

L

E

2 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

0 0 1 2 1 0 0 0

0 0 0 1 2 1 0 0

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 1

0 0 0 0 0 0 1 1

 
   
  
 

     
 

  
   

  

GK

2 3 4 5 6 7 8 9
T        ψ

EIGENVALUE PROBLEMS

Eight-element solution - The elemental ke and me matrices 
have exactly the same form as in the two- and four-
element models with le now taken as L/8.

The constrained 8 x 8 eigenvalue problem is:

  
2 2

384

L

E

 
 
 
 
 
   
 
 
 
 
  

4 1 0 0 0 0 0 0

1 4 1 0 0 0 0 0

0 1 4 1 0 0 0 0

0 0 1 4 1 0 0 0

0 0 0 1 4 1 0 0

0 0 0 0 1 4 1 0

0 0 0 0 0 1 4 1

0 0 0 0 0 0 1 2

GM

Axial Vibrations

2 3 4 5 6 7 8 9
T        ψ

   0K - M ψ
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EIGENVALUE PROBLEMS

Axial Vibrations

Eight-element solution - Requiring the determinant of 
K-M to vanish yields four roots; using Matlab function 
eig(MG

-1KG) the eigenvalues are displayed below along 
with the corresponding exact eigenvalues, and percent 
errors. 

2 2 /i L E   2 2 /i exact
L E 

16.46%120.9027140.80740.3666864

8.26%61.685066.77990.1739063

2.92%22.206622.85570.0595202

0.32%2.46742.47530.0064461

% errorii

EIGENVALUE PROBLEMS

Compared to the four-element solution, the error in the 
values of the first four eigenvalues is significantly lower 
than those computed using the four-element 
approximation.

Using Matlab, the corresponding eigenvectors using 
eig(MG

-1KG) are: 

1 2 3

0.091966 -0.261898 0.3919

0.180398 -0.435520

0.261898 -0.462346

0.333333 -0.333333

0.391958 -0.091966

0.435520 0.180398

0.462346 0.391958

0.471404 0.471404

  

   
   
   
   
   
        
   
   
   
   
      

4

58 0.462346

0.435520 0.180398

0.091966 -0.391958

-0.333333 -0.333333

-0.462346 0.261898

-0.180398 0.435520

0.261898 -0.091966

0.471404 -0.471404



   
   
   
   
   
      
   
   
   
   
      

Axial Vibrations
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The scaled eigenvectors are: 

1 2 3

0.195090 -0.555570 0.8314

0.382683 -0.923879

0.555570 -0.980785

0.707106 -0.707106

0.831469 -0.195090

0.923879 0.382683

0.980785 0.831469

1.000000 1.000000

  

   
   
   
   
   
        
   
   
   
   
      

4

69 0.980785

0.923879 0.382683

0.195090 -0.831469

-0.707106 -0.707106

-0.980785 0.555570

-0.382683 0.923879

0.555570 -0.195090

1.000000 -1.000000



   
   
   
   
   
      
   
   
   
   
      

Axial Vibrations
1

2

EIGENVALUE PROBLEMS

The scaled eigenvectors are: 

1 2 3

0.195090 -0.555570 0.8314

0.382683 -0.923879

0.555570 -0.980785

0.707106 -0.707106

0.831469 -0.195090

0.923879 0.382683

0.980785 0.831469

1.000000 1.000000

  

   
   
   
   
   
        
   
   
   
   
      

4

69 0.980785

0.923879 0.382683

0.195090 -0.831469

-0.707106 -0.707106

-0.980785 0.555570

-0.382683 0.923879

0.555570 -0.195090

1.000000 -1.000000



   
   
   
   
   
      
   
   
   
   
      

Axial Vibrations
3

4
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EIGENVALUE PROBLEMS

Axial Vibrations
These eigenvectors are similar in shape to those developed 

in the four-element solution; however, with an eight-
element solution there is more detail in the curves. 

The sinusoidal nature of the first four modes of vibration are 
more apparent obvious in these plots than those using the 
four-element solution.

1
2

3
4

EIGENVALUE PROBLEMS

Axial Vibrations

These eigenvectors are similar in shape to those developed 
in the four-element solution; however, with an eight-
element solution there is more detail in the curves. 

1

3

4
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End of 

1-D Eigenvalues
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